Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP
Los métodos de identificación bacteriana han representado una necesidad primaria transversal a diversas áreas del desarrollo humano como la medicina (diagnóstico hospitalario, enfermedades nosocomiales), Biología (filogenia y ecología microbiana), agricultura (Bio-fertilizantes, biopesticidas), inoc...
- Autores:
-
Quintero Ramirez, Nicolás
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/30498
- Acceso en línea:
- https://hdl.handle.net/10901/30498
- Palabra clave:
- PCR-RFLP
Identificación bacteriana
ARN ribosomal 16S
Bacterias promotoras del crecimiento vegetal
PCR-RFLP
bacterial identification
16S ribosomal RNA
bacterial identification
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_41ba1bb32165237312b90c06931264af |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/30498 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
dc.title.alternative.spa.fl_str_mv |
Standardization of a Protocol for the Identification of Plant Growth-Promoting Bacteria through 16S Ribosomal RNA Gene Analysis Using the PCR-RFLP Technique |
title |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
spellingShingle |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP PCR-RFLP Identificación bacteriana ARN ribosomal 16S Bacterias promotoras del crecimiento vegetal PCR-RFLP bacterial identification 16S ribosomal RNA bacterial identification |
title_short |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
title_full |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
title_fullStr |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
title_full_unstemmed |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
title_sort |
Evaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLP |
dc.creator.fl_str_mv |
Quintero Ramirez, Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Siller López, Fernando Gaviria Arias, Duverney |
dc.contributor.author.none.fl_str_mv |
Quintero Ramirez, Nicolás |
dc.subject.spa.fl_str_mv |
PCR-RFLP Identificación bacteriana ARN ribosomal 16S Bacterias promotoras del crecimiento vegetal |
topic |
PCR-RFLP Identificación bacteriana ARN ribosomal 16S Bacterias promotoras del crecimiento vegetal PCR-RFLP bacterial identification 16S ribosomal RNA bacterial identification |
dc.subject.subjectenglish.spa.fl_str_mv |
PCR-RFLP bacterial identification 16S ribosomal RNA bacterial identification |
description |
Los métodos de identificación bacteriana han representado una necesidad primaria transversal a diversas áreas del desarrollo humano como la medicina (diagnóstico hospitalario, enfermedades nosocomiales), Biología (filogenia y ecología microbiana), agricultura (Bio-fertilizantes, biopesticidas), inocuidad alimentaria (patógenos en los alimentos), farmacología (Producción de antibióticos y actividad antimicrobiana de fármacos), entre otros. Entre los métodos mayormente utilizados se encuentran la identificación bacteriana por métodos tradicionales, fenotípicos y genotípicos. Este último consta de diferentes técnicas que, muchas veces, utilizan tecnologías avanzadas de alto costo. No obstante, existen técnicas genotípicas más accesibles para los laboratorios, las cuales requieren de equipos básicos comúnmente encontrados en investigación. El análisis de los polimorfismos de longitud de fragmentos de restricción (PCR-RFLP) pertenece a los métodos basados en la genotipificación por restricción del ADN. Consta del análisis de un gen conservado (reloj molecular) mediante su escisión con endonucleasas, generando perfiles de digestión diferenciales. Normalmente, la técnica es utilizada para diagnosticar la presencia de bacterias de interés particular en una muestra ambiental, sin embargo, no está muy descrita su utilización para la identificación inferencial de bacterias ambientales. El presente estudio pretende evaluar la técnica PCR-RFLP para la identificación de bacterias promotoras del crecimiento vegetal por medio del análisis del ARN ribosomal 16S. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-27T17:32:05Z |
dc.date.available.none.fl_str_mv |
2025-01-27T17:32:05Z |
dc.date.created.none.fl_str_mv |
2025-01-26 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/30498 |
url |
https://hdl.handle.net/10901/30498 |
dc.relation.references.spa.fl_str_mv |
[1] Paudyal G/ O; P, Paudyal SP, Gupta VNP. Substitution of chemical fertilizer nitrogen through Rhizobium inoculation technology. Our Nature 2018;16:43–7. https://doi.org/10.3126/ON.V16I1.22121. [2] Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, et al. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann Microbiol 2022;72:1–12. https://doi.org/10.1186/S13213-022-01701-8/FIGURES/3. [3] Woese CR. Bacterial evolution. Microbiol Rev 1987;51:221. https://doi.org/10.1128/MR.51.2.221-271.1987. [4] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 1977;74:5088–90. https://doi.org/10.1073/PNAS.74.11.5088 [5] Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front Plant Sci 2022;13:1002448. https://doi.org/10.3389/FPLS.2022.1002448. [6] Aravena P, Pulgar R, Ortiz-Severín J, Maza F, Gaete A, Martínez S, et al. PCR-RFLP Detection and Genogroup Identification of Piscirickettsia salmonis in Field Samples. Pathogens 2020;9. https://doi.org/10.3390/PATHOGENS9050358. [7] Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009;33:191–205. https://doi.org/10.1111/J.1574-6976.2008.00149.X. [8] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 4th edition. Mol Biol Cell 2008:1569–88. [9] Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S‐ITS‐23S rRNA operon. Environ Microbiol 2019;21:2485. https://doi.org/10.1111/1462-2920.14636. [10] Gattoni K, Gendron EMS, Sandoval-Ruiz R, Borgemeier A, McQueen JP, Shepherd RM, et al. 18S-NemaBase: Curated 18S rRNA Database of Nematode Sequences. J Nematol 2023;55. https://doi.org/10.2478/JOFNEM-2023-0006. [11] Liu S, Zhang L, Sang Y, Lai Q, Zhang X, Jia C, et al. Demographic History and Natural Selection Shape Patterns of Deleterious Mutation Load and Barriers to Introgression across Populus Genome. Mol Biol Evol 2022;39. https://doi.org/10.1093/MOLBEV/MSAC008. [12] Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 2016;17. https://doi.org/10.1186/S12859-016-0992-Y. [13] King WL, Siboni N, Kahlke T, Green TJ, Labbate M, Seymour JR. A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Front Microbiol 2019;10. https://doi.org/10.3389/FMICB.2019.02907/FULL. [14] Sánchez-Herrera K, Sandoval H, Mouniee D, Ramírez-Durán N, Bergeron E, Boiron P, et al. Molecular identification of Nocardia species using the sodA gene: Identificación 62 molecular de especies de Nocardia utilizando el gen sodA. New Microbes New Infect 2017;19:96–116. https://doi.org/10.1016/J.NMNI.2017.03.008. [15] Ogier JC, Pagès S, Galan M, Barret M, Gaudriault S. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 2019;19. https://doi.org/10.1186/S12866-019-1546-Z. [16] Saini AK, Kumar V. Ribosome structure. Emerging Concepts in Ribosome Structure, Biogenesis, and Function 2021:15–31. https://doi.org/10.1016/B978-0-12-816364-1.00007-X. [17] Rodnina M, WIntermeyer W. Ribosomes Structure, function and dynamics. Vienna: Springer Vienna; 2011. https://doi.org/10.1007/978-3-7091-0215-2. [18] Kyle RA, Shampo MA. Theodor Svedberg and the Ultracentrifuge. Mayo Clin Proc 1997;72:830. https://doi.org/10.4065/72.9.830. [19] Zuo G, Xu Z, Hao B. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis. Life 2015;5:949. https://doi.org/10.3390/LIFE5010949. [20] Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42:D633. https://doi.org/10.1093/NAR/GKT1244. [21] Demongeot J, Seligmann H. Evolution of tRNA into rRNA secondary structures. Gene Rep 2019;17:100483. https://doi.org/10.1016/J.GENREP.2019.100483. [22] do Amaral FR, Sheldon FH, Wajntal A. Towards an assessment of character interdependence in avian RNA phylogenetics: A general secondary structure model for the avian mitochondrial 16S rRNA. Mol Phylogenet Evol 2010;56:498–506. https://doi.org/10.1016/J.YMPEV.2010.03.016. [23] Van Camp G, Van De Peer Y, Nicolai S, Neefs JM, Vandamme P, De Wachter R. Structure of 16S and 23S Ribosomal RNA Genes in Campylobacter Species: Phylogenetic Analysis of the Genus Campylobacter and Presence of Internal Transcribed Spacers. Syst Appl Microbiol 1993;16:361–8. https://doi.org/10.1016/S0723-2020(11)80266-3. [24] Gutell RR. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 1994;22:3502–7. https://doi.org/10.1093/NAR/22.17.3502. [25] Yu Z, Morrison M. Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 2004;70:4800. https://doi.org/10.1128/AEM.70.8.4800-4806.2004. [26] Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 2016;17:1–8. https://doi.org/10.1186/S12859-016-0992-Y/FIGURES/5. [27] Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 2009;19:1141–52. https://doi.org/10.1101/GR.085464.108. [28] Tringe SG, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 2008;11:442–6. https://doi.org/10.1016/J.MIB.2008.09.011. [29] Yu Z, Morrison M. Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 2004;70:4800. https://doi.org/10.1128/AEM.70.8.4800-4806.2004. [30] Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 1985;82:6955. https://doi.org/10.1073/PNAS.82.20.6955. [31] Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology (Reading) 1998;144 ( Pt 9):2655–65. https://doi.org/10.1099/00221287-144-9-2655. [32] Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009;4. https://doi.org/10.1371/JOURNAL.PONE.0007401. [33] Ramanan M, Burrell A, Paul E, Trapani T, Broadley T, McGloughlin S, et al. Nosocomial infections amongst critically ill COVID-19 patients in Australia. Journal of Clinical Virology Plus 2021;1:100054. https://doi.org/10.1016/J.JCVP.2021.100054. [34] Dasoondi RS, Blundell TL, Pandurangan AP. In silico analyses of isoniazid and streptomycin resistance-associated mutations in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2023;21:1874–84. https://doi.org/10.1016/J.CSBJ.2023.02.035. [35] Giovannacci I, Ragimbeau C, Queguiner S, Salvat G, Vendeuvre JL, Carlier V, et al. Listeria monocytogenes in pork slaughtering and cutting plants: use of RAPD, PFGE and 65 PCR–REA for tracing and molecular epidemiology. Int J Food Microbiol 1999;53:127–40. https://doi.org/10.1016/S0168-1605(99)00141-5. [36] Tyagi K, Tyagi I, Kumar V. Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis. Saudi J Biol Sci 2021;28:5913–24. https://doi.org/10.1016/J.SJBS.2021.06.059. [37] Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 2010;42:1229–35. https://doi.org/10.1016/J.SOILBIO.2010.04.014. [38] Velusamy P, Immanuel JE, Gnanamanickam SS. Rhizosphere Bacteria for Biocontrol of Bacterial Blight and Growth Promotion of Rice. Rice Sci 2013;20:356–62. https://doi.org/10.1016/S1672-6308(13)60143-2. [39] Elkemary A, Abouelkheir SS, AbdelHakim M, Sabry SA, Ghozlan HA. Potential Egyptian bacterial consortium for oil spill treatment: A laboratory simulation. Case Studies in Chemical and Environmental Engineering 2023;7:100278. https://doi.org/10.1016/J.CSCEE.2022.100278. [40] Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and Past Strategies for Bacterial Culture in Clinical Microbiology. Clin Microbiol Rev 2015;28:208. https://doi.org/10.1128/CMR.00110-14. [41] Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009;33:191–205. https://doi.org/10.1111/J.1574-6976.2008.00149.X. [42] Wilkinson JF, Rose AH. Advances in microbial physiology 1971:369. [43] Bergey DH, Holt JG. Bergey’s manual of determinative bacteriology / | Colorado... 9th ed. 2000. [44] Naud S, Khelaifia S, Mbogning Fonkou MD, Dione N, Lagier JC, Raoult D. Proof of Concept of Culturomics Use of Time of Care. Front Cell Infect Microbiol 2020;10. https://doi.org/10.3389/FCIMB.2020.524769/FULL. [45] Alou MT, Million M, Traore SI, Mouelhi D, Khelaifia S, Bachar D, et al. Gut bacteria missing in severe acute malnutrition, can we identify potential probiotics by culturomics? Front Microbiol 2017;8:899. https://doi.org/10.3389/FMICB.2017.00899/FULL. [46] Pereira AC, Bandeira V, Fonseca C, Cunha M V. Crosstalk Between Culturomics and Microbial Profiling of Egyptian Mongoose (Herpestes ichneumon) Gut Microbiome. Microorganisms 2020;8:808. https://doi.org/10.3390/MICROORGANISMS8060808. [47] Ramzan M, Raza A, un Nisa Z, Ghulam Musharraf S. Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review. Arabian Journal of Chemistry 2023;16:104521. https://doi.org/10.1016/J.ARABJC.2022.104521. [48] Ramzan M, Raza A, un Nisa Z, Ghulam Musharraf S. Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review. Arabian Journal of Chemistry 2023;16:104521. https://doi.org/10.1016/J.ARABJC.2022.104521. [49] García P, Allende F, Legarraga P, Huilcaman M, Gajardo SS. Identificación bacteriana basada en el espectro de masas de proteínas: Una nueva mirada a la microbiología del siglo XXI. Revista Chilena de Infectología 2012;29:263–72. https://doi.org/10.4067/S0716-10182012000300003. [50] Rodriguez L, Zhang Z, Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria. Analytical Science Advances 2023. https://doi.org/10.1002/ANSA.202200066. [51] Delpassand ES, Chari M V., Stager CE, Morrisett JD, Ford JJ, Romazi M. Rapid identification of common human pathogens by high-resolution proton magnetic resonance spectroscopy. J Clin Microbiol 1995;33:1258. https://doi.org/10.1128/JCM.33.5.1258-1262.1995. [52] Azwai SM, Alfallani EA, Abolghait SK, Garbaj AM, Naas HT, Moawad AA, et al. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya. Open Vet J 2016;6:36. https://doi.org/10.4314/OVJ.V6I1.6. [53] Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020;33:1–74. https://doi.org/10.1128/CMR.00053-19. [54] Krawczyk B, Kur J. Molecular Identification and Genotyping of Staphylococci: Genus, Species, Strains, Clones, Lineages, and Interspecies Exchanges. Pet-to-Man Travelling Staphylococci: A World in Progress 2018:199–223. https://doi.org/10.1016/B978-0-12-813547-1.00016-9. [55] Tang JYH. Detection of Microbiological Hazards. Food Safety Management 2023:835–50. https://doi.org/10.1016/B978-0-12-820013-1.00002-4. [56] Butler JM. Non-human DNA. Advanced Topics in Forensic DNA Typing 2012:473–95. https://doi.org/10.1016/B978-0-12-374513-2.00016-6. [57] Dávila M, Laurentín H, Castillo MA. Utilidad de marcadores rapd en la identificación de germoplasmas de ajonjolí. Agronomía Tropical 2003;53:259–74. [58] Krawczyk B, Kur J. Molecular Identification and Genotyping of Staphylococci: Genus, Species, Strains, Clones, Lineages, and Interspecies Exchanges. Pet-to-Man Travelling Staphylococci: A World in Progress 2018:199–223. https://doi.org/10.1016/B978-0-12-813547-1.00016-9. [59] Mandakovic D, Glasner B, Maldonado J, Aravena P, González M, Cambiazo V, et al. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP. Front Microbiol 2016;7:643. https://doi.org/10.3389/FMICB.2016.00643. [60] Chakdar H, Pabbi S. A comparative study reveals the higher resolution of RAPD over ARDRA for analyzing diversity of Nostoc strains. 3 Biotech 2017;7. https://doi.org/10.1007/S13205-017-0779-5. [61] Herschleb J, Ananiev G, Schwartz DC. Pulsed-field gel electrophoresis. Nat Protoc 2007;2:677–84. https://doi.org/10.1038/nprot.2007.94. [62] Cardozo bernal, Ramón L fernanda, Potou RA, Carrascal AK, Corina Z. Electroforesis en Gel de Campo Pulsado (PFGE) para la diferenciación molecular de Listeria monocytogene n.d. http://www.scielo.org.co/pdf/unsc/v18n2/v18n2a08.pdf (accessed May 15, 2023). [63] Böhme K, Barros-Velázquez J, Calo-Mata P. Molecular Tools to Analyze Microbial Populations in Red Wines. Red Wine Technology 2019:115–23. https://doi.org/10.1016/B978-0-12-814399-5.00008-6. [64] Lindström S, Rowe O, Timonen S, Sundström L, Johansson H. Trends in bacterial and fungal communities in ant nests observed with Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and Next Generation Sequencing (NGS) techniques-validity and compatibility in ecological studies. PeerJ 2018;2018. https://doi.org/10.7717/PEERJ.5289/SUPP-11. [65] Rogers GB, Daniels TWV, Tuck A, Carroll MP, Connett GJ, David GJP, et al. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med 2009;9:14. https://doi.org/10.1186/1471-2466-9-14. [66] Schwarzenbach H. Loss of Heterozygosity Brenner’s Encyclopedia of Genetics, 271–273. Brenner’s Encyclopedia of Genetics (Second Edition) 2013:271–3. [67] Gupta N. DNA Extraction and Polymerase Chain Reaction. J Cytol 2019;36:116. https://doi.org/10.4103/JOC.JOC_110_18. [68] Coolen MJL. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science 2011;333:451–2. https://doi.org/10.1126/SCIENCE.1200072. [69] Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 2012;7. https://doi.org/10.1371/JOURNAL.PONE.0033865. [70] Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 2013;94:103–10. https://doi.org/10.1016/J.MIMET.2013.05.008. [71] Dhaliwal A. DNA Extraction and Purification. Materials and Methods 2013;3. https://doi.org/10.13070/MM.EN.3.191. [72] Sandoval A soledad, Abril bernardette, López DA. Extracción de ácidos nucleicos | Biología molecular. Fundamentos y aplicaciones en las ciencias de la salud | AccessMedicina | McGraw Hill Medical. n.d. [73] Butler JM. DNA Extraction Methods. Advanced Topics in Forensic DNA Typing 2012:29–47. https://doi.org/10.1016/B978-0-12-374513-2.00002-6. [75] Rehner J, Schmartz GP, Groeger L, Dastbaz J, Ludwig N, Hannig M, et al. Systematic Cross-biospecimen Evaluation of DNA Extraction Kits for Long- and Short-read Multi-metagenomic Sequencing Studies. Genomics Proteomics Bioinformatics 2022;20:405–17. https://doi.org/10.1016/J.GPB.2022.05.006. [76] García López MD, López-Coronado JAM, López-Ocaña L, Fernández FU. Preservation of Microbial Strains in the Wine Industry. Molecular Wine Microbiology 2011:303–18. https://doi.org/10.1016/B978-0-12-375021-1.10012-8. [77] Standard Operating Procedures (SOPs) Laboratorio de Genómica Viral y Humana Facultad de Medicina UASLP Preparación de Buffer Tris 10 mM-EDTA 1mM (TE 10:1) 2008. [78] Lutz Í, Miranda J, Santana P, Martins T, Ferreira C, Sampaio I, et al. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS One 2023;18. https://doi.org/10.1371/JOURNAL.PONE.0282369. [79] Vincze T, Posfai J, Roberts RJ. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 2003;31:3688. https://doi.org/10.1093/NAR/GKG526. [80] Usman M, Tang JW, Li F, Lai JX, Liu QH, Liu W, et al. Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. J Adv Res 2022. https://doi.org/10.1016/J.JARE.2022.11.010. [81] Janda JM. The Molecular Technology Revolution and Bacterial Identification: Unexpected Consequences for Clinical Microbiologists. Clin Microbiol Newsl 2023;45:47–54. https://doi.org/10.1016/J.CLINMICNEWS.2023.03.001. [82] Qiao L. MALDI-TOF MS for pathogenic bacteria analysis. Int J Mass Spectrom 2022;482:116935. https://doi.org/10.1016/J.IJMS.2022.116935. [83] Olcu M, Atalay MA, Percin Renders D. Development of multiplex PCR panel for detection of anaerobic bacteria in clinical samples. Anaerobe 2022;76:102611. https://doi.org/10.1016/J.ANAEROBE.2022.102611. [84] Shi CL, Han P, Tang PJ, Chen MM, Ye ZJ, Wu MY, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. Journal of Infection 2020;81:567–74. https://doi.org/10.1016/J.JINF.2020.08.004. [85] Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 2017;46:4818–32. https://doi.org/10.1039/C6CS00693K. [86] Baris A, Bayraktar B. Identification of the Mycobacterial Strains Isolated From Clinical Specimens Using hsp65 PCR-RFLP Method. The Medical Bulletin of Sisli Etfal Hospital 2020;54:364. https://doi.org/10.14744/SEMB.2019.66587. [87] Rohit A, Maiti B, Shenoy S, Karunasagar I. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian J Med Res 2016;143:72. https://doi.org/10.4103/0971-5916.178613. [88] Igawa T, Takahara T, Lau Q, Komaki S. An application of PCR-RFLP species identification assay for environmental DNA detection. PeerJ 2019;2019. https://doi.org/10.7717/PEERJ.7597/SUPP-8. [89] Salazar A, Sandoval A soledad, Socorro J. Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud, 2e | AccessMedicina | McGraw Hill Medical. 2da edición. n.d. [90] Lutz Í, Miranda J, Santana P, Martins T, Ferreira C, Sampaio I, et al. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS One 2023;18. https://doi.org/10.1371/JOURNAL.PONE.0282369. [91] Goldberg S. Mechanical/physical methods of cell distribution and tissue homogenization. Methods Mol Biol 2015;1295. https://doi.org/10.1007/978-1-4939-2550-6_1. [92] Shvartsman E, Richmond MEI, Schellenberg JJ, Lamont A, Perciani C, Russell JNH, et al. Comparative analysis of DNA extraction and PCR product purification methods for cervicovaginal microbiome analysis using cpn60 microbial profiling. PLoS One 2022;17. https://doi.org/10.1371/JOURNAL.PONE.0262355. [93] Wang Z, Hossain MI, Yeo D, Woo S, Seo Y, Jung S, et al. Optimization of an approach to detect low-concentration MNV-1 and HAV from soil-rich or non-soil post-washing water containing various PCR inhibitory substances. Food Control 2023;150:109735. https://doi.org/10.1016/J.FOODCONT.2023.109735. [94] Schrick L, Nitsche A. Pitfalls in PCR troubleshooting: Expect the unexpected? Biomol Detect Quantif 2016;6:1–3. https://doi.org/10.1016/J.BDQ.2015.11.001. [95] Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 1997;63:3327. https://doi.org/10.1128/AEM.63.8.3327-3332.1997. [96] Regueira-Iglesias A, Vázquez-González L, Balsa-Castro C, Vila-Blanco N, Blanco-Pintos T, Tamames J, et al. In silico evaluation and selection of the best 16S rRNA gene primers for use in next-generation sequencing to detect oral bacteria and archaea. Microbiome 2023;11:58. https://doi.org/10.1186/S40168-023-01481-6. [97] Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–55. https://doi.org/10.1016/j.mimet.2003.08.009. [98] Mahmudunnabi G, Majlish ANK, Momtaz F, Foysal MJ, Rahman MM, Islam K. Molecular detection and PCR-RFLP analysis using Pst1 and Alu1 of multidrug resistant Klebsiella pneumoniae causing urinary tract infection in women in the eastern part of Bangladesh. Journal of Genetic Engineering & Biotechnology 2018;16:77. https://doi.org/10.1016/J.JGEB.2017.12.004. [99] Mahmudunnabi G, Majlish ANK, Momtaz F, Foysal MJ, Rahman MM, Islam K. Molecular detection and PCR-RFLP analysis using Pst1 and Alu1 of multidrug resistant Klebsiella pneumoniae causing urinary tract infection in women in the eastern part of Bangladesh. Journal of Genetic Engineering & Biotechnology 2018;16:77. https://doi.org/10.1016/J.JGEB.2017.12.004. [100] Arevalo JF, Jap A, Chee SP, Zeballos DG. Endogenous endophthalmitis in the developing world. Int Ophthalmol Clin 2010;50:173–87. https://doi.org/10.1097/IIO.0b013e3181d26dfc. [101] Gholamalizadeh R, Khodakaramian G, Ebadi AA. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion. Brazilian Archives of Biology and Technology 2017;60:e17160410. https://doi.org/10.1590/1678-4324-2017160410. |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Pereira |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/30498/4/autorizacion%20biblioteca%20nqr.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/30498/5/TESIS%20NICOLAS%20QUINTERO%20MICROBIOLOGIA.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/30498/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/30498/1/autorizacion%20biblioteca%20nqr.pdf http://repository.unilibre.edu.co/bitstream/10901/30498/2/TESIS%20NICOLAS%20QUINTERO%20MICROBIOLOGIA.pdf |
bitstream.checksum.fl_str_mv |
8d6e879be3d189b33e2a6909a8ed8f0a 52fa589d37b5534f195b05b99efda866 8a4605be74aa9ea9d79846c1fba20a33 c8c4da02bc2c0aa2fb417a6b8555ba05 2a79651ce88531388c0dcb6379a36edc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1831929212778315776 |
spelling |
Siller López, FernandoGaviria Arias, DuverneyQuintero Ramirez, NicolásPereira2025-01-27T17:32:05Z2025-01-27T17:32:05Z2025-01-26https://hdl.handle.net/10901/30498Los métodos de identificación bacteriana han representado una necesidad primaria transversal a diversas áreas del desarrollo humano como la medicina (diagnóstico hospitalario, enfermedades nosocomiales), Biología (filogenia y ecología microbiana), agricultura (Bio-fertilizantes, biopesticidas), inocuidad alimentaria (patógenos en los alimentos), farmacología (Producción de antibióticos y actividad antimicrobiana de fármacos), entre otros. Entre los métodos mayormente utilizados se encuentran la identificación bacteriana por métodos tradicionales, fenotípicos y genotípicos. Este último consta de diferentes técnicas que, muchas veces, utilizan tecnologías avanzadas de alto costo. No obstante, existen técnicas genotípicas más accesibles para los laboratorios, las cuales requieren de equipos básicos comúnmente encontrados en investigación. El análisis de los polimorfismos de longitud de fragmentos de restricción (PCR-RFLP) pertenece a los métodos basados en la genotipificación por restricción del ADN. Consta del análisis de un gen conservado (reloj molecular) mediante su escisión con endonucleasas, generando perfiles de digestión diferenciales. Normalmente, la técnica es utilizada para diagnosticar la presencia de bacterias de interés particular en una muestra ambiental, sin embargo, no está muy descrita su utilización para la identificación inferencial de bacterias ambientales. El presente estudio pretende evaluar la técnica PCR-RFLP para la identificación de bacterias promotoras del crecimiento vegetal por medio del análisis del ARN ribosomal 16S.Universidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- MicrobiologíaBacterial identification methods have represented a primary need across various areas of human development, such as medicine (hospital diagnosis, nosocomial diseases), biology (phylogeny and microbial ecology), agriculture (bio-fertilizers, biopesticides), food safety (pathogens in food), pharmacology (production of antibiotics and antimicrobial activity of drugs), among others. The most commonly used methods include bacterial identification through traditional, phenotypic, and genotypic methods. The latter consists of different techniques that often use advanced and costly technologies. However, there are more accessible genotypic techniques for laboratories, which require basic equipment commonly found in research. The analysis of restriction fragment length polymorphisms (PCR-RFLP) belongs to the methods based on DNA restriction genotyping. It involves the analysis of a conserved gene (molecular clock) by cleaving it with endonucleases, generating differential digestion profiles. Usually, the technique is used to diagnose the presence of specific bacteria of interest in an environmental sample. However, its use for inferential identification of environmental bacteria is not well described. This study aims to standardize the PCR-RFLP technique for the identification of plant growth-promoting bacteria through analysis of the 16S ribosomal RNA.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PCR-RFLPIdentificación bacterianaARN ribosomal 16SBacterias promotoras del crecimiento vegetalPCR-RFLPbacterial identification16S ribosomal RNAbacterial identificationEvaluación de protocolo para la identificación de bacterias promotoras del crecimiento vegetal mediante el análisis del gen ARN ribosomal 16S con la técnica PCR-RFLPStandardization of a Protocol for the Identification of Plant Growth-Promoting Bacteria through 16S Ribosomal RNA Gene Analysis Using the PCR-RFLP TechniqueTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1f[1] Paudyal G/ O; P, Paudyal SP, Gupta VNP. Substitution of chemical fertilizer nitrogen through Rhizobium inoculation technology. Our Nature 2018;16:43–7. https://doi.org/10.3126/ON.V16I1.22121.[2] Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, et al. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann Microbiol 2022;72:1–12. https://doi.org/10.1186/S13213-022-01701-8/FIGURES/3.[3] Woese CR. Bacterial evolution. Microbiol Rev 1987;51:221. https://doi.org/10.1128/MR.51.2.221-271.1987.[4] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 1977;74:5088–90. https://doi.org/10.1073/PNAS.74.11.5088[5] Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front Plant Sci 2022;13:1002448. https://doi.org/10.3389/FPLS.2022.1002448.[6] Aravena P, Pulgar R, Ortiz-Severín J, Maza F, Gaete A, Martínez S, et al. PCR-RFLP Detection and Genogroup Identification of Piscirickettsia salmonis in Field Samples. Pathogens 2020;9. https://doi.org/10.3390/PATHOGENS9050358.[7] Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009;33:191–205. https://doi.org/10.1111/J.1574-6976.2008.00149.X.[8] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 4th edition. Mol Biol Cell 2008:1569–88.[9] Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S‐ITS‐23S rRNA operon. Environ Microbiol 2019;21:2485. https://doi.org/10.1111/1462-2920.14636.[10] Gattoni K, Gendron EMS, Sandoval-Ruiz R, Borgemeier A, McQueen JP, Shepherd RM, et al. 18S-NemaBase: Curated 18S rRNA Database of Nematode Sequences. J Nematol 2023;55. https://doi.org/10.2478/JOFNEM-2023-0006.[11] Liu S, Zhang L, Sang Y, Lai Q, Zhang X, Jia C, et al. Demographic History and Natural Selection Shape Patterns of Deleterious Mutation Load and Barriers to Introgression across Populus Genome. Mol Biol Evol 2022;39. https://doi.org/10.1093/MOLBEV/MSAC008.[12] Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 2016;17. https://doi.org/10.1186/S12859-016-0992-Y.[13] King WL, Siboni N, Kahlke T, Green TJ, Labbate M, Seymour JR. A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Front Microbiol 2019;10. https://doi.org/10.3389/FMICB.2019.02907/FULL.[14] Sánchez-Herrera K, Sandoval H, Mouniee D, Ramírez-Durán N, Bergeron E, Boiron P, et al. Molecular identification of Nocardia species using the sodA gene: Identificación 62 molecular de especies de Nocardia utilizando el gen sodA. New Microbes New Infect 2017;19:96–116. https://doi.org/10.1016/J.NMNI.2017.03.008.[15] Ogier JC, Pagès S, Galan M, Barret M, Gaudriault S. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 2019;19. https://doi.org/10.1186/S12866-019-1546-Z.[16] Saini AK, Kumar V. Ribosome structure. Emerging Concepts in Ribosome Structure, Biogenesis, and Function 2021:15–31. https://doi.org/10.1016/B978-0-12-816364-1.00007-X.[17] Rodnina M, WIntermeyer W. Ribosomes Structure, function and dynamics. Vienna: Springer Vienna; 2011. https://doi.org/10.1007/978-3-7091-0215-2.[18] Kyle RA, Shampo MA. Theodor Svedberg and the Ultracentrifuge. Mayo Clin Proc 1997;72:830. https://doi.org/10.4065/72.9.830.[19] Zuo G, Xu Z, Hao B. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis. Life 2015;5:949. https://doi.org/10.3390/LIFE5010949.[20] Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42:D633. https://doi.org/10.1093/NAR/GKT1244.[21] Demongeot J, Seligmann H. Evolution of tRNA into rRNA secondary structures. Gene Rep 2019;17:100483. https://doi.org/10.1016/J.GENREP.2019.100483.[22] do Amaral FR, Sheldon FH, Wajntal A. Towards an assessment of character interdependence in avian RNA phylogenetics: A general secondary structure model for the avian mitochondrial 16S rRNA. Mol Phylogenet Evol 2010;56:498–506. https://doi.org/10.1016/J.YMPEV.2010.03.016.[23] Van Camp G, Van De Peer Y, Nicolai S, Neefs JM, Vandamme P, De Wachter R. Structure of 16S and 23S Ribosomal RNA Genes in Campylobacter Species: Phylogenetic Analysis of the Genus Campylobacter and Presence of Internal Transcribed Spacers. Syst Appl Microbiol 1993;16:361–8. https://doi.org/10.1016/S0723-2020(11)80266-3.[24] Gutell RR. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 1994;22:3502–7. https://doi.org/10.1093/NAR/22.17.3502.[25] Yu Z, Morrison M. Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 2004;70:4800. https://doi.org/10.1128/AEM.70.8.4800-4806.2004.[26] Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 2016;17:1–8. https://doi.org/10.1186/S12859-016-0992-Y/FIGURES/5.[27] Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 2009;19:1141–52. https://doi.org/10.1101/GR.085464.108.[28] Tringe SG, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 2008;11:442–6. https://doi.org/10.1016/J.MIB.2008.09.011.[29] Yu Z, Morrison M. Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 2004;70:4800. https://doi.org/10.1128/AEM.70.8.4800-4806.2004.[30] Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 1985;82:6955. https://doi.org/10.1073/PNAS.82.20.6955.[31] Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology (Reading) 1998;144 ( Pt 9):2655–65. https://doi.org/10.1099/00221287-144-9-2655.[32] Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009;4. https://doi.org/10.1371/JOURNAL.PONE.0007401.[33] Ramanan M, Burrell A, Paul E, Trapani T, Broadley T, McGloughlin S, et al. Nosocomial infections amongst critically ill COVID-19 patients in Australia. Journal of Clinical Virology Plus 2021;1:100054. https://doi.org/10.1016/J.JCVP.2021.100054.[34] Dasoondi RS, Blundell TL, Pandurangan AP. In silico analyses of isoniazid and streptomycin resistance-associated mutations in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2023;21:1874–84. https://doi.org/10.1016/J.CSBJ.2023.02.035.[35] Giovannacci I, Ragimbeau C, Queguiner S, Salvat G, Vendeuvre JL, Carlier V, et al. Listeria monocytogenes in pork slaughtering and cutting plants: use of RAPD, PFGE and 65 PCR–REA for tracing and molecular epidemiology. Int J Food Microbiol 1999;53:127–40. https://doi.org/10.1016/S0168-1605(99)00141-5.[36] Tyagi K, Tyagi I, Kumar V. Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis. Saudi J Biol Sci 2021;28:5913–24. https://doi.org/10.1016/J.SJBS.2021.06.059.[37] Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 2010;42:1229–35. https://doi.org/10.1016/J.SOILBIO.2010.04.014.[38] Velusamy P, Immanuel JE, Gnanamanickam SS. Rhizosphere Bacteria for Biocontrol of Bacterial Blight and Growth Promotion of Rice. Rice Sci 2013;20:356–62. https://doi.org/10.1016/S1672-6308(13)60143-2.[39] Elkemary A, Abouelkheir SS, AbdelHakim M, Sabry SA, Ghozlan HA. Potential Egyptian bacterial consortium for oil spill treatment: A laboratory simulation. Case Studies in Chemical and Environmental Engineering 2023;7:100278. https://doi.org/10.1016/J.CSCEE.2022.100278.[40] Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and Past Strategies for Bacterial Culture in Clinical Microbiology. Clin Microbiol Rev 2015;28:208. https://doi.org/10.1128/CMR.00110-14.[41] Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009;33:191–205. https://doi.org/10.1111/J.1574-6976.2008.00149.X.[42] Wilkinson JF, Rose AH. Advances in microbial physiology 1971:369.[43] Bergey DH, Holt JG. Bergey’s manual of determinative bacteriology / | Colorado... 9th ed. 2000.[44] Naud S, Khelaifia S, Mbogning Fonkou MD, Dione N, Lagier JC, Raoult D. Proof of Concept of Culturomics Use of Time of Care. Front Cell Infect Microbiol 2020;10. https://doi.org/10.3389/FCIMB.2020.524769/FULL.[45] Alou MT, Million M, Traore SI, Mouelhi D, Khelaifia S, Bachar D, et al. Gut bacteria missing in severe acute malnutrition, can we identify potential probiotics by culturomics? Front Microbiol 2017;8:899. https://doi.org/10.3389/FMICB.2017.00899/FULL.[46] Pereira AC, Bandeira V, Fonseca C, Cunha M V. Crosstalk Between Culturomics and Microbial Profiling of Egyptian Mongoose (Herpestes ichneumon) Gut Microbiome. Microorganisms 2020;8:808. https://doi.org/10.3390/MICROORGANISMS8060808.[47] Ramzan M, Raza A, un Nisa Z, Ghulam Musharraf S. Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review. Arabian Journal of Chemistry 2023;16:104521. https://doi.org/10.1016/J.ARABJC.2022.104521.[48] Ramzan M, Raza A, un Nisa Z, Ghulam Musharraf S. Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review. Arabian Journal of Chemistry 2023;16:104521. https://doi.org/10.1016/J.ARABJC.2022.104521.[49] García P, Allende F, Legarraga P, Huilcaman M, Gajardo SS. Identificación bacteriana basada en el espectro de masas de proteínas: Una nueva mirada a la microbiología del siglo XXI. Revista Chilena de Infectología 2012;29:263–72. https://doi.org/10.4067/S0716-10182012000300003.[50] Rodriguez L, Zhang Z, Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria. Analytical Science Advances 2023. https://doi.org/10.1002/ANSA.202200066.[51] Delpassand ES, Chari M V., Stager CE, Morrisett JD, Ford JJ, Romazi M. Rapid identification of common human pathogens by high-resolution proton magnetic resonance spectroscopy. J Clin Microbiol 1995;33:1258. https://doi.org/10.1128/JCM.33.5.1258-1262.1995.[52] Azwai SM, Alfallani EA, Abolghait SK, Garbaj AM, Naas HT, Moawad AA, et al. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya. Open Vet J 2016;6:36. https://doi.org/10.4314/OVJ.V6I1.6.[53] Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020;33:1–74. https://doi.org/10.1128/CMR.00053-19.[54] Krawczyk B, Kur J. Molecular Identification and Genotyping of Staphylococci: Genus, Species, Strains, Clones, Lineages, and Interspecies Exchanges. Pet-to-Man Travelling Staphylococci: A World in Progress 2018:199–223. https://doi.org/10.1016/B978-0-12-813547-1.00016-9.[55] Tang JYH. Detection of Microbiological Hazards. Food Safety Management 2023:835–50. https://doi.org/10.1016/B978-0-12-820013-1.00002-4.[56] Butler JM. Non-human DNA. Advanced Topics in Forensic DNA Typing 2012:473–95. https://doi.org/10.1016/B978-0-12-374513-2.00016-6.[57] Dávila M, Laurentín H, Castillo MA. Utilidad de marcadores rapd en la identificación de germoplasmas de ajonjolí. Agronomía Tropical 2003;53:259–74.[58] Krawczyk B, Kur J. Molecular Identification and Genotyping of Staphylococci: Genus, Species, Strains, Clones, Lineages, and Interspecies Exchanges. Pet-to-Man Travelling Staphylococci: A World in Progress 2018:199–223. https://doi.org/10.1016/B978-0-12-813547-1.00016-9.[59] Mandakovic D, Glasner B, Maldonado J, Aravena P, González M, Cambiazo V, et al. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP. Front Microbiol 2016;7:643. https://doi.org/10.3389/FMICB.2016.00643.[60] Chakdar H, Pabbi S. A comparative study reveals the higher resolution of RAPD over ARDRA for analyzing diversity of Nostoc strains. 3 Biotech 2017;7. https://doi.org/10.1007/S13205-017-0779-5.[61] Herschleb J, Ananiev G, Schwartz DC. Pulsed-field gel electrophoresis. Nat Protoc 2007;2:677–84. https://doi.org/10.1038/nprot.2007.94.[62] Cardozo bernal, Ramón L fernanda, Potou RA, Carrascal AK, Corina Z. Electroforesis en Gel de Campo Pulsado (PFGE) para la diferenciación molecular de Listeria monocytogene n.d. http://www.scielo.org.co/pdf/unsc/v18n2/v18n2a08.pdf (accessed May 15, 2023).[63] Böhme K, Barros-Velázquez J, Calo-Mata P. Molecular Tools to Analyze Microbial Populations in Red Wines. Red Wine Technology 2019:115–23. https://doi.org/10.1016/B978-0-12-814399-5.00008-6.[64] Lindström S, Rowe O, Timonen S, Sundström L, Johansson H. Trends in bacterial and fungal communities in ant nests observed with Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and Next Generation Sequencing (NGS) techniques-validity and compatibility in ecological studies. PeerJ 2018;2018. https://doi.org/10.7717/PEERJ.5289/SUPP-11.[65] Rogers GB, Daniels TWV, Tuck A, Carroll MP, Connett GJ, David GJP, et al. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med 2009;9:14. https://doi.org/10.1186/1471-2466-9-14.[66] Schwarzenbach H. Loss of Heterozygosity Brenner’s Encyclopedia of Genetics, 271–273. Brenner’s Encyclopedia of Genetics (Second Edition) 2013:271–3.[67] Gupta N. DNA Extraction and Polymerase Chain Reaction. J Cytol 2019;36:116. https://doi.org/10.4103/JOC.JOC_110_18.[68] Coolen MJL. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science 2011;333:451–2. https://doi.org/10.1126/SCIENCE.1200072.[69] Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 2012;7. https://doi.org/10.1371/JOURNAL.PONE.0033865.[70] Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 2013;94:103–10. https://doi.org/10.1016/J.MIMET.2013.05.008.[71] Dhaliwal A. DNA Extraction and Purification. Materials and Methods 2013;3. https://doi.org/10.13070/MM.EN.3.191.[72] Sandoval A soledad, Abril bernardette, López DA. Extracción de ácidos nucleicos | Biología molecular. Fundamentos y aplicaciones en las ciencias de la salud | AccessMedicina | McGraw Hill Medical. n.d.[73] Butler JM. DNA Extraction Methods. Advanced Topics in Forensic DNA Typing 2012:29–47. https://doi.org/10.1016/B978-0-12-374513-2.00002-6.[75] Rehner J, Schmartz GP, Groeger L, Dastbaz J, Ludwig N, Hannig M, et al. Systematic Cross-biospecimen Evaluation of DNA Extraction Kits for Long- and Short-read Multi-metagenomic Sequencing Studies. Genomics Proteomics Bioinformatics 2022;20:405–17. https://doi.org/10.1016/J.GPB.2022.05.006.[76] García López MD, López-Coronado JAM, López-Ocaña L, Fernández FU. Preservation of Microbial Strains in the Wine Industry. Molecular Wine Microbiology 2011:303–18. https://doi.org/10.1016/B978-0-12-375021-1.10012-8.[77] Standard Operating Procedures (SOPs) Laboratorio de Genómica Viral y Humana Facultad de Medicina UASLP Preparación de Buffer Tris 10 mM-EDTA 1mM (TE 10:1) 2008.[78] Lutz Í, Miranda J, Santana P, Martins T, Ferreira C, Sampaio I, et al. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS One 2023;18. https://doi.org/10.1371/JOURNAL.PONE.0282369.[79] Vincze T, Posfai J, Roberts RJ. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 2003;31:3688. https://doi.org/10.1093/NAR/GKG526.[80] Usman M, Tang JW, Li F, Lai JX, Liu QH, Liu W, et al. Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. J Adv Res 2022. https://doi.org/10.1016/J.JARE.2022.11.010.[81] Janda JM. The Molecular Technology Revolution and Bacterial Identification: Unexpected Consequences for Clinical Microbiologists. Clin Microbiol Newsl 2023;45:47–54. https://doi.org/10.1016/J.CLINMICNEWS.2023.03.001.[82] Qiao L. MALDI-TOF MS for pathogenic bacteria analysis. Int J Mass Spectrom 2022;482:116935. https://doi.org/10.1016/J.IJMS.2022.116935.[83] Olcu M, Atalay MA, Percin Renders D. Development of multiplex PCR panel for detection of anaerobic bacteria in clinical samples. Anaerobe 2022;76:102611. https://doi.org/10.1016/J.ANAEROBE.2022.102611.[84] Shi CL, Han P, Tang PJ, Chen MM, Ye ZJ, Wu MY, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. Journal of Infection 2020;81:567–74. https://doi.org/10.1016/J.JINF.2020.08.004.[85] Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 2017;46:4818–32. https://doi.org/10.1039/C6CS00693K.[86] Baris A, Bayraktar B. Identification of the Mycobacterial Strains Isolated From Clinical Specimens Using hsp65 PCR-RFLP Method. The Medical Bulletin of Sisli Etfal Hospital 2020;54:364. https://doi.org/10.14744/SEMB.2019.66587.[87] Rohit A, Maiti B, Shenoy S, Karunasagar I. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis. Indian J Med Res 2016;143:72. https://doi.org/10.4103/0971-5916.178613.[88] Igawa T, Takahara T, Lau Q, Komaki S. An application of PCR-RFLP species identification assay for environmental DNA detection. PeerJ 2019;2019. https://doi.org/10.7717/PEERJ.7597/SUPP-8.[89] Salazar A, Sandoval A soledad, Socorro J. Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud, 2e | AccessMedicina | McGraw Hill Medical. 2da edición. n.d.[90] Lutz Í, Miranda J, Santana P, Martins T, Ferreira C, Sampaio I, et al. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS One 2023;18. https://doi.org/10.1371/JOURNAL.PONE.0282369.[91] Goldberg S. Mechanical/physical methods of cell distribution and tissue homogenization. Methods Mol Biol 2015;1295. https://doi.org/10.1007/978-1-4939-2550-6_1.[92] Shvartsman E, Richmond MEI, Schellenberg JJ, Lamont A, Perciani C, Russell JNH, et al. Comparative analysis of DNA extraction and PCR product purification methods for cervicovaginal microbiome analysis using cpn60 microbial profiling. PLoS One 2022;17. https://doi.org/10.1371/JOURNAL.PONE.0262355.[93] Wang Z, Hossain MI, Yeo D, Woo S, Seo Y, Jung S, et al. Optimization of an approach to detect low-concentration MNV-1 and HAV from soil-rich or non-soil post-washing water containing various PCR inhibitory substances. Food Control 2023;150:109735. https://doi.org/10.1016/J.FOODCONT.2023.109735.[94] Schrick L, Nitsche A. Pitfalls in PCR troubleshooting: Expect the unexpected? Biomol Detect Quantif 2016;6:1–3. https://doi.org/10.1016/J.BDQ.2015.11.001.[95] Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 1997;63:3327. https://doi.org/10.1128/AEM.63.8.3327-3332.1997.[96] Regueira-Iglesias A, Vázquez-González L, Balsa-Castro C, Vila-Blanco N, Blanco-Pintos T, Tamames J, et al. In silico evaluation and selection of the best 16S rRNA gene primers for use in next-generation sequencing to detect oral bacteria and archaea. Microbiome 2023;11:58. https://doi.org/10.1186/S40168-023-01481-6.[97] Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–55. https://doi.org/10.1016/j.mimet.2003.08.009.[98] Mahmudunnabi G, Majlish ANK, Momtaz F, Foysal MJ, Rahman MM, Islam K. Molecular detection and PCR-RFLP analysis using Pst1 and Alu1 of multidrug resistant Klebsiella pneumoniae causing urinary tract infection in women in the eastern part of Bangladesh. Journal of Genetic Engineering & Biotechnology 2018;16:77. https://doi.org/10.1016/J.JGEB.2017.12.004.[99] Mahmudunnabi G, Majlish ANK, Momtaz F, Foysal MJ, Rahman MM, Islam K. Molecular detection and PCR-RFLP analysis using Pst1 and Alu1 of multidrug resistant Klebsiella pneumoniae causing urinary tract infection in women in the eastern part of Bangladesh. Journal of Genetic Engineering & Biotechnology 2018;16:77. https://doi.org/10.1016/J.JGEB.2017.12.004.[100] Arevalo JF, Jap A, Chee SP, Zeballos DG. Endogenous endophthalmitis in the developing world. Int Ophthalmol Clin 2010;50:173–87. https://doi.org/10.1097/IIO.0b013e3181d26dfc.[101] Gholamalizadeh R, Khodakaramian G, Ebadi AA. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion. Brazilian Archives of Biology and Technology 2017;60:e17160410. https://doi.org/10.1590/1678-4324-2017160410.THUMBNAILautorizacion biblioteca nqr.pdf.jpgautorizacion biblioteca nqr.pdf.jpgIM Thumbnailimage/jpeg28674http://repository.unilibre.edu.co/bitstream/10901/30498/4/autorizacion%20biblioteca%20nqr.pdf.jpg8d6e879be3d189b33e2a6909a8ed8f0aMD54TESIS NICOLAS QUINTERO MICROBIOLOGIA.pdf.jpgTESIS NICOLAS QUINTERO MICROBIOLOGIA.pdf.jpgIM Thumbnailimage/jpeg13051http://repository.unilibre.edu.co/bitstream/10901/30498/5/TESIS%20NICOLAS%20QUINTERO%20MICROBIOLOGIA.pdf.jpg52fa589d37b5534f195b05b99efda866MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/30498/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALautorizacion biblioteca nqr.pdfautorizacion biblioteca nqr.pdfFormato de autorización para la publicación de obras en el Repositorio Institucionalapplication/pdf312934http://repository.unilibre.edu.co/bitstream/10901/30498/1/autorizacion%20biblioteca%20nqr.pdfc8c4da02bc2c0aa2fb417a6b8555ba05MD51TESIS NICOLAS QUINTERO MICROBIOLOGIA.pdfTESIS NICOLAS QUINTERO MICROBIOLOGIA.pdfTrabajo de gradoapplication/pdf1459593http://repository.unilibre.edu.co/bitstream/10901/30498/2/TESIS%20NICOLAS%20QUINTERO%20MICROBIOLOGIA.pdf2a79651ce88531388c0dcb6379a36edcMD5210901/30498oai:repository.unilibre.edu.co:10901/304982025-01-29 06:01:23.426Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |