On Property (Saw) and others spectral properties type Weyl-Browder theorems
An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σW (T) = E 0 a(T), where σW (T) is the Weyl spectrum of T and E 0 a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and stu...
- Autores:
-
Carpintero, Carlos
Sanabria, José
Rosas, Ennis
Garcia, Orlando
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universitaria del Caribe - CECAR
- Repositorio:
- Repositorio Digital CECAR
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cecar.edu.co:cecar/10993
- Acceso en línea:
- https://repositorio.cecar.edu.co/handle/cecar/10993
- Palabra clave:
- Semi B-Fredholm operator
a-Weyl’s theorem
Property (Saw)
Property (Sab).
- Rights
- openAccess
- License
- Derechos Reservados. Corporación Universitaria del Caribe – CECAR
| Summary: | An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σW (T) = E 0 a(T), where σW (T) is the Weyl spectrum of T and E 0 a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF − + |
|---|
