Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica
En la actualidad, gran parte de los medicamentos se obtienen a partir de compuestos aislados de seres vivos. Ante esta perspectiva, existe un interés creciente en la búsqueda de nuevos compuestos bioactivos, especialmente en organismos que han sido poco explora-dos hasta ahora, como es el caso de al...
- Autores:
-
Rodríguez Redondo, Maryluna
Guerra Díaz, Romario De Souza
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/31396
- Acceso en línea:
- https://hdl.handle.net/10901/31396
- Palabra clave:
- Caulerpa
Fitoquímicos
Metabolitos secundarios
Actividad biológica
Bioprospección
Caulerpa
Phytochemical
Secondary metabolites
Biological activity
Bioprospection
Biotecnología marina
Algas marinas
Industria farmacéutica
Búsqueda bibliográfica
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_9178c5df1a135539a3b9902c2a91d58a |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/31396 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
title |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
spellingShingle |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica Caulerpa Fitoquímicos Metabolitos secundarios Actividad biológica Bioprospección Caulerpa Phytochemical Secondary metabolites Biological activity Bioprospection Biotecnología marina Algas marinas Industria farmacéutica Búsqueda bibliográfica |
title_short |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
title_full |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
title_fullStr |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
title_full_unstemmed |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
title_sort |
Revisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéutica |
dc.creator.fl_str_mv |
Rodríguez Redondo, Maryluna Guerra Díaz, Romario De Souza |
dc.contributor.advisor.none.fl_str_mv |
Tapia Larios, Claudia Milena |
dc.contributor.author.none.fl_str_mv |
Rodríguez Redondo, Maryluna Guerra Díaz, Romario De Souza |
dc.subject.spa.fl_str_mv |
Caulerpa Fitoquímicos Metabolitos secundarios Actividad biológica Bioprospección |
topic |
Caulerpa Fitoquímicos Metabolitos secundarios Actividad biológica Bioprospección Caulerpa Phytochemical Secondary metabolites Biological activity Bioprospection Biotecnología marina Algas marinas Industria farmacéutica Búsqueda bibliográfica |
dc.subject.subjectenglish.spa.fl_str_mv |
Caulerpa Phytochemical Secondary metabolites Biological activity Bioprospection |
dc.subject.lemb.spa.fl_str_mv |
Biotecnología marina Algas marinas Industria farmacéutica Búsqueda bibliográfica |
description |
En la actualidad, gran parte de los medicamentos se obtienen a partir de compuestos aislados de seres vivos. Ante esta perspectiva, existe un interés creciente en la búsqueda de nuevos compuestos bioactivos, especialmente en organismos que han sido poco explora-dos hasta ahora, como es el caso de algunas especies de algas marinas. Este trabajo pretendió caracterizar fitoquímicamente e identificar las aplicaciones y beneficios procedentes de los metabolitos secundarios del género Caulerpa. Para llevar a cabo este estudio, Se realizó una revisión exploratoria con enfoque sistemático de artículos científicos en las bases de datos Scopus, PubMed, Marine Drugs, Scielo y Lilacs. El análisis de la información recopilada fue apoyado por el programa Microsoft Excel® y el gestor bibliográfico Zotero®. Se identificó el potencial bio prospectivo de las actividades biológicas de compuestos asociados a especies del género Caulerpa y su impacto en la industria farmacéutica a través de la revisión de 93 artículos científicos. Los hallazgos resaltan la importancia composicional y funcional de los polisacáridos sulfatados, los metabolitos secundarios Caulerpenina y Caulerpina, así como los ácidos grasos y extractos de Caulerpa, debido a que han revelado diversas actividades biológicas, incluyendo el potencial antiinflamatorio, antimicrobiano, antitumoral y antioxidante. La presencia de especies del género Caulerpa en el Caribe colombiano, respaldada por datos de caracterización de diversidad algal a nivel nacional, sugiere un potencial significativo de los recursos subvalorados de Caulerpa en Colombia para su desarrollo a mediano y largo plazo en la industria farmacológica. |
publishDate |
2022 |
dc.date.created.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2025-06-26T21:14:17Z |
dc.date.available.none.fl_str_mv |
2025-06-26T21:14:17Z |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/31396 |
url |
https://hdl.handle.net/10901/31396 |
dc.relation.references.spa.fl_str_mv |
ABDUL AZIZ, Syamimi Diyana, et al. Antifungal activities against oil palm pathogen Ganoderma boninense from seaweed sources. En: Asia Pacific Journal of Molecular Biology and Biotechnology. 13, febrero, 2019. p. 75-83. ISSN 2672-7277 ABDULLAH, M. y HUSSEIN, H. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. Bioresources and Bioprocessing. 2021, vol. 8, nro. 1, pp. 1–29 AFRASIABI, Z., et al. Appended 1,2-naphthoquinones as anticancer agents 1: synthesis, structural, spectral and antitumor activities of ortho-naphthaquinone thiosemicarbazone and its transition metal complexes. Inorganica Chimica Acta. 2004, vol. 357, nro. 1, pp. 271-278 https://www.sciencedirect.com/science/article/abs/pii/S0020169303004845 AGATONOVIC-KUSTRIN, Snezana y MORTON, David W. High-performance thin-layer chromatography-direct bioautography as a method of choice for alpha-amylase and antioxidant activity evaluation in marine algae. En: Journal of Chromatography A. Diciembre, 2017. vol. 1530 AGUILAR-SANTOS G. Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C Org. 1970;(6):842 AMICO, V., ORIENTE, G., PIATTELLI, M., TRINGALI, C., FATTORUSSO, E., MAGNO, S., MAYOL, L., 1978. Caulerpenyne, an unusual sesquiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett. 38, 3593–3596 ANDRADE, R. Perfil de ácidos grasos por cromatografía de gases. En: MicroLab Industrial [Internet]. 2014 ARENAJO, Althea R., et al. The potential anticoagulant property of caulerpa lentillifera crude extract. En: Int J Health Sci (Qassim). vol. 11, no. 3, p. 29-32. ISSN 1658-3639 AROYEHUN, A. et al. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Proper-ties, Antioxidative Capacity and Anti-Diabetic Potential. Foods. 2020, vol. 9, nro. 9 AZAM, Maria, et al. Ameliorative effect of marine macroalgae on carbon tetrachlorideinduced hepatic fibro-sis and associated complications in rats. En: Turk J Pharm Sci. vol. 19, no. 2, p. 116-124. ISSN 2148-6247 BALASUBRAMANIAM, V., et al. Carotenoid composition and antioxidant potential of Eucheuma denticula-tum, Sargassum polycystum and Caulerpa lentillifera. En: Heliyon. Agosto, 2020. vol. 6, no. 8 BALBOA, E., et al. Cosmetics from Marine Sources En: KIM, S. Springer Handbook of Marine Biotechnology. Berlin, Springer, 2015, pp. 1015–1042 BARBOSA J., et al. In Vitro Immunostimulating Activity of Sulfated Polysaccharides from Caulerpa cu-pressoides Var. Flabellata. Marine Drugs. 2019, vol 17, nro. 2 Immunostimulatory effect of sulfated galactans from the green seaweed Caulerpa cupressoides var. flabellata. Marine Drugs. 29, abril, 2020. vol. 18, no. 5 p. 234. ISSN 1660- 3397 In Vitro Antitumor Potential of Sulfated Polysaccharides from Seaweed Caulerpa cupressoides var. flabellata. Marine Biotechnology. 2021, vol. 23., nro. 1, p. 77-89 BELKACEMI, Louiza, et al. Antioxidant and antibacterial activities and identification of bioactive compounds of various extracts of Caulerpa racemosa from Algerian coast. En: Asian Pacific Journal of Tropical Biomedi-cine. 2020. vol. 10, no. 2 BERNEIRA, L., et al. Bioactivity and composition of lipophilic metabolites extracted from Antarctic macroalgae. Brazilian Journal of Microbiology. 2021, vol. 52, nro. 3, pp.1275– 1285 BHATTACHARJEE, M. Pharmaceutically valuable bioactive compounds of algae. Asian Jour Pharmaceutical and Clinical Research. 2016, vol. 9, nro. 6, pp. 43–47 BIRIS-DORHOI, E-S, et al. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients. 2020, vol. 12, nro. 10, p. 3085 BITENCOURT, M., et al. Anti-inflammatory effects of methanolic extract of green algae Caulerpa mexicana in a murine model of ulcerative colitis. Revista Brasileira de Farmacognosia. 2015, vol. 25, nro. 6, pp. 677–682 Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents. Mar Drugs. 2011, vol. 9, nro. 8, pp. 1332- 1345 BØRGESEN, F. An ecological and systematic account of the caulerpas of the Danish West Indies. København. 1907 BOX CENTENO A. Ecología de Caulerpales: Fauna y Biomarcadores. [España]: Universidad Islas Baleares; 2008 BRITO, C., et al. Antinociceptive and Anti-Inflammatory Activity from Algae of the Genus Caulerpa. Marine Drugs. 2011, vol. 9, nro. 3, pp. 307-318 BRUGÉRE, C., y RIDLER, N. Global aquaculture outlook in the next dec-ades: an analysis of national aquaculture production forecasts to 2030. Roma, FAO, 2004. Fisheries Circular: 1001 CAMACHO, O., et al. Morphological and molecular assessment of Sargassum –Fucales, Phae-ophyceae –from Caribbean Colombia, including theproporsal of Sargassum giganteum sp. Nov., Sargassum schnetteri comb. Nov. And Sargassum section Cladophyllum sect. Nov. Systematics and Biodiversity. 2015 CARNEIRO, J., et al. Gastroprotective Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana Reducing Ethanol-Induced Gastric Damage. Pharmaceuticals. 2018, vol. 11, nro. 1, pp. 1-9 Peripheral Antinociception and Anti-Inflammatory Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana. Basic & Clinical Pharmacology & Toxicology.2014, vol. 115, nro. 4, pp.335–342 CARRANZA, V et al. Determinación de metabolitos secundarios del tallo de Croton alnifolius L. (Tunga). In-forme de trabajo de investigación. 2009. p. 18 CARRUTHERS TJB, WALKER DI, HUISMAN JM. Culture Studies on Two Morphological Types of Caulerpa (Chlorophyta) from Perth, Western Australia, with a Description of a New Species. Bot Mar. 1993;36(6):589-96 CASTRO-PUYANA, M. et al. Extraction of new bioactives from Neochloris oleoabundans using pressurized technologies and food grade solvents. 2013 CHAIKLAHAN, R., et al. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Biological macromolecules. 2020, vol. 161, nro. 1, pp. 1021-1028 CHAVES, G., et al. Genotoxicity and osteogenic potential of sulfated polysaccharides from Caulerpa prolif-era seaweed. Int J Biol Macromol. 2018, vol. 11, nro. 1, p. 565-571 Sulfated Glucan from the gereen seaweed Caulerpa sertularioides Inhibits adipogenesis through suppression of adipogenic and lipigenic key factors. Mar drugs. 2022, vol. 20, nro. 8 Sulfated polysaccharides from green seaweed Caulerpa prolifera suppress fat accumulation. Journal of applied Phycology. 2020, vol. 32, nro. 1, p. 2499 – 4307 CHINNAMANI, P., et al. Identifying seaweeds species of Chlorophyta, Ochrophyta and Rhodophyta using DNA barcodes. BioRxiv. 2020. Doi:10.1101/2020.08.30.274456 CHUNG-KYU, R., et al. Synthesis and antifungal activity of 2/3-arylthio- and 2,3- bis(arylthio)-5-hydroxy-/5-methoxy-1,4-naphthoquinones. European Journal of Medical Chemistry. 2005, vol 40, nro. 5, pp. 438-444 COLLADO, L., et al. Morphological plasticity of Caulerpa prolifera in relation to growth from in a coral reef lagoon. 2002. Botanica marina, vol. 45, nro. 2, pp. 123-129 CORRALES, Beatriz. Caracterización florística de cianobacterias y macroalgas marinas de los ban-cos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano. Tesis de Maestría. Bogotá D.C.: Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología. 2019 COSTA, M., et al. Evaluating the posible anticoagulant and antioxidant effects of sulfated polysaccharides from the tropical green alga Caulerpa cupressoides var. flabellata. J Appl Phycol, 2012, vol. 2, nor. 1, p. 119-1167 CUOMO, P., et al. Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Recep-tors. 2021, vol. 22, nro. 23 DE FÁTIMA, Agra, et al.; Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacogn. 2008, vol. 18, nro. 3, pp. 472-508 DIAZ-PULIDO, G. y BULA-MEYERE, G. Marine algae from oceanic atolls in the southwestern Caribbean (Albuquerque Cays, Courtown Cays, Serrana Bank, and Roncador Bank). Atoll Research Bulletin. 1997, vol. 1, nro. 448, pp. 1-18 E.S.O. Vanderlei, K.K.N.R. Patoilo, N.A. Lima, A.P.S. Lima, J.A.G. Rodrigues, L.M.C.M. Silva, M.E.P. Lima, V. Lima, N.M.B. Benevides, Antinociceptive and antiinflammatory activities of lectin from the marine green alga Caulerpa cupressoides, Int. Immnunopharmacol. 10 (2010) 1113–1118 FAJRIAH, Sofa; RIZKI, Ilmi Fadhilah y SINURAT, Ellya. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. En: Pharmacia. 12, noviembre, 2021. vol. 68, no. 4 THEOPHANIDES, T. Introduction to Infrared Spectroscopy. En: Infrared Spectroscopy – Materials Science, Engineering and Technology; InTech. 2012, pp. 1-9 ESTRADA, P., et al. Morphological variation of two common sea grapes Caulerpa lenticifera and Caulerpa racemose from selected regions in the Philippines. Biodiversitas. 2020, vol. 21, nro. 5, pp. 1823-1832 FALCÃO, Mariath, et al.; Plants of the American continent with antiulcer activity. Phytomedicine. 2008, vol. 15, nro. 1, pp. 132-146 FILHO, G. P. Chaves, et al. Osteogenic activity of non-genotoxic sulfated polysaccharides from the green seaweed Caulerpa sertularioides. En: Algal Research. Septiembre, 2019. vol. 42 p. 101546. ISSN 2211-9264 FISCHEL, J.L., LEMEE, R., FORMENTO, P., CALDANI, C., MOLL, J.L., PESANDO, D., MEINESZ, A., GRE-LIER, P., PIETRA, P., GUERRIERO, A., 1995. Cell-growth-inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine alga Caulerpa taxifolia. Anticancer Res. 15, 2155–2160 FLEURENCE, J. Seaweeds as Food. En: Seaweed in Health and Disease Prevention; Academic Press. 2016, pp. 149-167 GANOZA, M. Fundamentación Química de las Reacciones de coloración y Precipitación en la identificación de Metabolitos Secundarios de Plantes Medicinales. Tesis para optar al Título de Químico Farmacéutico. Uni-versidad Nacional de Trujillo. Perú, 200. Pp: 14-45 GARIBAY, M., RAMIREZ, R., y LÓPEZ A. Alimentos y bebidas fermentados tradicionales. En: Biotecnología alimentaria. 5 ed. México: Limusa S.A. 2004. p 313 GAZALI, Mohamad et al. Antioxidant activity of green seaweed Caulerpa racemosa (Försskal) J. Agardh from Balai Island Water, Aceh. IOP Conference Series. Earth and 46 Environmental Science; Bristol Vol. 1033, Iss. 1, (Jun 2022): 012052. DOI:10.1088/1755- 1315/1033/1/012052 GERWICK, W. y FENICAL, W. Ichthyotoxic and cytotoxic metabolites of the tropical brown algae Stypopodium zonale (Lamouroux) Papenfuss. Journal of Organic Chemestry. 1981, vol., 46, nro. 1, pp. 22-27 GOMES, D., et al. In Vitro Studies Reveal Antiurolithic Effect of Antioxidant Sulfated Polysaccharides from the Green Seaweed Caulerpa cupressoides var flabellata. Mar Drugs. 2019, vol. 17, no. 6 GORBI S, GIULIANI ME, PITTURA L, D’ERRICO G, TERLIZZI A, FELLINE S, et al. Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar Environ Res. mayo de 2014; 96:2-11 GUIRY, M., et al. AlgaeBase: An online resource for Algae. Cryptogamie, Algologie. 2014, vol. 35, nro. 2, pp. 105-115 GURGEL, José, et al. An anti-dengue and anti-herpetic polysulfated fraction isolated from the coenocytic green seaweed Caulerpa cupressoides inhibits thrombin generation in vitro. Acta Scientiarum Biological Scienc-es. 2017, vol 39, no. 2, p. 149-159 GÜVEN, KC, et al.; Alkaloids in Marine Algae. Mar Drugs. 2010, vol 8, nro.2, pp. 269-284 HAFTING, J., et al. Prospects and challenges for industrial production of seaweed bioactives. Journal of Phycology. 2015, vol. 51, nro. 5, pp. 821–837 HALIM, R., et al. Extraction of oil from microalgae for biodiesel production. A review. Biotecnology Advances. 2012, vol. 30, nro. 3, pp. 709-732 HAO, H., et al. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemose Var peltate. Int Jour Bio Macromol. 2019, vol. 134, nro. 1, p. 891-900 HAO, L., et al. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology. 2014, vol. 15, nro. 1, pp. 322-329 https://www.sciencedirect.com/science/article/abs/pii/S0960852413019147 HIMAYA, S. y KIM, S. Marine Nutraceuticals. En: KIM, S. Springer Handbook of Marine Biotechnology. Berlin, Springer, 2015, pp. 995–1014 HINKELMAN, K. Y KEMPTHORNE, O. Design and analysis of experiments: Introduction to experimental design. John Wiley and Sons, Inc. 1994. pp. 495 HODGSON, L.M., 1984. Antimicrobial and antineoplastic activity in some South Florida seaweeds. Bot. Mar. 27, 387–390 GARIBAY, M., RAMIREZ, R., y LÓPEZ A. Alimentos y bebidas fermentados tradicionales. En: Biotecnología alimentaria. 5 ed. México: Limusa S.A. 2004. p 313 HULSE, JH, et al.; Biotecnologías: historia pasada, situación presente y perspectivas futuras. Rev Colomb Ciencias Pecu. 2006, Vol.19, pp. 317–340 I.N.L. De Queiroz, A.L.G. Quinderé, J.A.G. Rodrigues, E.S.O. V, N.A. Ribeiro, R.L.C. Rivanor, K.A. Ribeiro, C.O. Coura, K.M.A. Pereira, H.V. Chaves, M.M. Bezerra, I.W.F. Araújo, N.M.B. Benevides, Dual effects of a lectin from the green seaweed Caulerpa cupressoides var. lycopodium on inflammatory mediators in classical models of inflammation. Inflamm. Res. 64 (2015) 971–982 IANNITTI, T y PALMIERI, B. An Update on the Therapeutic Role of Alkyl-glycerols. Mar Drugs. 2010, vol. 8, nro. 8, pp. 2267-2300 ITOKAWA, H., et al; Plant-derived natural product research aimed at new drug discovery. J Nat Med. 2008, Vol. 62, nro. 3, pp. 263-280 KASE, A., et al. Secondary metabolites of some varieties of Caulerpa species. Materials Sci and Engin. 2019, vol. 823 KHAIRUDDIN, Khairiyah, et al. Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice. En: Ap-plied Sciences. 8, diciembre, 2020. vol. 10, no. 24 LI Z, WANG B, ZHANG Q, QU Y, XU H, LI G. Preparation, and antioxidant property of extract and semipuri-fied fractions of Caulerpa racemosa. J Appl Phycol. diciembre de 2012;24(6):1527-36 LIBRETEXTS. Infrared Spectroscopy. Chemistry LibreTexts [Internet]. 2013 LIU Y, MORGAN JB, COOTHANKANDASWAMY V, LIU R, JEKABSONS MB, MAHDI F, et al. The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration. J Nat Prod. 28 de diciembre de 2009;72(12):2104-9 LUCENA, A., et al. The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Mar Drugs. 2018, vol. 16, nro. 9, pp. 318 MACEDO NRPV, RIBEIRO MS, VILLAÇA RC, FERREIRA W, , et al. Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn. agosto de 2012;22(4):861-7 MAGDUGO, Rexie P., et al. An analysis of the nutritional and health values of caulerpa racemosa (forsskål) and ulva fasciata (delile)—two chlorophyta collected from the philippines. En: Molecules. 24, junio, 2020. vol. 25, no. 12, p. 2901. ISSN 1420-3049 MAGLIOZZI, L., et al. Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019, vol. 205, nro. 3, p. 203-210 MAHENDRAN, S. y SARAVANAN, S. Molecular taxinomy of green seaweeds Ulva Iactuca and Caulerpa taxifolia through phylogenetic analysis. Indian Journal of Geo Marine Sciences. 2017, vol.46, nro. 2, pp. 414-419 MAMANI, Joyce, et al. Antioxidant activity and total phenolic content in Caulerpa filiformis (Chlorophyta) from Sechura Bay and Paracas Bay, Peru. En: Revista Peruana de Biología. 5, marzo, 2020. vol. 27, no. 1 MARIYA V, et al. Biomedical and pharmacological significance of marine macro algaereview. Indian J Geo-Mar Sci. 2013, vol. 42, nro. 5, p. 527–537 MARTÍNEZ, N., et al. Antibiotic Propertiesof Marine Algae. III. Cymopolia barbata. De Gruyter. 1996, vol. 9, nro. 1., pp. 21-26 MARTINS, A. La biodiversidad puede ser el oro verde de Colombia, pero cuando nos demos cuenta podría ser demasiado tarde. En: BBC News Mundo [Internet]. 2021 MAYER, AMS, et al.; Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C Toxicol Pharmacol. 2011, Vol. 153, nro. 2, pp.191–222 MEHRA, Richa, et al. Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. En: Biologia. 20, noviembre, 2018. vol. 74, no. 2 MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE. Colombia, el segundo país más biodiverso del mundo, celebra el Día Mundial de la Bio-diversidad | Ministerio de Ambiente y Desarrollo Sostenible [Internet]. 2019 [cited 2021 Aug 17]. Available from: https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-masbiodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad NEWMAN, D. y CRAGG, G. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Jour of Nat Products. 2012, vol. 75, nro. 3, pp. 311–335 O’SULLIVAN, L., et al.; Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Mar Drugs. 2010, vol. 8, nro. 7, pp. 2038-2064 OCHOA, M. y, AYALA, A. Los Flavonoides: Apuntes Generales y su Aplicación en la Industria de Alimentos. Ingeniería y Competitividad. 2004, vol. 6, nro. 2, pp. 64-67 https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/ 2280 OSUNA-RUIZ, I. et al. Gross chemical composition, fatty acids, sterols, and pigments in tropical seaweed species off Sinaloa, Mexico.Ciencias marinas.. 2019 PANGESTUTI, R., et al. Nutritional value and biofuntionalities of two edible green seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar Drugs. 2021, vol. 19, nro.10, p. 578 PALLELA, R, et al.; Anti-photoaging and Photoprotective Compounds De-rived from Marine Organisms. Mar Drugs. 2010, vol. 8, nro. 4, pp. 1189-1202 PAUL, V. Chemical defense in tropical green algae, order Caulerpales. Marine Ecology Progress Series. 1986, vol. 34, pp. 157-169 Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpe-noids. Journal of Chemical Ecology.1987. Vol. 13, pp. 1171–1185 PERALTA, Y. et al. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Applied Energy. 2013, vol. 101, nro. 1, pp. 226-236 PÉREZ MJ, FALQUÉ E, DOMÍNGUEZ H. Antimicrobial action of compounds from marine seaweed. Mar Drugs. 2016;14(3):52. doi:10.3390/md14030052 PIRIAN, K. et al. Proximate analysis of selected Macroalgal species from the Percian FGulf as a nutritional resource. Tropical Life Science Research. 2020, vol. 31, nro. 1 PRATES, VÍTOR. Estudio fitoquímico con fines farmacológicos del alga bentónica Caulerpa racemosa. Tesis de Maestría. Paraíba, Brasil: Universidad Federal de Paraíba. Centro de Ciencias de Salud. Programa de Postgrados en productos naturales y sintéticos bioactivos. 2010 PRESCOTT, B. Potential antimalarial agents. Derivatives of 2-chloro-1,4-naphthoquinone. Journal of Medical Chemistry. 1969, vol. 12, nro. 1, pp. 181 – 182 RAO BV, BOOMINATHAN M. Antibacterial activity of silver nanoparticles of seaweeds. Am J Adv Drug De-livery. 2015; 3:296–307 REBOURS, C., et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology. 2014, vol. 26, nro. 5, pp.1939–1951 RIBEIRO, Natássia Albuquerque, et al. Sulfated polysaccharide from the green marine algae Caulerpa race-mosa reduces experimental pain in the rat temporomandibular joint. En: International Journal of Biological Mac-romolecules Mayo, 2020. vol. 150, p. 253-260. ISSN 0141-8130 RICÓN, M. y GABIO, B. Diversidad de Macroalgas Marinas del Caribe colombiano [Internet]. 2020. Disponible en: https://ipt.biodiversidad.co/sibm/resource.do?r=macroalgas_caribe_colombia ROBLES, A., et al. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances. 1998, vol. 16, nro. 3, pp. 517-528 viejo RODRIGUES, J., et al. In vitro inactivation of thrombin generation by polysulfated fractions isolated from the tropical coenocytic green seaweed Caulerpa racemosa (Caulerpaceae, Bryopsidales). Acta Sci Biol Sci. 2017, vol. 39, nro. 3 RODRIGUES, J., et al. An antithrombin-dependent sulfated polysaccharide isolated from the green alga Caulerpa cupressoides has in vivo anti- and prothrombotic effects. En: Ciência Rural. Abril, 2011. vol. 41, no. 4 RUSHDI, M., et al. A review on the diversity, chemical and pharmacological potential of the green algae genus Caulerpa. South African Journal of Botany. 2020, vol. 132, pp. 226–241 SÁNCHEZ, E., et al. Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration.Chemical EEngineering Journal. 2011, vol. 176, nro. 1, pp. 211-216 https://www.sciencedirect.com/science/article/abs/pii/S1385894711008266 SAUNDERS, G., y KUCERA, H. An evaluation of rbcL,tufA, UPA, LSU, and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie, Algologie. 2010, vol. 31, nro. 4, pp. 487-528 SFECCI, E., et al. Caulerpenyne from Caulerpa taxifolia: A comparative study between CPC and classical chromatographic techniques. Phytochemestry letters. 2017, vol. 20, nro. 1, p. 406-409 SHARMA, Y.C. y SINGH, B. Development of biodisel: Current scenario. Renewable and Sustainable Energy Reviews. 2009, vol. 13, nro. 6, pp. 1646-1651 SHIBU A, DHANAM D. Phytochemical Screening of Caulerpa recemosa Collected From Gulf of Mannar, Tamil Nadu. Asian J Biochem Pharm Res. 1 de enero de 2015;3 SILVA, G.C, et al. Antibacterial and cytotoxicity activity in macroalgae extracts: Perspectives for the use against pathogenic bacteria from shrimp farms (Litopenaeus vannamei). En: Acta Scientiarum - Biological Sci-ences. 2018. vol. 40, no. 1. ISSN 16799283 SILVA, PC. Historical overview of the genus Caulerpa. Cryptogam Algol. 1 de marzo de 2003; 24:33-50 SIMATUPANG, M. H., HAUSEN, B. M. J. Cromatog. 1970. 52, 180 SOUZA, C., et al. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Marine Drugs. 2020, vol. 18, nro. 3, p. 147 SRINORASING, T. et al. Lipid Extracts from Caulerpa lentillifera Waste: An Alternative Product in a Circular Economy. Sustainability. 2021, vol. 13, nro. 8 SUN, Y., et al. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera. Int J Biol Macromol. 2020, vol 146, no. 1, p. 931-938 Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol. 2018, vol 108. p. 314-323 Caulerpa lentilliferapolysaccharides enhance the immunostimulatory activity in immuno-suppressed mice in correlation with modulating gut microbiota. En: Food & Function. 2019. vol. 10, no. 7 SUREDA, A., et al. Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. CBP Toxicology and Pharmacology. 2006, vol. 1, nro. 2, pp. 191-196 SVEDELIUS, N. Ecological and systematic studies of the Ceylon species of Cau-lerpa. 1906 SYNYTSYA, A., et al. Cell Wall Polysaccharides of Marine Algae. Springer Handbook of Marine Biotechnology. 2015, pp. 543–590 T.M. ABREU, L.M.C.M. SILVA, E.S.O. VANDERLEI, C.M.L. MELO, V.R.A. PEREIRA, N.M.B. BENEVIDES, Cytokine production induced by marine algae lectins in BALB/c mice splenocytes, Protein Pept. Lett. 19 (2012) 975–981 Antinociceptive and antiinflammatory activities of the lectin from marine red alga Solieria filiformis, Planta Med. 82 (2016) TANDON, V., et al. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg Med Chem Lett. 2004, vol. 14, nro. 5, pp. 1079-1083 https://pubmed.ncbi.nlm.nih.gov/14980639 Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett. 2005, vol. 15, nro. 14, pp. 3463- 3466 UKABI, S., et al. Molecular authentication of Caulerpa Chlorophyta species along the eastern Israeli Mediterranean shores. Botanica marina. 2014, vol. 57, nro. 1, pp. 67-71 TANNA, Bhakti; YADAV, Sonam y MISHRA, Avinash. Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species. En: Molecular Biology Reports. 29, septiembre, 2020. vol. 47, no. 10 TECH Colombia Universidad Tecnológica Colombia. Taninos, quinonas y su aplicación. 2021. Recuperado, de https://www.techtitute.com/co/farmacia/blog/taninos-quinonasaplicacion THEOPHANIDES, T. Introduction to Infrared Spectroscopy. En: Infrared Spectroscopy – Materials Science, Engineering and Technology; InTech. 2012, pp. 1-9 THOMPSON, R.T. Naturally Occurring Quinones. Adacemic Press. 1971. Nueva York TIAN, Hua, et al. Polysaccharide from Caulerpa lentillifera: extraction optimization with response surface methodology, structure and antioxidant activities. En: Natural Product Research. 12, diciembre, 2019. p. 1-9 VIDOTTI, E., y ROLLEMBERG. ALGAS: DA ECONOMIA NOS AMBIENTES AQUÁTICOS À BIOREMEDIAÇÃO E À QUÍMICA ANALÍTICA. Química nova. 2004, vol, 27, nro. 1, pp. 139 – 145 VITTHAL WAGHMODE ET AL., Ahilya. Antioxidant, Antimicrobial and Cytotoxic activity of Some Common Seaweed along West Coast of Maharashtra. En: Egyptian Journal of Aquatic Biology and Fisheries. 1, diciem-bre, 2021. vol. 25, no. 6, p. 129-143 VO, T-S., et al. Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochemistry. 2012, vol. 47, nro. 3, pp. 386–394 WEISSFLOG, I., et al. Raman spectroscopic insights into the chemical gra-dients within the wound plug of the green alga Caulerpa taxifolia. Chembi-ochem. 2013, vol. 14, nro. 6, pp. 727–732 WEITING, L., et al. Synthesis and Preclinical Evaluations of 2-(2-Fluorophenyl)-6,7- methylenedioxyquinolin-4-one Monosodium Phosphate (CHM1−PNa) as a Potent Antitumor Agent. Journal of Medicinal Chemistry. 2010, vol. 53, nro. 4, pp. 1616-1626 WELLS, M. et al. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology. 2017, vol. 29, nro. 2, pp. 949–982 WU, Yulin, et al. A new polysaccharide from Caulerpa chemnitzia induces molecular shifts of immunomodula-tion on macrophages RAW264.7. Food chemestry:X. 2022, vol. 14, nro. 30 YAP, Wing-Fai, et al. Decoding Antioxidant and Antibacterial Potentials of Malaysian Green Seaweeds: Caulerpa racemosa and Caulerpa lentillifera. En: Antibiotics. 17, septiembre, 2019. vol. 8, no. 3 YENGKHOM, Omita, et al. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the m YIYI, Hu, et al. Anti-endotoxin and anti-inflamatory effects of Chinese herbal medicinal alkaloid ingredients in vivo. Microbial Pathogenesis. 2016, vol. 99, nro. 1, pp. 51-55 ZAINUDDIN, Elmi Nurhaidah, et al. Antibacterial activity of Caulerpa racemosa against pathogenic bacteria promoting “ice-ice” disease in the red alga Gracilaria verrucosa. En: Journal of Applied Phycology 4, mayo, 2019. vol. 31, no. 5 ZUBIA M, DRAISMA SGA, MORRISSEY KL, VARELA-ÁLVAREZ E, DE CLERCK O. Concise review of the genus Caulerpa J.V. Lamouroux. J Appl Phycol. febrero de 2020;32(1):23-39 ZUCCARELLO, G. y PAUL, N. A begginer’s guide to molecular identification of seaweed. Squalen Bull. of Mar. and Fish. Postharvest and Biotech. 2019, vol. 14, nro. 1, pp. 43-53 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Barranquilla |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/31396/4/RODRIGUEZ.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31396/5/AUTORIZACION%20RODRIGUEZ.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31396/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/31396/1/RODRIGUEZ.pdf http://repository.unilibre.edu.co/bitstream/10901/31396/2/AUTORIZACION%20RODRIGUEZ.pdf |
bitstream.checksum.fl_str_mv |
d3286102230a18efd2f58a9216ca0031 1ea2ded727325e251418217403e1f406 8a4605be74aa9ea9d79846c1fba20a33 67288c311b6eb86bb74aadefa1270ab9 423f9b8dce2cd1deb6e220e7b4707519 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1837099491844423680 |
spelling |
Tapia Larios, Claudia MilenaRodríguez Redondo, MarylunaGuerra Díaz, Romario De SouzaBarranquilla2025-06-26T21:14:17Z2025-06-26T21:14:17Z2022https://hdl.handle.net/10901/31396En la actualidad, gran parte de los medicamentos se obtienen a partir de compuestos aislados de seres vivos. Ante esta perspectiva, existe un interés creciente en la búsqueda de nuevos compuestos bioactivos, especialmente en organismos que han sido poco explora-dos hasta ahora, como es el caso de algunas especies de algas marinas. Este trabajo pretendió caracterizar fitoquímicamente e identificar las aplicaciones y beneficios procedentes de los metabolitos secundarios del género Caulerpa. Para llevar a cabo este estudio, Se realizó una revisión exploratoria con enfoque sistemático de artículos científicos en las bases de datos Scopus, PubMed, Marine Drugs, Scielo y Lilacs. El análisis de la información recopilada fue apoyado por el programa Microsoft Excel® y el gestor bibliográfico Zotero®. Se identificó el potencial bio prospectivo de las actividades biológicas de compuestos asociados a especies del género Caulerpa y su impacto en la industria farmacéutica a través de la revisión de 93 artículos científicos. Los hallazgos resaltan la importancia composicional y funcional de los polisacáridos sulfatados, los metabolitos secundarios Caulerpenina y Caulerpina, así como los ácidos grasos y extractos de Caulerpa, debido a que han revelado diversas actividades biológicas, incluyendo el potencial antiinflamatorio, antimicrobiano, antitumoral y antioxidante. La presencia de especies del género Caulerpa en el Caribe colombiano, respaldada por datos de caracterización de diversidad algal a nivel nacional, sugiere un potencial significativo de los recursos subvalorados de Caulerpa en Colombia para su desarrollo a mediano y largo plazo en la industria farmacológica. Universidad Libre Seccional Barranquilla -- Facultad de Ciencias Exactas y Naturales -- Programa de MicrobiologíaCurrently, a significant percentage of medicines derived from compounds isolated from living organisms. Considering this perspective, the exploration of new bioactive compounds is inclined to those organisms that have remained unexplored, as occurs with some species of marine algae. This work aimed to phytochemically characterize and identify the applications and benefits from the secondary metabolites of the Caulerpa genus. To conduct this study, an exploratory review of scientific articles was carried out using a systematic approach on databases including Scopus, Pubmed, Marine Drugs, Scielo and Lilacs. The collected information was analyzed using Microsoft Excel® and the reference management software Zotero®. Through the review of 93 scientific articles, the bioprospective potential of biologically active compounds associated with Caulerpa spp. And their impact on the pharmaceutical industry was identified. The findings highlight the compositional and functional importance of sulfated polysaccharides, as well as the secondar y metabolites Caulerpin and Caulerpenyne, along with the fatty acids and extracts of Caulerpa, since these compounds have demonstrated diverse biological activities, including anti-inflammatory, antitumoral, antimicrobial and antioxidant potentials. The presence of Caulerpa spp in the Colombian Caribbean, supported by data on algal diversity at the national level, suggests a significant potential for underexplored resources from Caulerpa in Colombia. These resources hold promise for medium and long-term development in the pharmaceutical industry.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CaulerpaFitoquímicosMetabolitos secundariosActividad biológicaBioprospecciónCaulerpaPhytochemicalSecondary metabolitesBiological activityBioprospectionBiotecnología marinaAlgas marinasIndustria farmacéuticaBúsqueda bibliográficaRevisión exploratoria de la composición fitoquímica y las actividades biológicas asociadas de varias especies del género caulerpa y su potencial en la industria farmacéuticaTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisABDUL AZIZ, Syamimi Diyana, et al. Antifungal activities against oil palm pathogen Ganoderma boninense from seaweed sources. En: Asia Pacific Journal of Molecular Biology and Biotechnology. 13, febrero, 2019. p. 75-83. ISSN 2672-7277ABDULLAH, M. y HUSSEIN, H. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. Bioresources and Bioprocessing. 2021, vol. 8, nro. 1, pp. 1–29AFRASIABI, Z., et al. Appended 1,2-naphthoquinones as anticancer agents 1: synthesis, structural, spectral and antitumor activities of ortho-naphthaquinone thiosemicarbazone and its transition metal complexes. Inorganica Chimica Acta. 2004, vol. 357, nro. 1, pp. 271-278 https://www.sciencedirect.com/science/article/abs/pii/S0020169303004845AGATONOVIC-KUSTRIN, Snezana y MORTON, David W. High-performance thin-layer chromatography-direct bioautography as a method of choice for alpha-amylase and antioxidant activity evaluation in marine algae. En: Journal of Chromatography A. Diciembre, 2017. vol. 1530AGUILAR-SANTOS G. Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C Org. 1970;(6):842AMICO, V., ORIENTE, G., PIATTELLI, M., TRINGALI, C., FATTORUSSO, E., MAGNO, S., MAYOL, L., 1978. Caulerpenyne, an unusual sesquiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett. 38, 3593–3596ANDRADE, R. Perfil de ácidos grasos por cromatografía de gases. En: MicroLab Industrial [Internet]. 2014ARENAJO, Althea R., et al. The potential anticoagulant property of caulerpa lentillifera crude extract. En: Int J Health Sci (Qassim). vol. 11, no. 3, p. 29-32. ISSN 1658-3639AROYEHUN, A. et al. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Proper-ties, Antioxidative Capacity and Anti-Diabetic Potential. Foods. 2020, vol. 9, nro. 9AZAM, Maria, et al. Ameliorative effect of marine macroalgae on carbon tetrachlorideinduced hepatic fibro-sis and associated complications in rats. En: Turk J Pharm Sci. vol. 19, no. 2, p. 116-124. ISSN 2148-6247BALASUBRAMANIAM, V., et al. Carotenoid composition and antioxidant potential of Eucheuma denticula-tum, Sargassum polycystum and Caulerpa lentillifera. En: Heliyon. Agosto, 2020. vol. 6, no. 8BALBOA, E., et al. Cosmetics from Marine Sources En: KIM, S. Springer Handbook of Marine Biotechnology. Berlin, Springer, 2015, pp. 1015–1042BARBOSA J., et al. In Vitro Immunostimulating Activity of Sulfated Polysaccharides from Caulerpa cu-pressoides Var. Flabellata. Marine Drugs. 2019, vol 17, nro. 2Immunostimulatory effect of sulfated galactans from the green seaweed Caulerpa cupressoides var. flabellata. Marine Drugs. 29, abril, 2020. vol. 18, no. 5 p. 234. ISSN 1660- 3397In Vitro Antitumor Potential of Sulfated Polysaccharides from Seaweed Caulerpa cupressoides var. flabellata. Marine Biotechnology. 2021, vol. 23., nro. 1, p. 77-89BELKACEMI, Louiza, et al. Antioxidant and antibacterial activities and identification of bioactive compounds of various extracts of Caulerpa racemosa from Algerian coast. En: Asian Pacific Journal of Tropical Biomedi-cine. 2020. vol. 10, no. 2BERNEIRA, L., et al. Bioactivity and composition of lipophilic metabolites extracted from Antarctic macroalgae. Brazilian Journal of Microbiology. 2021, vol. 52, nro. 3, pp.1275– 1285BHATTACHARJEE, M. Pharmaceutically valuable bioactive compounds of algae. Asian Jour Pharmaceutical and Clinical Research. 2016, vol. 9, nro. 6, pp. 43–47BIRIS-DORHOI, E-S, et al. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients. 2020, vol. 12, nro. 10, p. 3085BITENCOURT, M., et al. Anti-inflammatory effects of methanolic extract of green algae Caulerpa mexicana in a murine model of ulcerative colitis. Revista Brasileira de Farmacognosia. 2015, vol. 25, nro. 6, pp. 677–682Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents. Mar Drugs. 2011, vol. 9, nro. 8, pp. 1332- 1345BØRGESEN, F. An ecological and systematic account of the caulerpas of the Danish West Indies. København. 1907BOX CENTENO A. Ecología de Caulerpales: Fauna y Biomarcadores. [España]: Universidad Islas Baleares; 2008BRITO, C., et al. Antinociceptive and Anti-Inflammatory Activity from Algae of the Genus Caulerpa. Marine Drugs. 2011, vol. 9, nro. 3, pp. 307-318BRUGÉRE, C., y RIDLER, N. Global aquaculture outlook in the next dec-ades: an analysis of national aquaculture production forecasts to 2030. Roma, FAO, 2004. Fisheries Circular: 1001CAMACHO, O., et al. Morphological and molecular assessment of Sargassum –Fucales, Phae-ophyceae –from Caribbean Colombia, including theproporsal of Sargassum giganteum sp. Nov., Sargassum schnetteri comb. Nov. And Sargassum section Cladophyllum sect. Nov. Systematics and Biodiversity. 2015CARNEIRO, J., et al. Gastroprotective Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana Reducing Ethanol-Induced Gastric Damage. Pharmaceuticals. 2018, vol. 11, nro. 1, pp. 1-9Peripheral Antinociception and Anti-Inflammatory Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana. Basic & Clinical Pharmacology & Toxicology.2014, vol. 115, nro. 4, pp.335–342CARRANZA, V et al. Determinación de metabolitos secundarios del tallo de Croton alnifolius L. (Tunga). In-forme de trabajo de investigación. 2009. p. 18CARRUTHERS TJB, WALKER DI, HUISMAN JM. Culture Studies on Two Morphological Types of Caulerpa (Chlorophyta) from Perth, Western Australia, with a Description of a New Species. Bot Mar. 1993;36(6):589-96CASTRO-PUYANA, M. et al. Extraction of new bioactives from Neochloris oleoabundans using pressurized technologies and food grade solvents. 2013CHAIKLAHAN, R., et al. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Biological macromolecules. 2020, vol. 161, nro. 1, pp. 1021-1028CHAVES, G., et al. Genotoxicity and osteogenic potential of sulfated polysaccharides from Caulerpa prolif-era seaweed. Int J Biol Macromol. 2018, vol. 11, nro. 1, p. 565-571Sulfated Glucan from the gereen seaweed Caulerpa sertularioides Inhibits adipogenesis through suppression of adipogenic and lipigenic key factors. Mar drugs. 2022, vol. 20, nro. 8Sulfated polysaccharides from green seaweed Caulerpa prolifera suppress fat accumulation. Journal of applied Phycology. 2020, vol. 32, nro. 1, p. 2499 – 4307CHINNAMANI, P., et al. Identifying seaweeds species of Chlorophyta, Ochrophyta and Rhodophyta using DNA barcodes. BioRxiv. 2020. Doi:10.1101/2020.08.30.274456CHUNG-KYU, R., et al. Synthesis and antifungal activity of 2/3-arylthio- and 2,3- bis(arylthio)-5-hydroxy-/5-methoxy-1,4-naphthoquinones. European Journal of Medical Chemistry. 2005, vol 40, nro. 5, pp. 438-444COLLADO, L., et al. Morphological plasticity of Caulerpa prolifera in relation to growth from in a coral reef lagoon. 2002. Botanica marina, vol. 45, nro. 2, pp. 123-129CORRALES, Beatriz. Caracterización florística de cianobacterias y macroalgas marinas de los ban-cos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano. Tesis de Maestría. Bogotá D.C.: Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología. 2019COSTA, M., et al. Evaluating the posible anticoagulant and antioxidant effects of sulfated polysaccharides from the tropical green alga Caulerpa cupressoides var. flabellata. J Appl Phycol, 2012, vol. 2, nor. 1, p. 119-1167CUOMO, P., et al. Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Recep-tors. 2021, vol. 22, nro. 23DE FÁTIMA, Agra, et al.; Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacogn. 2008, vol. 18, nro. 3, pp. 472-508DIAZ-PULIDO, G. y BULA-MEYERE, G. Marine algae from oceanic atolls in the southwestern Caribbean (Albuquerque Cays, Courtown Cays, Serrana Bank, and Roncador Bank). Atoll Research Bulletin. 1997, vol. 1, nro. 448, pp. 1-18E.S.O. Vanderlei, K.K.N.R. Patoilo, N.A. Lima, A.P.S. Lima, J.A.G. Rodrigues, L.M.C.M. Silva, M.E.P. Lima, V. Lima, N.M.B. Benevides, Antinociceptive and antiinflammatory activities of lectin from the marine green alga Caulerpa cupressoides, Int. Immnunopharmacol. 10 (2010) 1113–1118FAJRIAH, Sofa; RIZKI, Ilmi Fadhilah y SINURAT, Ellya. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. En: Pharmacia. 12, noviembre, 2021. vol. 68, no. 4THEOPHANIDES, T. Introduction to Infrared Spectroscopy. En: Infrared Spectroscopy – Materials Science, Engineering and Technology; InTech. 2012, pp. 1-9ESTRADA, P., et al. Morphological variation of two common sea grapes Caulerpa lenticifera and Caulerpa racemose from selected regions in the Philippines. Biodiversitas. 2020, vol. 21, nro. 5, pp. 1823-1832FALCÃO, Mariath, et al.; Plants of the American continent with antiulcer activity. Phytomedicine. 2008, vol. 15, nro. 1, pp. 132-146FILHO, G. P. Chaves, et al. Osteogenic activity of non-genotoxic sulfated polysaccharides from the green seaweed Caulerpa sertularioides. En: Algal Research. Septiembre, 2019. vol. 42 p. 101546. ISSN 2211-9264FISCHEL, J.L., LEMEE, R., FORMENTO, P., CALDANI, C., MOLL, J.L., PESANDO, D., MEINESZ, A., GRE-LIER, P., PIETRA, P., GUERRIERO, A., 1995. Cell-growth-inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine alga Caulerpa taxifolia. Anticancer Res. 15, 2155–2160FLEURENCE, J. Seaweeds as Food. En: Seaweed in Health and Disease Prevention; Academic Press. 2016, pp. 149-167GANOZA, M. Fundamentación Química de las Reacciones de coloración y Precipitación en la identificación de Metabolitos Secundarios de Plantes Medicinales. Tesis para optar al Título de Químico Farmacéutico. Uni-versidad Nacional de Trujillo. Perú, 200. Pp: 14-45GARIBAY, M., RAMIREZ, R., y LÓPEZ A. Alimentos y bebidas fermentados tradicionales. En: Biotecnología alimentaria. 5 ed. México: Limusa S.A. 2004. p 313GAZALI, Mohamad et al. Antioxidant activity of green seaweed Caulerpa racemosa (Försskal) J. Agardh from Balai Island Water, Aceh. IOP Conference Series. Earth and 46 Environmental Science; Bristol Vol. 1033, Iss. 1, (Jun 2022): 012052. DOI:10.1088/1755- 1315/1033/1/012052GERWICK, W. y FENICAL, W. Ichthyotoxic and cytotoxic metabolites of the tropical brown algae Stypopodium zonale (Lamouroux) Papenfuss. Journal of Organic Chemestry. 1981, vol., 46, nro. 1, pp. 22-27GOMES, D., et al. In Vitro Studies Reveal Antiurolithic Effect of Antioxidant Sulfated Polysaccharides from the Green Seaweed Caulerpa cupressoides var flabellata. Mar Drugs. 2019, vol. 17, no. 6GORBI S, GIULIANI ME, PITTURA L, D’ERRICO G, TERLIZZI A, FELLINE S, et al. Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar Environ Res. mayo de 2014; 96:2-11GUIRY, M., et al. AlgaeBase: An online resource for Algae. Cryptogamie, Algologie. 2014, vol. 35, nro. 2, pp. 105-115GURGEL, José, et al. An anti-dengue and anti-herpetic polysulfated fraction isolated from the coenocytic green seaweed Caulerpa cupressoides inhibits thrombin generation in vitro. Acta Scientiarum Biological Scienc-es. 2017, vol 39, no. 2, p. 149-159GÜVEN, KC, et al.; Alkaloids in Marine Algae. Mar Drugs. 2010, vol 8, nro.2, pp. 269-284HAFTING, J., et al. Prospects and challenges for industrial production of seaweed bioactives. Journal of Phycology. 2015, vol. 51, nro. 5, pp. 821–837HALIM, R., et al. Extraction of oil from microalgae for biodiesel production. A review. Biotecnology Advances. 2012, vol. 30, nro. 3, pp. 709-732HAO, H., et al. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemose Var peltate. Int Jour Bio Macromol. 2019, vol. 134, nro. 1, p. 891-900HAO, L., et al. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology. 2014, vol. 15, nro. 1, pp. 322-329 https://www.sciencedirect.com/science/article/abs/pii/S0960852413019147HIMAYA, S. y KIM, S. Marine Nutraceuticals. En: KIM, S. Springer Handbook of Marine Biotechnology. Berlin, Springer, 2015, pp. 995–1014HINKELMAN, K. Y KEMPTHORNE, O. Design and analysis of experiments: Introduction to experimental design. John Wiley and Sons, Inc. 1994. pp. 495HODGSON, L.M., 1984. Antimicrobial and antineoplastic activity in some South Florida seaweeds. Bot. Mar. 27, 387–390GARIBAY, M., RAMIREZ, R., y LÓPEZ A. Alimentos y bebidas fermentados tradicionales. En: Biotecnología alimentaria. 5 ed. México: Limusa S.A. 2004. p 313HULSE, JH, et al.; Biotecnologías: historia pasada, situación presente y perspectivas futuras. Rev Colomb Ciencias Pecu. 2006, Vol.19, pp. 317–340I.N.L. De Queiroz, A.L.G. Quinderé, J.A.G. Rodrigues, E.S.O. V, N.A. Ribeiro, R.L.C. Rivanor, K.A. Ribeiro, C.O. Coura, K.M.A. Pereira, H.V. Chaves, M.M. Bezerra, I.W.F. Araújo, N.M.B. Benevides, Dual effects of a lectin from the green seaweed Caulerpa cupressoides var. lycopodium on inflammatory mediators in classical models of inflammation. Inflamm. Res. 64 (2015) 971–982IANNITTI, T y PALMIERI, B. An Update on the Therapeutic Role of Alkyl-glycerols. Mar Drugs. 2010, vol. 8, nro. 8, pp. 2267-2300ITOKAWA, H., et al; Plant-derived natural product research aimed at new drug discovery. J Nat Med. 2008, Vol. 62, nro. 3, pp. 263-280KASE, A., et al. Secondary metabolites of some varieties of Caulerpa species. Materials Sci and Engin. 2019, vol. 823KHAIRUDDIN, Khairiyah, et al. Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice. En: Ap-plied Sciences. 8, diciembre, 2020. vol. 10, no. 24LI Z, WANG B, ZHANG Q, QU Y, XU H, LI G. Preparation, and antioxidant property of extract and semipuri-fied fractions of Caulerpa racemosa. J Appl Phycol. diciembre de 2012;24(6):1527-36LIBRETEXTS. Infrared Spectroscopy. Chemistry LibreTexts [Internet]. 2013LIU Y, MORGAN JB, COOTHANKANDASWAMY V, LIU R, JEKABSONS MB, MAHDI F, et al. The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration. J Nat Prod. 28 de diciembre de 2009;72(12):2104-9LUCENA, A., et al. The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Mar Drugs. 2018, vol. 16, nro. 9, pp. 318MACEDO NRPV, RIBEIRO MS, VILLAÇA RC, FERREIRA W, , et al. Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn. agosto de 2012;22(4):861-7MAGDUGO, Rexie P., et al. An analysis of the nutritional and health values of caulerpa racemosa (forsskål) and ulva fasciata (delile)—two chlorophyta collected from the philippines. En: Molecules. 24, junio, 2020. vol. 25, no. 12, p. 2901. ISSN 1420-3049MAGLIOZZI, L., et al. Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019, vol. 205, nro. 3, p. 203-210MAHENDRAN, S. y SARAVANAN, S. Molecular taxinomy of green seaweeds Ulva Iactuca and Caulerpa taxifolia through phylogenetic analysis. Indian Journal of Geo Marine Sciences. 2017, vol.46, nro. 2, pp. 414-419MAMANI, Joyce, et al. Antioxidant activity and total phenolic content in Caulerpa filiformis (Chlorophyta) from Sechura Bay and Paracas Bay, Peru. En: Revista Peruana de Biología. 5, marzo, 2020. vol. 27, no. 1MARIYA V, et al. Biomedical and pharmacological significance of marine macro algaereview. Indian J Geo-Mar Sci. 2013, vol. 42, nro. 5, p. 527–537MARTÍNEZ, N., et al. Antibiotic Propertiesof Marine Algae. III. Cymopolia barbata. De Gruyter. 1996, vol. 9, nro. 1., pp. 21-26MARTINS, A. La biodiversidad puede ser el oro verde de Colombia, pero cuando nos demos cuenta podría ser demasiado tarde. En: BBC News Mundo [Internet]. 2021MAYER, AMS, et al.; Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C Toxicol Pharmacol. 2011, Vol. 153, nro. 2, pp.191–222MEHRA, Richa, et al. Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. En: Biologia. 20, noviembre, 2018. vol. 74, no. 2MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE. Colombia, el segundo país más biodiverso del mundo, celebra el Día Mundial de la Bio-diversidad | Ministerio de Ambiente y Desarrollo Sostenible [Internet]. 2019 [cited 2021 Aug 17]. Available from: https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-masbiodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidadNEWMAN, D. y CRAGG, G. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Jour of Nat Products. 2012, vol. 75, nro. 3, pp. 311–335O’SULLIVAN, L., et al.; Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Mar Drugs. 2010, vol. 8, nro. 7, pp. 2038-2064OCHOA, M. y, AYALA, A. Los Flavonoides: Apuntes Generales y su Aplicación en la Industria de Alimentos. Ingeniería y Competitividad. 2004, vol. 6, nro. 2, pp. 64-67 https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/ 2280OSUNA-RUIZ, I. et al. Gross chemical composition, fatty acids, sterols, and pigments in tropical seaweed species off Sinaloa, Mexico.Ciencias marinas.. 2019PANGESTUTI, R., et al. Nutritional value and biofuntionalities of two edible green seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar Drugs. 2021, vol. 19, nro.10, p. 578PALLELA, R, et al.; Anti-photoaging and Photoprotective Compounds De-rived from Marine Organisms. Mar Drugs. 2010, vol. 8, nro. 4, pp. 1189-1202PAUL, V. Chemical defense in tropical green algae, order Caulerpales. Marine Ecology Progress Series. 1986, vol. 34, pp. 157-169Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpe-noids. Journal of Chemical Ecology.1987. Vol. 13, pp. 1171–1185PERALTA, Y. et al. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Applied Energy. 2013, vol. 101, nro. 1, pp. 226-236PÉREZ MJ, FALQUÉ E, DOMÍNGUEZ H. Antimicrobial action of compounds from marine seaweed. Mar Drugs. 2016;14(3):52. doi:10.3390/md14030052PIRIAN, K. et al. Proximate analysis of selected Macroalgal species from the Percian FGulf as a nutritional resource. Tropical Life Science Research. 2020, vol. 31, nro. 1PRATES, VÍTOR. Estudio fitoquímico con fines farmacológicos del alga bentónica Caulerpa racemosa. Tesis de Maestría. Paraíba, Brasil: Universidad Federal de Paraíba. Centro de Ciencias de Salud. Programa de Postgrados en productos naturales y sintéticos bioactivos. 2010PRESCOTT, B. Potential antimalarial agents. Derivatives of 2-chloro-1,4-naphthoquinone. Journal of Medical Chemistry. 1969, vol. 12, nro. 1, pp. 181 – 182RAO BV, BOOMINATHAN M. Antibacterial activity of silver nanoparticles of seaweeds. Am J Adv Drug De-livery. 2015; 3:296–307REBOURS, C., et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology. 2014, vol. 26, nro. 5, pp.1939–1951RIBEIRO, Natássia Albuquerque, et al. Sulfated polysaccharide from the green marine algae Caulerpa race-mosa reduces experimental pain in the rat temporomandibular joint. En: International Journal of Biological Mac-romolecules Mayo, 2020. vol. 150, p. 253-260. ISSN 0141-8130RICÓN, M. y GABIO, B. Diversidad de Macroalgas Marinas del Caribe colombiano [Internet]. 2020. Disponible en: https://ipt.biodiversidad.co/sibm/resource.do?r=macroalgas_caribe_colombiaROBLES, A., et al. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances. 1998, vol. 16, nro. 3, pp. 517-528 viejoRODRIGUES, J., et al. In vitro inactivation of thrombin generation by polysulfated fractions isolated from the tropical coenocytic green seaweed Caulerpa racemosa (Caulerpaceae, Bryopsidales). Acta Sci Biol Sci. 2017, vol. 39, nro. 3RODRIGUES, J., et al. An antithrombin-dependent sulfated polysaccharide isolated from the green alga Caulerpa cupressoides has in vivo anti- and prothrombotic effects. En: Ciência Rural. Abril, 2011. vol. 41, no. 4RUSHDI, M., et al. A review on the diversity, chemical and pharmacological potential of the green algae genus Caulerpa. South African Journal of Botany. 2020, vol. 132, pp. 226–241SÁNCHEZ, E., et al. Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration.Chemical EEngineering Journal. 2011, vol. 176, nro. 1, pp. 211-216 https://www.sciencedirect.com/science/article/abs/pii/S1385894711008266SAUNDERS, G., y KUCERA, H. An evaluation of rbcL,tufA, UPA, LSU, and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie, Algologie. 2010, vol. 31, nro. 4, pp. 487-528SFECCI, E., et al. Caulerpenyne from Caulerpa taxifolia: A comparative study between CPC and classical chromatographic techniques. Phytochemestry letters. 2017, vol. 20, nro. 1, p. 406-409SHARMA, Y.C. y SINGH, B. Development of biodisel: Current scenario. Renewable and Sustainable Energy Reviews. 2009, vol. 13, nro. 6, pp. 1646-1651SHIBU A, DHANAM D. Phytochemical Screening of Caulerpa recemosa Collected From Gulf of Mannar, Tamil Nadu. Asian J Biochem Pharm Res. 1 de enero de 2015;3SILVA, G.C, et al. Antibacterial and cytotoxicity activity in macroalgae extracts: Perspectives for the use against pathogenic bacteria from shrimp farms (Litopenaeus vannamei). En: Acta Scientiarum - Biological Sci-ences. 2018. vol. 40, no. 1. ISSN 16799283SILVA, PC. Historical overview of the genus Caulerpa. Cryptogam Algol. 1 de marzo de 2003; 24:33-50SIMATUPANG, M. H., HAUSEN, B. M. J. Cromatog. 1970. 52, 180SOUZA, C., et al. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Marine Drugs. 2020, vol. 18, nro. 3, p. 147SRINORASING, T. et al. Lipid Extracts from Caulerpa lentillifera Waste: An Alternative Product in a Circular Economy. Sustainability. 2021, vol. 13, nro. 8SUN, Y., et al. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera. Int J Biol Macromol. 2020, vol 146, no. 1, p. 931-938Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol. 2018, vol 108. p. 314-323Caulerpa lentilliferapolysaccharides enhance the immunostimulatory activity in immuno-suppressed mice in correlation with modulating gut microbiota. En: Food & Function. 2019. vol. 10, no. 7SUREDA, A., et al. Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. CBP Toxicology and Pharmacology. 2006, vol. 1, nro. 2, pp. 191-196SVEDELIUS, N. Ecological and systematic studies of the Ceylon species of Cau-lerpa. 1906SYNYTSYA, A., et al. Cell Wall Polysaccharides of Marine Algae. Springer Handbook of Marine Biotechnology. 2015, pp. 543–590T.M. ABREU, L.M.C.M. SILVA, E.S.O. VANDERLEI, C.M.L. MELO, V.R.A. PEREIRA, N.M.B. BENEVIDES, Cytokine production induced by marine algae lectins in BALB/c mice splenocytes, Protein Pept. Lett. 19 (2012) 975–981Antinociceptive and antiinflammatory activities of the lectin from marine red alga Solieria filiformis, Planta Med. 82 (2016)TANDON, V., et al. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg Med Chem Lett. 2004, vol. 14, nro. 5, pp. 1079-1083 https://pubmed.ncbi.nlm.nih.gov/14980639Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett. 2005, vol. 15, nro. 14, pp. 3463- 3466UKABI, S., et al. Molecular authentication of Caulerpa Chlorophyta species along the eastern Israeli Mediterranean shores. Botanica marina. 2014, vol. 57, nro. 1, pp. 67-71TANNA, Bhakti; YADAV, Sonam y MISHRA, Avinash. Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species. En: Molecular Biology Reports. 29, septiembre, 2020. vol. 47, no. 10TECH Colombia Universidad Tecnológica Colombia. Taninos, quinonas y su aplicación. 2021. Recuperado, de https://www.techtitute.com/co/farmacia/blog/taninos-quinonasaplicacionTHEOPHANIDES, T. Introduction to Infrared Spectroscopy. En: Infrared Spectroscopy – Materials Science, Engineering and Technology; InTech. 2012, pp. 1-9THOMPSON, R.T. Naturally Occurring Quinones. Adacemic Press. 1971. Nueva YorkTIAN, Hua, et al. Polysaccharide from Caulerpa lentillifera: extraction optimization with response surface methodology, structure and antioxidant activities. En: Natural Product Research. 12, diciembre, 2019. p. 1-9VIDOTTI, E., y ROLLEMBERG. ALGAS: DA ECONOMIA NOS AMBIENTES AQUÁTICOS À BIOREMEDIAÇÃO E À QUÍMICA ANALÍTICA. Química nova. 2004, vol, 27, nro. 1, pp. 139 – 145VITTHAL WAGHMODE ET AL., Ahilya. Antioxidant, Antimicrobial and Cytotoxic activity of Some Common Seaweed along West Coast of Maharashtra. En: Egyptian Journal of Aquatic Biology and Fisheries. 1, diciem-bre, 2021. vol. 25, no. 6, p. 129-143VO, T-S., et al. Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochemistry. 2012, vol. 47, nro. 3, pp. 386–394WEISSFLOG, I., et al. Raman spectroscopic insights into the chemical gra-dients within the wound plug of the green alga Caulerpa taxifolia. Chembi-ochem. 2013, vol. 14, nro. 6, pp. 727–732WEITING, L., et al. Synthesis and Preclinical Evaluations of 2-(2-Fluorophenyl)-6,7- methylenedioxyquinolin-4-one Monosodium Phosphate (CHM1−PNa) as a Potent Antitumor Agent. Journal of Medicinal Chemistry. 2010, vol. 53, nro. 4, pp. 1616-1626WELLS, M. et al. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology. 2017, vol. 29, nro. 2, pp. 949–982WU, Yulin, et al. A new polysaccharide from Caulerpa chemnitzia induces molecular shifts of immunomodula-tion on macrophages RAW264.7. Food chemestry:X. 2022, vol. 14, nro. 30YAP, Wing-Fai, et al. Decoding Antioxidant and Antibacterial Potentials of Malaysian Green Seaweeds: Caulerpa racemosa and Caulerpa lentillifera. En: Antibiotics. 17, septiembre, 2019. vol. 8, no. 3YENGKHOM, Omita, et al. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the mYIYI, Hu, et al. Anti-endotoxin and anti-inflamatory effects of Chinese herbal medicinal alkaloid ingredients in vivo. Microbial Pathogenesis. 2016, vol. 99, nro. 1, pp. 51-55ZAINUDDIN, Elmi Nurhaidah, et al. Antibacterial activity of Caulerpa racemosa against pathogenic bacteria promoting “ice-ice” disease in the red alga Gracilaria verrucosa. En: Journal of Applied Phycology 4, mayo, 2019. vol. 31, no. 5ZUBIA M, DRAISMA SGA, MORRISSEY KL, VARELA-ÁLVAREZ E, DE CLERCK O. Concise review of the genus Caulerpa J.V. Lamouroux. J Appl Phycol. febrero de 2020;32(1):23-39ZUCCARELLO, G. y PAUL, N. A begginer’s guide to molecular identification of seaweed. Squalen Bull. of Mar. and Fish. Postharvest and Biotech. 2019, vol. 14, nro. 1, pp. 43-53THUMBNAILRODRIGUEZ.pdf.jpgRODRIGUEZ.pdf.jpgimage/jpeg83945http://repository.unilibre.edu.co/bitstream/10901/31396/4/RODRIGUEZ.pdf.jpgd3286102230a18efd2f58a9216ca0031MD54AUTORIZACION RODRIGUEZ.pdf.jpgAUTORIZACION RODRIGUEZ.pdf.jpgIM Thumbnailimage/jpeg29118http://repository.unilibre.edu.co/bitstream/10901/31396/5/AUTORIZACION%20RODRIGUEZ.pdf.jpg1ea2ded727325e251418217403e1f406MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/31396/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALRODRIGUEZ.pdfRODRIGUEZ.pdfArchivo del trabajo de gradoapplication/pdf947843http://repository.unilibre.edu.co/bitstream/10901/31396/1/RODRIGUEZ.pdf67288c311b6eb86bb74aadefa1270ab9MD51AUTORIZACION RODRIGUEZ.pdfAUTORIZACION RODRIGUEZ.pdfAutorización para la publicaciónapplication/pdf305625http://repository.unilibre.edu.co/bitstream/10901/31396/2/AUTORIZACION%20RODRIGUEZ.pdf423f9b8dce2cd1deb6e220e7b4707519MD5210901/31396oai:repository.unilibre.edu.co:10901/313962025-06-27 06:00:20.447Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |