On Property (Saw) and others spectral properties type Weyl-Browder theorems

An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σW (T) = E 0 a(T), where σW (T) is the Weyl spectrum of T and E 0 a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and stu...

Full description

Autores:
Carpintero, Carlos
Sanabria, José
Rosas, Ennis
Garcia, Orlando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Corporación Universitaria del Caribe - CECAR
Repositorio:
Repositorio Digital CECAR
Idioma:
eng
OAI Identifier:
oai:repositorio.cecar.edu.co:cecar/10993
Acceso en línea:
https://repositorio.cecar.edu.co/handle/cecar/10993
Palabra clave:
Semi B-Fredholm operator
a-Weyl’s theorem
Property (Saw)
Property (Sab).
Rights
openAccess
License
Derechos Reservados. Corporación Universitaria del Caribe – CECAR
Description
Summary:An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σW (T) = E 0 a(T), where σW (T) is the Weyl spectrum of T and E 0 a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF − +