Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones
El presente artículo de reflexión tiene como objetivo principal demostrar las cualidades del concreto con adición de fibras, tomando como base estudios realizados en torno a este material, permitiendo manejar una amplia recopilación de resultados para así permitir dar una opinión crítica desde difer...
- Autores:
-
Gonzalez Remolina, Jose David
contreras Bernal, Freddy Omar
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/32260
- Acceso en línea:
- https://hdl.handle.net/10901/32260
- Palabra clave:
- Concreto Fibroreforzado
Propiedades Estructurales
Sostenibilidad.
Fiber-reinforced concrete
Structural properties
Sustainability
Ingeniería civil --- Sostenibilidad --- Colombia
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
RULIBRE2_54ef7cea9e933b05fc1553fb04b8f0a3 |
|---|---|
| oai_identifier_str |
oai:repository.unilibre.edu.co:10901/32260 |
| network_acronym_str |
RULIBRE2 |
| network_name_str |
RIU - Repositorio Institucional UniLibre |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| dc.title.alternative.spa.fl_str_mv |
Fiber-reinforced concrete: a comprehensive look at its types, advantages, and applications |
| title |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| spellingShingle |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones Concreto Fibroreforzado Propiedades Estructurales Sostenibilidad. Fiber-reinforced concrete Structural properties Sustainability Ingeniería civil --- Sostenibilidad --- Colombia |
| title_short |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| title_full |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| title_fullStr |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| title_full_unstemmed |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| title_sort |
Concreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicaciones |
| dc.creator.fl_str_mv |
Gonzalez Remolina, Jose David contreras Bernal, Freddy Omar |
| dc.contributor.advisor.none.fl_str_mv |
Palacios Pabon, Daniel Jose |
| dc.contributor.author.none.fl_str_mv |
Gonzalez Remolina, Jose David contreras Bernal, Freddy Omar |
| dc.subject.spa.fl_str_mv |
Concreto Fibroreforzado Propiedades Estructurales Sostenibilidad. |
| topic |
Concreto Fibroreforzado Propiedades Estructurales Sostenibilidad. Fiber-reinforced concrete Structural properties Sustainability Ingeniería civil --- Sostenibilidad --- Colombia |
| dc.subject.subjectenglish.spa.fl_str_mv |
Fiber-reinforced concrete Structural properties Sustainability |
| dc.subject.lemb.spa.fl_str_mv |
Ingeniería civil --- Sostenibilidad --- Colombia |
| description |
El presente artículo de reflexión tiene como objetivo principal demostrar las cualidades del concreto con adición de fibras, tomando como base estudios realizados en torno a este material, permitiendo manejar una amplia recopilación de resultados para así permitir dar una opinión crítica desde diferentes ámbitos relevantes en la ingeniería civil. El concreto, al ser uno de los materiales más utilizados en las construcciones civiles, plantea la necesidad de mejorar sus propiedades, mejorando así las edificaciones en las cuales utilizaremos este material. El concreto fibroreforzado es un material que se ha utilizado años atrás para algunas construcciones. Actualmente, ha demostrado excelentes resultados tanto desde el punto de vista estructural como económico, a corto y largo plazo. Tendrá como enfoque analizar las cualidades ambientales, económicas y estructurales del concreto fibroreforzado, sustentándose en la experiencia propia adquirida en años de experiencia desempeñando labores profesionales en construcciones civiles. Con esto, cada argumento se respaldará con dicha experiencia, lo que permitirá contextualizar su aplicación a diferentes áreas del entorno constructivo del país. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-26T14:41:29Z |
| dc.date.available.none.fl_str_mv |
2025-11-26T14:41:29Z |
| dc.date.created.none.fl_str_mv |
2025-11-25 |
| dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/32260 |
| url |
https://hdl.handle.net/10901/32260 |
| dc.relation.references.spa.fl_str_mv |
ACI 318. (2014). Requisitos de Reglamento para Concreto Estructural (ACI 318S-14). American Concrete Institute. Abedi, M., Kanstad, T., Jacobsen, S., & Ji, G. (2025). Shrinkage properties of steel fiber reinforced concrete- A review. Applications in Engineering Science, 100244. https://doi.org/10.1016/J.APPLES.2025.100244 Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Alyousef, R., Abduljabbar, H. Al, & Sufian, M. (2020). Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials 2020, Vol. 13, Page 1075, 13(5), 1075. https://doi.org/10.3390/MA13051075 Aidarov, S., Nadaždi, A., Pugach, E., Tošić, N., & de la Fuente, A. (2022). Cost-oriented analysis of fibre reinforced concrete column-supported flat slabs construction. Journal of Building Engineering, 51, 104205. https://doi.org/10.1016/J.JOBE.2022.104205 Alimrani, N. S., & Balazs, G. L. (2023). Toughness and stiffness of fibre reinforced concrete in terms of shear capacity. Construction and Building Materials, 389, 131711. https://doi.org/10.1016/J.CONBUILDMAT.2023.131711 Barros, J., Costelha, H., Bento, D., Brites, N., Luís, R., Patrício, H., Cunha, V., Bento, L., Miranda, T., Coelho, P., Azenha, M., Neves, C., Salehian, H., Moniz, G., Nematollahi, M., Teixeira, A., Taheri, M., Mezhyrych, A., Hosseinpour, E., … Esmail, B. (2024). A multidisciplinary engineering-based approach for tunnelling strengthening with a new fibre reinforced shotcrete technology. Tunnelling and Underground Space Technology, 147, 105707. https://doi.org/10.1016/J.TUST.2024.105707 Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. https://doi.org/10.1016/J.CSCM.2021.E00549 Bocchino, G. D., Davolio, M., Flores Gutierrez, A. A., Burello, N. S., Lo Monte, F., Zampini, D., & Ferrara, L. (2025). Experimental investigation of the flexural fatigue behaviour of a High-Performance Fibre Reinforced Concrete (HPFRC). Construction and Building Materials, 489, 141826. https://doi.org/10.1016/J.CONBUILDMAT.2025.141826 Bounjoum, Y., Bouktib, N., & Ait El Fqih, M. (2024). Simulation and experimental study of concrete beams reinforced with a natural fiber composite. Procedia Computer Science, 236, 298–305. https://doi.org/10.1016/J.PROCS.2024.05.034 Chen, L., Chen, Z., Xie, Z., Wei, L., Hua, J., Huang, L., & Yap, P. S. (2023). Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities. Developments in the Built Environment, 16, 100255. https://doi.org/10.1016/J.DIBE.2023.100255 Chun, B., Lee, S. W., & Yoo, D. Y. (2025). Strengthening and impact performance of reinforced concrete (RC) beams using various high-performance fiber-reinforced cementitious composites (HPFRCCs). Developments in the Built Environment, 22, 100650. https://doi.org/10.1016/J.DIBE.2025.100650 Cui, J., Li, S., Li, W., He, Z., Yang, H., & Zhang, K. (2025). Fiber distribution and its influencing mechanism on properties in sprayed ultra-high performance concrete. Case Studies in Construction Materials, 22, e04361. https://doi.org/10.1016/J.CSCM.2025.E04361 Ebrahimzadeh, S., Manalo, A., Alajarmeh, O., Yang, X., Benmokrane, B., Sorbello, C. D., Weerakoon, S., & Hassanli, R. (2025). Structural performance of the GFRP-reinforced precast concrete no-gap boat ramp plank. Engineering Structures, 335, 120289. https://doi.org/10.1016/J.ENGSTRUCT.2025.120289 Ghali, A. E. Al, El Ezz, N. E., Hamad, B., Assaad, J., & Yehya, A. (2023). Comparative study on shear strength and life cycle assessment of reinforced concrete beams containing different types of fibers. Case Studies in Construction Materials, 19, e02497. https://doi.org/10.1016/J.CSCM.2023.E02497 He, F., Biolzi, L., & Carvelli, V. (2024). Shear response and fracture processes of hybrid steel fiber reinforced concrete. Engineering Fracture Mechanics, 298, 109900. https://doi.org/10.1016/J.ENGFRACMECH.2024.109900 Helal, Z., Salim, H., Ahmad, S. S. E., Elemam, H., Mohamed, A. I. H., & Elmahdy, M. A. R. (2024). Sustainable bacteria-based self-healing steel fiber reinforced concrete. Case Studies in Construction Materials, 20, e03389. https://doi.org/10.1016/J.CSCM.2024.E03389 Júarez , C., Mendoza , J., Valdez, P., Duran, A., & Gonzalez, J. (2015). Comportamiento AnalíticoExperimental a Cortante en Vigas de Concreto Fibroreforzado. Investigación y Desarrollo, 64 - 79. Kang, T., Zhang , J., Lai, Q., & Zhou, J. (2023). Study on eccentric compression performance of carbon fiberreinforced concrete columns based on machine learning. ACM, 27-29. Kumar , R., Kodur , P., & Naser , P. (2020). Structural Fire Engineering. McGrawHill. La Torre Esquivel, D., de Andrade Silva, F., & Del Savio, A. A. (2025). Flexural behavior of steel and polypropylene fiber-reinforced concrete beams with low longitudinal reinforcement ratios. Engineering Structures, 339, 120641. https://doi.org/10.1016/J.ENGSTRUCT.2025.120641 Li, Y., Wu, K., Pan, J., Zhao, C., Wang, F., Zhang, B., & Liu, Q. (2024). Experimental investigation on seismic performance of columns enhanced by high-strength steel bars and ultra-high-performance fiber reinforced concrete. Case Studies in Construction Materials, 20, e03377. https://doi.org/10.1016/J.CSCM.2024.E03377 Lu, W., Chen, J., Tang, Q., & Gu, F. (2025). Evaluation of mechanical properties and cracking resistance of shrinkage-compensating concrete reinforced by expansive agents with polypropylene fibers. Case Studies in Construction Materials, 22, e04171. https://doi.org/10.1016/J.CSCM.2024.E04171 Manso-Morato, J., Hurtado-Alonso, N., Revilla-Cuesta, V., Skaf, M., & Ortega-López, V. (2024). Fiber-Reinforced concrete and its life cycle assessment: A systematic review. Journal of Building Engineering, 94, 110062. https://doi.org/10.1016/J.JOBE.2024.110062 Mhaya, A. M., Shahidan, S., Mohd Zuki, S. S., Hakim, S. J. S., Wan Ibrahim, M. H., Mohammad Azmi, M. A., & Huseien, G. F. (2025). Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits. Ain Shams Engineering Journal, 16(3), 103324. https://doi.org/10.1016/J.ASEJ.2025.103324 Momotaz, H., Rahman, M. M., Karim, M. R., Zhuge, Y., Ma, X., & Levett, P. (2024). Structural performance of fibre reinforced recycled aggregate concrete road kerb sections under monotonic and cyclic loading. Construction and Building Materials, 438, 137329. https://doi.org/10.1016/J.CONBUILDMAT.2024.137329 Morales, C. N., Claure, G., Emparanza, A. R., & Nanni, A. (2021). Durability of GFRP reinforcing bars in seawater concrete. Construction and Building Materials, 270, 121492. https://doi.org/10.1016/J.CONBUILDMAT.2020.121492 Muntean, R., Cazacu, C., Mizgan, P., Galatanu, T., & Tamas, F. (2017). Practical Applications of Dispersely Reinforced Concrete with Polypropylene Fibers: Beams. Procedia Engineering, 181, 285–292. https://doi.org/10.1016/J.PROENG.2017.02.391 Özkılıç’, Y. O., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Chernil’nik, A., Ananova, O., Aksoylu, C., & Madenci, E. (2023). Lightweight expanded-clay fiber concrete with improved characteristics reinforced with short natural fibers. Case Studies in Construction Materials, 19, e02367. https://doi.org/10.1016/J.CSCM.2023.E02367 (PDF) ANÁLISIS COMPARATIVO ENTRE UN HORMIGÓN CONVENCIONAL Y CON EL USO DE FIBRAS METÁLICAS Y SINTÉTICAS. (n.d.). Retrieved July 5, 2025, from https://www.researchgate.net/publication/361311674_ANALISIS_COMPARATIVO_ENT RE_UN_HORMIGON_CONVENCIONAL_Y_CON_EL_USO_DE_FIBRAS_METALICA S_Y_SINTETICAS?utm_source=chatgpt.com Pham, T. M. (2025). Fibre-reinforced concrete: State-of-the-art-review on bridging mechanism, mechanical properties, durability, and eco-economic analysis. Case Studies in Construction Materials, 22, e04574. https://doi.org/10.1016/J.CSCM.2025.E04574 Puppio, M. L., Di Giacinto, D., Meloni, D., Mistretta, F., & Sassu, M. (2025). Precast steel-fiber reinforced concrete (SFRC) on beams: Results from an experimental campaign. Engineering Structures, 341, 120738. https://doi.org/10.1016/J.ENGSTRUCT.2025.120738 Ramkumar, K. B., Kannan Rajkumar, P. R., & Gunasekaran, K. (2023). Performance of hybrid steel fiber-reinforced self-compacting concrete RC beam under flexure. Engineering Science and Technology, an International Journal, 42, 101432. https://doi.org/10.1016/J.JESTCH.2023.101432 Rodríguez, J. (2017). Evaluación experimental de la resistencia residual a tension por flexión en vigas de concreto fibroreforzado mediante fibras estrucuturales de polipropileno. Universidad Autonoma de Nuevo Leon. Ruano, G., Bellomo, F., López, G., Bertuzzi, A., Nallim, L., & Oller, S. (2020). Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Construction and Building Materials, 240, 117856. https://doi.org/10.1016/J.CONBUILDMAT.2019.117856 Ruiz, D., Ramírez, C., Logreira, L., & León, M. (2015). Evaluación del comportamiento de vigas en voladizo de concreto reforzado con fibras ante la aplicación de cargas cíclicas. Revista Ingeniería de Construcción, 30(1), 17–31. https://doi.org/10.4067/S0718- 50732015000100002 Sadighi, A., Kerrane, S., Lee, H. W., Meng, L., Khaneghahi, M. H., Rahmaninezhad, S. A., Kamireddi, D., Farnam, Y. (Amir), Sales, C. M., Schauer, C., & Najafi, A. R. (2025). Phase-field modeling of fracture and healing in BioFiber-Reinforced Concrete. International Journal of Mechanical Sciences, 301, 110447. https://doi.org/10.1016/J.IJMECSCI.2025.110447 Sanchez Molina, J., Palacios-Pabon, J. D., & Sanchez-Zuñiga, J. V. (2023). Economía Circular un aporte a traves del uso del microconcreto fibro-reforzado con fibras vegetales. https://repositorio.ufps.edu.co/handle/ufps/6715 Sathiparan, N., & Subramaniam, D. N. (2024). Potential use of crushed waste glass and glass powder in sustainable pervious concrete: A review. Cleaner Waste Systems, 9, 100191. https://doi.org/10.1016/J.CLWAS.2024.100191 Sathiparan, N., & Subramaniam, D. N. (2024). Potential use of crushed waste glass and glass powder in sustainable pervious concrete: A review. Cleaner Waste Systems, 9, 100191. https://doi.org/10.1016/J.CLWAS.2024.100191 Thornburg, D., & Kimball, C. (2021). International Building Code Illustrated Handbook. McGrawHill. Thornburg, D., & Kimball, C. (2024). International Building Code Illustrated Handbook, 1st Edition. McGrawHill. Valente, R., & Pimentel, M. (2024). Fibre reinforced concrete under in-plane shear stresses. Engineering Structures, 307, 117890. https://doi.org/10.1016/J.ENGSTRUCT.2024.117890 Valizadeh Kiamahalleh, M., Gholampour, A., Ngo, T. D., & Ozbakkaloglu, T. (2024). Mechanical, durability and microstructural properties of waste-based concrete reinforced with sugarcane fiber. Structures, 67, 107019. https://doi.org/10.1016/J.ISTRUC.2024.107019 Wang, W. C., Huang, Y., Lee, M. G., Wang, Y. C., Kan, Y. C., Hsiao, Y. C., & Chang, H. W. (2022). Case study for ditch cover with ultra-high-performance concrete. Case Studies in Construction Materials, 17, e01647. https://doi.org/10.1016/J.CSCM.2022.E01647 Warsi, S. B. F., Panda, B., & Biswas, P. (2023). Exploring fibre addition methods and mechanical properties of fibre-reinforced 3D printed concrete: A review. Developments in the Built Environment, 16, 100295. https://doi.org/10.1016/J.DIBE.2023.100295 Xu, W., Jiang, D., Zhao, Q., & Wang, L. (2024). Study on printability of 3D printing carbon fiber reinforced eco-friendly concrete: Characterized by fluidity and consistency. Case Studies in Construction Materials, 21, e03589. https://doi.org/10.1016/J.CSCM.2024.E03589 Yang, X., Huang, J., Peng, L., Zhang, L., & He, Y. (2024). Research on the mechanism of elevated permeability resistance in recycled glass fiber reinforced concrete. Case Studies in Construction Materials, 20, e03173. https://doi.org/10.1016/J.CSCM.2024.E03173 Yifan, G., Wenqi, D., Hong, J., & Yafei, Q. (2025). Optimizing steel consumption in segmental tunnel joints through the use of steel fiber reinforced concrete: An experimental study. Case Studies in Construction Materials, 22, e04833. https://doi.org/10.1016/J.CSCM.2025.E04833 Yu, L., Ma, S., Sun, J., & Kadir, A. (2023). Seismic Analysis of Reinforced Concrete Bridge Piers Based on Ductile Reinforcement. KSCE Journal of Civil Engineering, 27(12), 5216–5230. https://doi.org/10.1007/s12205-023-0845-y Zaid, O., Al-Dala’ien, R. N., Arbili, M. M., & Alashker, Y. (2025a). Optimizing natural fiber content and types for enhanced strength and long-term durability in high-performance concrete. Cleaner Engineering and Technology, 26, 100983. https://doi.org/10.1016/J.CLET.2025.100983 Zaid, O., Al-Dala’ien, R. N., Arbili, M. M., & Alashker, Y. (2025b). Optimizing natural fiber content and types for enhanced strength and long-term durability in high-performance concrete. Cleaner Engineering and Technology, 26, 100983. https://doi.org/10.1016/J.CLET.2025.100983 Zheng, S., Li, Y., Feng, Q., Liang, X., Wu, X., & Xu, R. (2025). Experimental investigation on bond-slip behavior of epoxy-coated rebars in steel fiber reinforced concrete. Case Studies in Construction Materials, 22, e04767. https://doi.org/10.1016/J.CSCM.2025.E04767 |
| dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.spa.fl_str_mv |
PDF |
| dc.coverage.spatial.spa.fl_str_mv |
Cúcuta |
| institution |
Universidad Libre |
| bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/32260/9/ARTICULO.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/32260/10/authorization%20de%20public%20.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/32260/11/RESOLUCIO%cc%81N.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/32260/12/FORMATO%20INSTITUCIONAL%20RESUMEN.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/32260/13/ACTA%20DE%20SUSTENTACION%20OMAR%20BERNAL_Freddy%20Omar%20Contrera.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/32260/7/license.txt http://repository.unilibre.edu.co/bitstream/10901/32260/5/FORMATO%20INSTITUCIONAL%20RESUMEN.pdf http://repository.unilibre.edu.co/bitstream/10901/32260/3/ARTICULO.pdf http://repository.unilibre.edu.co/bitstream/10901/32260/4/authorization%20de%20public%20.pdf http://repository.unilibre.edu.co/bitstream/10901/32260/6/RESOLUCIO%cc%81N.pdf http://repository.unilibre.edu.co/bitstream/10901/32260/8/ACTA%20DE%20SUSTENTACION%20OMAR%20BERNAL_Freddy%20Omar%20Contrera.pdf |
| bitstream.checksum.fl_str_mv |
3e6a199966c09e364514adc0570ba45a c9ff71109871de6faaba5bec46fc1569 69e52f6c02b90292932599f34055198a ed266031a514cf2d6dcc3bdc88cc980a 7bc22166cc7114c7eda96408eef22968 8a4605be74aa9ea9d79846c1fba20a33 0a7f002a9400a3d88870b00eeda52c94 50f391d692b0317d8f22a04e82123d68 35a4be8fd7c16c8a8765ee47b6069864 e852c48d4eef8bc993991b525e48ac6f fa1fd5c596fc46aeecc2585de0017a7d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
| repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
| _version_ |
1851053902066089984 |
| spelling |
Palacios Pabon, Daniel JoseGonzalez Remolina, Jose Davidcontreras Bernal, Freddy OmarCúcuta2025-11-26T14:41:29Z2025-11-26T14:41:29Z2025-11-25https://hdl.handle.net/10901/32260El presente artículo de reflexión tiene como objetivo principal demostrar las cualidades del concreto con adición de fibras, tomando como base estudios realizados en torno a este material, permitiendo manejar una amplia recopilación de resultados para así permitir dar una opinión crítica desde diferentes ámbitos relevantes en la ingeniería civil. El concreto, al ser uno de los materiales más utilizados en las construcciones civiles, plantea la necesidad de mejorar sus propiedades, mejorando así las edificaciones en las cuales utilizaremos este material. El concreto fibroreforzado es un material que se ha utilizado años atrás para algunas construcciones. Actualmente, ha demostrado excelentes resultados tanto desde el punto de vista estructural como económico, a corto y largo plazo. Tendrá como enfoque analizar las cualidades ambientales, económicas y estructurales del concreto fibroreforzado, sustentándose en la experiencia propia adquirida en años de experiencia desempeñando labores profesionales en construcciones civiles. Con esto, cada argumento se respaldará con dicha experiencia, lo que permitirá contextualizar su aplicación a diferentes áreas del entorno constructivo del país.Universidad Libre-Facultad de Ingenieria-Ingenieria CivilThe main objective of this reflection article is to demonstrate the qualities of fiber reinforced concrete, drawing on studies conducted on this material. It provides a broad collection of results and allows for critical opinions from various relevant fields in civil engineering. Concrete, as one of the most widely used materials in civil construction, raises the need to improve its properties, thereby enhancing the buildings in which it will be used. Fiber-reinforced concrete is a material that has been used for several years in some construction projects. Currently, it has demonstrated excellent results from both the structural and economic perspectives, both in the short and long term. The focus will be on analyzing the environmental, economic, and structural qualities of fiber reinforced concrete, based on my own experience gained over years of professional work in civil construction. Each argument will be supported by this experience, which will allow its application to be contextualized in different areas of the country's construction sector.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Concreto FibroreforzadoPropiedades EstructuralesSostenibilidad.Fiber-reinforced concreteStructural propertiesSustainabilityIngeniería civil --- Sostenibilidad --- ColombiaConcreto Fibroreforzado: una mirada integral a sus tipos, ventajas y aplicacionesFiber-reinforced concrete: a comprehensive look at its types, advantages, and applicationsTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisACI 318. (2014). Requisitos de Reglamento para Concreto Estructural (ACI 318S-14). American Concrete Institute.Abedi, M., Kanstad, T., Jacobsen, S., & Ji, G. (2025). Shrinkage properties of steel fiber reinforced concrete- A review. Applications in Engineering Science, 100244. https://doi.org/10.1016/J.APPLES.2025.100244Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Alyousef, R., Abduljabbar, H. Al, & Sufian, M. (2020). Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials 2020, Vol. 13, Page 1075, 13(5), 1075. https://doi.org/10.3390/MA13051075Aidarov, S., Nadaždi, A., Pugach, E., Tošić, N., & de la Fuente, A. (2022). Cost-oriented analysis of fibre reinforced concrete column-supported flat slabs construction. Journal of Building Engineering, 51, 104205. https://doi.org/10.1016/J.JOBE.2022.104205Alimrani, N. S., & Balazs, G. L. (2023). Toughness and stiffness of fibre reinforced concrete in terms of shear capacity. Construction and Building Materials, 389, 131711. https://doi.org/10.1016/J.CONBUILDMAT.2023.131711Barros, J., Costelha, H., Bento, D., Brites, N., Luís, R., Patrício, H., Cunha, V., Bento, L., Miranda, T., Coelho, P., Azenha, M., Neves, C., Salehian, H., Moniz, G., Nematollahi, M., Teixeira, A., Taheri, M., Mezhyrych, A., Hosseinpour, E., … Esmail, B. (2024). A multidisciplinary engineering-based approach for tunnelling strengthening with a new fibre reinforced shotcrete technology. Tunnelling and Underground Space Technology, 147, 105707. https://doi.org/10.1016/J.TUST.2024.105707Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. https://doi.org/10.1016/J.CSCM.2021.E00549Bocchino, G. D., Davolio, M., Flores Gutierrez, A. A., Burello, N. S., Lo Monte, F., Zampini, D., & Ferrara, L. (2025). Experimental investigation of the flexural fatigue behaviour of a High-Performance Fibre Reinforced Concrete (HPFRC). Construction and Building Materials, 489, 141826. https://doi.org/10.1016/J.CONBUILDMAT.2025.141826Bounjoum, Y., Bouktib, N., & Ait El Fqih, M. (2024). Simulation and experimental study of concrete beams reinforced with a natural fiber composite. Procedia Computer Science, 236, 298–305. https://doi.org/10.1016/J.PROCS.2024.05.034Chen, L., Chen, Z., Xie, Z., Wei, L., Hua, J., Huang, L., & Yap, P. S. (2023). Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities. Developments in the Built Environment, 16, 100255. https://doi.org/10.1016/J.DIBE.2023.100255Chun, B., Lee, S. W., & Yoo, D. Y. (2025). Strengthening and impact performance of reinforced concrete (RC) beams using various high-performance fiber-reinforced cementitious composites (HPFRCCs). Developments in the Built Environment, 22, 100650. https://doi.org/10.1016/J.DIBE.2025.100650Cui, J., Li, S., Li, W., He, Z., Yang, H., & Zhang, K. (2025). Fiber distribution and its influencing mechanism on properties in sprayed ultra-high performance concrete. Case Studies in Construction Materials, 22, e04361. https://doi.org/10.1016/J.CSCM.2025.E04361Ebrahimzadeh, S., Manalo, A., Alajarmeh, O., Yang, X., Benmokrane, B., Sorbello, C. D., Weerakoon, S., & Hassanli, R. (2025). Structural performance of the GFRP-reinforced precast concrete no-gap boat ramp plank. Engineering Structures, 335, 120289. https://doi.org/10.1016/J.ENGSTRUCT.2025.120289Ghali, A. E. Al, El Ezz, N. E., Hamad, B., Assaad, J., & Yehya, A. (2023). Comparative study on shear strength and life cycle assessment of reinforced concrete beams containing different types of fibers. Case Studies in Construction Materials, 19, e02497. https://doi.org/10.1016/J.CSCM.2023.E02497He, F., Biolzi, L., & Carvelli, V. (2024). Shear response and fracture processes of hybrid steel fiber reinforced concrete. Engineering Fracture Mechanics, 298, 109900. https://doi.org/10.1016/J.ENGFRACMECH.2024.109900Helal, Z., Salim, H., Ahmad, S. S. E., Elemam, H., Mohamed, A. I. H., & Elmahdy, M. A. R. (2024). Sustainable bacteria-based self-healing steel fiber reinforced concrete. Case Studies in Construction Materials, 20, e03389. https://doi.org/10.1016/J.CSCM.2024.E03389Júarez , C., Mendoza , J., Valdez, P., Duran, A., & Gonzalez, J. (2015). Comportamiento AnalíticoExperimental a Cortante en Vigas de Concreto Fibroreforzado. Investigación y Desarrollo, 64 - 79.Kang, T., Zhang , J., Lai, Q., & Zhou, J. (2023). Study on eccentric compression performance of carbon fiberreinforced concrete columns based on machine learning. ACM, 27-29.Kumar , R., Kodur , P., & Naser , P. (2020). Structural Fire Engineering. McGrawHill.La Torre Esquivel, D., de Andrade Silva, F., & Del Savio, A. A. (2025). Flexural behavior of steel and polypropylene fiber-reinforced concrete beams with low longitudinal reinforcement ratios. Engineering Structures, 339, 120641. https://doi.org/10.1016/J.ENGSTRUCT.2025.120641Li, Y., Wu, K., Pan, J., Zhao, C., Wang, F., Zhang, B., & Liu, Q. (2024). Experimental investigation on seismic performance of columns enhanced by high-strength steel bars and ultra-high-performance fiber reinforced concrete. Case Studies in Construction Materials, 20, e03377. https://doi.org/10.1016/J.CSCM.2024.E03377Lu, W., Chen, J., Tang, Q., & Gu, F. (2025). Evaluation of mechanical properties and cracking resistance of shrinkage-compensating concrete reinforced by expansive agents with polypropylene fibers. Case Studies in Construction Materials, 22, e04171. https://doi.org/10.1016/J.CSCM.2024.E04171Manso-Morato, J., Hurtado-Alonso, N., Revilla-Cuesta, V., Skaf, M., & Ortega-López, V. (2024). Fiber-Reinforced concrete and its life cycle assessment: A systematic review. Journal of Building Engineering, 94, 110062. https://doi.org/10.1016/J.JOBE.2024.110062Mhaya, A. M., Shahidan, S., Mohd Zuki, S. S., Hakim, S. J. S., Wan Ibrahim, M. H., Mohammad Azmi, M. A., & Huseien, G. F. (2025). Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits. Ain Shams Engineering Journal, 16(3), 103324. https://doi.org/10.1016/J.ASEJ.2025.103324Momotaz, H., Rahman, M. M., Karim, M. R., Zhuge, Y., Ma, X., & Levett, P. (2024). Structural performance of fibre reinforced recycled aggregate concrete road kerb sections under monotonic and cyclic loading. Construction and Building Materials, 438, 137329. https://doi.org/10.1016/J.CONBUILDMAT.2024.137329Morales, C. N., Claure, G., Emparanza, A. R., & Nanni, A. (2021). Durability of GFRP reinforcing bars in seawater concrete. Construction and Building Materials, 270, 121492. https://doi.org/10.1016/J.CONBUILDMAT.2020.121492Muntean, R., Cazacu, C., Mizgan, P., Galatanu, T., & Tamas, F. (2017). Practical Applications of Dispersely Reinforced Concrete with Polypropylene Fibers: Beams. Procedia Engineering, 181, 285–292. https://doi.org/10.1016/J.PROENG.2017.02.391Özkılıç’, Y. O., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Chernil’nik, A., Ananova, O., Aksoylu, C., & Madenci, E. (2023). Lightweight expanded-clay fiber concrete with improved characteristics reinforced with short natural fibers. Case Studies in Construction Materials, 19, e02367. https://doi.org/10.1016/J.CSCM.2023.E02367(PDF) ANÁLISIS COMPARATIVO ENTRE UN HORMIGÓN CONVENCIONAL Y CON EL USO DE FIBRAS METÁLICAS Y SINTÉTICAS. (n.d.). Retrieved July 5, 2025, from https://www.researchgate.net/publication/361311674_ANALISIS_COMPARATIVO_ENT RE_UN_HORMIGON_CONVENCIONAL_Y_CON_EL_USO_DE_FIBRAS_METALICA S_Y_SINTETICAS?utm_source=chatgpt.comPham, T. M. (2025). Fibre-reinforced concrete: State-of-the-art-review on bridging mechanism, mechanical properties, durability, and eco-economic analysis. Case Studies in Construction Materials, 22, e04574. https://doi.org/10.1016/J.CSCM.2025.E04574Puppio, M. L., Di Giacinto, D., Meloni, D., Mistretta, F., & Sassu, M. (2025). Precast steel-fiber reinforced concrete (SFRC) on beams: Results from an experimental campaign. Engineering Structures, 341, 120738. https://doi.org/10.1016/J.ENGSTRUCT.2025.120738Ramkumar, K. B., Kannan Rajkumar, P. R., & Gunasekaran, K. (2023). Performance of hybrid steel fiber-reinforced self-compacting concrete RC beam under flexure. Engineering Science and Technology, an International Journal, 42, 101432. https://doi.org/10.1016/J.JESTCH.2023.101432Rodríguez, J. (2017). Evaluación experimental de la resistencia residual a tension por flexión en vigas de concreto fibroreforzado mediante fibras estrucuturales de polipropileno. Universidad Autonoma de Nuevo Leon.Ruano, G., Bellomo, F., López, G., Bertuzzi, A., Nallim, L., & Oller, S. (2020). Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Construction and Building Materials, 240, 117856. https://doi.org/10.1016/J.CONBUILDMAT.2019.117856Ruiz, D., Ramírez, C., Logreira, L., & León, M. (2015). Evaluación del comportamiento de vigas en voladizo de concreto reforzado con fibras ante la aplicación de cargas cíclicas. Revista Ingeniería de Construcción, 30(1), 17–31. https://doi.org/10.4067/S0718- 50732015000100002Sadighi, A., Kerrane, S., Lee, H. W., Meng, L., Khaneghahi, M. H., Rahmaninezhad, S. A., Kamireddi, D., Farnam, Y. (Amir), Sales, C. M., Schauer, C., & Najafi, A. R. (2025). Phase-field modeling of fracture and healing in BioFiber-Reinforced Concrete. International Journal of Mechanical Sciences, 301, 110447. https://doi.org/10.1016/J.IJMECSCI.2025.110447Sanchez Molina, J., Palacios-Pabon, J. D., & Sanchez-Zuñiga, J. V. (2023). Economía Circular un aporte a traves del uso del microconcreto fibro-reforzado con fibras vegetales. https://repositorio.ufps.edu.co/handle/ufps/6715Sathiparan, N., & Subramaniam, D. N. (2024). Potential use of crushed waste glass and glass powder in sustainable pervious concrete: A review. Cleaner Waste Systems, 9, 100191. https://doi.org/10.1016/J.CLWAS.2024.100191Sathiparan, N., & Subramaniam, D. N. (2024). Potential use of crushed waste glass and glass powder in sustainable pervious concrete: A review. Cleaner Waste Systems, 9, 100191. https://doi.org/10.1016/J.CLWAS.2024.100191Thornburg, D., & Kimball, C. (2021). International Building Code Illustrated Handbook. McGrawHill.Thornburg, D., & Kimball, C. (2024). International Building Code Illustrated Handbook, 1st Edition. McGrawHill.Valente, R., & Pimentel, M. (2024). Fibre reinforced concrete under in-plane shear stresses. Engineering Structures, 307, 117890. https://doi.org/10.1016/J.ENGSTRUCT.2024.117890Valizadeh Kiamahalleh, M., Gholampour, A., Ngo, T. D., & Ozbakkaloglu, T. (2024). Mechanical, durability and microstructural properties of waste-based concrete reinforced with sugarcane fiber. Structures, 67, 107019. https://doi.org/10.1016/J.ISTRUC.2024.107019Wang, W. C., Huang, Y., Lee, M. G., Wang, Y. C., Kan, Y. C., Hsiao, Y. C., & Chang, H. W. (2022). Case study for ditch cover with ultra-high-performance concrete. Case Studies in Construction Materials, 17, e01647. https://doi.org/10.1016/J.CSCM.2022.E01647Warsi, S. B. F., Panda, B., & Biswas, P. (2023). Exploring fibre addition methods and mechanical properties of fibre-reinforced 3D printed concrete: A review. Developments in the Built Environment, 16, 100295. https://doi.org/10.1016/J.DIBE.2023.100295Xu, W., Jiang, D., Zhao, Q., & Wang, L. (2024). Study on printability of 3D printing carbon fiber reinforced eco-friendly concrete: Characterized by fluidity and consistency. Case Studies in Construction Materials, 21, e03589. https://doi.org/10.1016/J.CSCM.2024.E03589Yang, X., Huang, J., Peng, L., Zhang, L., & He, Y. (2024). Research on the mechanism of elevated permeability resistance in recycled glass fiber reinforced concrete. Case Studies in Construction Materials, 20, e03173. https://doi.org/10.1016/J.CSCM.2024.E03173Yifan, G., Wenqi, D., Hong, J., & Yafei, Q. (2025). Optimizing steel consumption in segmental tunnel joints through the use of steel fiber reinforced concrete: An experimental study. Case Studies in Construction Materials, 22, e04833. https://doi.org/10.1016/J.CSCM.2025.E04833Yu, L., Ma, S., Sun, J., & Kadir, A. (2023). Seismic Analysis of Reinforced Concrete Bridge Piers Based on Ductile Reinforcement. KSCE Journal of Civil Engineering, 27(12), 5216–5230. https://doi.org/10.1007/s12205-023-0845-yZaid, O., Al-Dala’ien, R. N., Arbili, M. M., & Alashker, Y. (2025a). Optimizing natural fiber content and types for enhanced strength and long-term durability in high-performance concrete. Cleaner Engineering and Technology, 26, 100983. https://doi.org/10.1016/J.CLET.2025.100983Zaid, O., Al-Dala’ien, R. N., Arbili, M. M., & Alashker, Y. (2025b). Optimizing natural fiber content and types for enhanced strength and long-term durability in high-performance concrete. Cleaner Engineering and Technology, 26, 100983. https://doi.org/10.1016/J.CLET.2025.100983Zheng, S., Li, Y., Feng, Q., Liang, X., Wu, X., & Xu, R. (2025). Experimental investigation on bond-slip behavior of epoxy-coated rebars in steel fiber reinforced concrete. Case Studies in Construction Materials, 22, e04767. https://doi.org/10.1016/J.CSCM.2025.E04767THUMBNAILARTICULO.pdf.jpgARTICULO.pdf.jpgIM Thumbnailimage/jpeg18156http://repository.unilibre.edu.co/bitstream/10901/32260/9/ARTICULO.pdf.jpg3e6a199966c09e364514adc0570ba45aMD59authorization de public .pdf.jpgauthorization de public .pdf.jpgIM Thumbnailimage/jpeg26710http://repository.unilibre.edu.co/bitstream/10901/32260/10/authorization%20de%20public%20.pdf.jpgc9ff71109871de6faaba5bec46fc1569MD510RESOLUCIÓN.pdf.jpgRESOLUCIÓN.pdf.jpgIM Thumbnailimage/jpeg23660http://repository.unilibre.edu.co/bitstream/10901/32260/11/RESOLUCIO%cc%81N.pdf.jpg69e52f6c02b90292932599f34055198aMD511FORMATO INSTITUCIONAL RESUMEN.pdf.jpgFORMATO INSTITUCIONAL RESUMEN.pdf.jpgIM Thumbnailimage/jpeg21823http://repository.unilibre.edu.co/bitstream/10901/32260/12/FORMATO%20INSTITUCIONAL%20RESUMEN.pdf.jpged266031a514cf2d6dcc3bdc88cc980aMD512ACTA DE SUSTENTACION OMAR BERNAL_Freddy Omar Contrera.pdf.jpgACTA DE SUSTENTACION OMAR BERNAL_Freddy Omar Contrera.pdf.jpgIM Thumbnailimage/jpeg25581http://repository.unilibre.edu.co/bitstream/10901/32260/13/ACTA%20DE%20SUSTENTACION%20OMAR%20BERNAL_Freddy%20Omar%20Contrera.pdf.jpg7bc22166cc7114c7eda96408eef22968MD513LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/32260/7/license.txt8a4605be74aa9ea9d79846c1fba20a33MD57ORIGINALFORMATO INSTITUCIONAL RESUMEN.pdfFORMATO INSTITUCIONAL RESUMEN.pdfapplication/pdf151577http://repository.unilibre.edu.co/bitstream/10901/32260/5/FORMATO%20INSTITUCIONAL%20RESUMEN.pdf0a7f002a9400a3d88870b00eeda52c94MD55ARTICULO.pdfARTICULO.pdfapplication/pdf379647http://repository.unilibre.edu.co/bitstream/10901/32260/3/ARTICULO.pdf50f391d692b0317d8f22a04e82123d68MD53authorization de public .pdfauthorization de public .pdfapplication/pdf13932609http://repository.unilibre.edu.co/bitstream/10901/32260/4/authorization%20de%20public%20.pdf35a4be8fd7c16c8a8765ee47b6069864MD54RESOLUCIÓN.pdfRESOLUCIÓN.pdfapplication/pdf225163http://repository.unilibre.edu.co/bitstream/10901/32260/6/RESOLUCIO%cc%81N.pdfe852c48d4eef8bc993991b525e48ac6fMD56ACTA DE SUSTENTACION OMAR BERNAL_Freddy Omar Contrera.pdfACTA DE SUSTENTACION OMAR BERNAL_Freddy Omar Contrera.pdfResolución Freddyapplication/pdf844750http://repository.unilibre.edu.co/bitstream/10901/32260/8/ACTA%20DE%20SUSTENTACION%20OMAR%20BERNAL_Freddy%20Omar%20Contrera.pdffa1fd5c596fc46aeecc2585de0017a7dMD5810901/32260oai:repository.unilibre.edu.co:10901/322602025-11-28 06:00:23.385Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
