Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres.
El presente artículo tiene como objetivo realizar un análisis descriptivo de las emergencias ocurridas en el municipio de Dosquebradas, Risaralda, durante los años 2019, 2020 y 2022, como aporte a la comprensión del riesgo territorial y al fortalecimiento de los procesos locales de gestión del riesg...
- Autores:
-
Betancouth Arias, Mariana
Perdomo Rios, Nini Valeria
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/31582
- Acceso en línea:
- https://hdl.handle.net/10901/31582
- Palabra clave:
- Análisis espacial
Planificación territorial
Lluvias
Gestión del riesgo
Fenómeno la Niña
Emergencias climáticas
Dosquebradas
Climatic emergencies
Urban planning
Spatial analysis
Risk management
Phenomenon La Niña
Dosquebradas
Disaster prevention
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
RULIBRE2_24cdab05e0d7bbaf1f200b1dfabe0a74 |
|---|---|
| oai_identifier_str |
oai:repository.unilibre.edu.co:10901/31582 |
| network_acronym_str |
RULIBRE2 |
| network_name_str |
RIU - Repositorio Institucional UniLibre |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| dc.title.alternative.spa.fl_str_mv |
Descriptive Assessment of Emergencies in Dosquebradas (2019–2022) to Support Disaster Risk Management Planning |
| title |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| spellingShingle |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. Análisis espacial Planificación territorial Lluvias Gestión del riesgo Fenómeno la Niña Emergencias climáticas Dosquebradas Climatic emergencies Urban planning Spatial analysis Risk management Phenomenon La Niña Dosquebradas Disaster prevention |
| title_short |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| title_full |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| title_fullStr |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| title_full_unstemmed |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| title_sort |
Análisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres. |
| dc.creator.fl_str_mv |
Betancouth Arias, Mariana Perdomo Rios, Nini Valeria |
| dc.contributor.advisor.none.fl_str_mv |
Álzate Buitrago, Alejandro |
| dc.contributor.author.none.fl_str_mv |
Betancouth Arias, Mariana Perdomo Rios, Nini Valeria |
| dc.subject.spa.fl_str_mv |
Análisis espacial Planificación territorial Lluvias Gestión del riesgo Fenómeno la Niña Emergencias climáticas Dosquebradas |
| topic |
Análisis espacial Planificación territorial Lluvias Gestión del riesgo Fenómeno la Niña Emergencias climáticas Dosquebradas Climatic emergencies Urban planning Spatial analysis Risk management Phenomenon La Niña Dosquebradas Disaster prevention |
| dc.subject.subjectenglish.spa.fl_str_mv |
Climatic emergencies Urban planning Spatial analysis Risk management Phenomenon La Niña Dosquebradas Disaster prevention |
| description |
El presente artículo tiene como objetivo realizar un análisis descriptivo de las emergencias ocurridas en el municipio de Dosquebradas, Risaralda, durante los años 2019, 2020 y 2022, como aporte a la comprensión del riesgo territorial y al fortalecimiento de los procesos locales de gestión del riesgo de desastres (GRD). A través de una metodología cuantitativa y no experimental, se analizaron los registros suministrados por la Dirección de Gestión del Riesgo del municipio, aplicando herramientas estadísticas y técnicas de georreferenciación mediante Google Earth Pro. Se organizaron y procesaron variables como fecha, tipo de emergencia, tipo de afectación, comuna, barrio y localización exacta, lo que permitió construir una caracterización detallada del comportamiento de los eventos en el territorio. Entre los hallazgos más relevantes se destaca que los eventos de lluvias fuertes y deslizamientos fueron los más recurrentes, representando más del 80 % del total de emergencias, con picos marcados en los meses de junio y julio, coincidiendo con la temporada invernal y la presencia del fenómeno La Niña. Asimismo, las comunas 9 y 2 fueron las más afectadas en el periodo analizado, evidenciando una alta concentración espacial del riesgo. La comparación interanual mostró un aumento considerable de emergencias en 2022, con un crecimiento del 292 % frente a 2020, lo que refuerza la influencia de factores climáticos sobre la ocurrencia de desastres. Los resultados permiten identificar patrones temporales y territoriales claves que deben ser tenidos en cuenta en los instrumentos de planificación urbana y en la priorización de intervenciones estructurales y comunitarias. Se concluye que la generación de conocimiento técnico local, a través de datos sistematizados y representaciones geográficas, es fundamental para tomar decisiones efectivas en materia de prevención, mitigación y preparación ante emergencias. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-24T16:04:15Z |
| dc.date.available.none.fl_str_mv |
2025-07-24T16:04:15Z |
| dc.date.created.none.fl_str_mv |
2025-07-23 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/31582 |
| url |
https://hdl.handle.net/10901/31582 |
| dc.relation.references.spa.fl_str_mv |
Akanbi, A. K., Kumar, S., & Fidelis, U. (2013). Application of remote sensing, GIS and GPS for efficient urban management planning. ArXiv preprint. Albrecht, F., & Stadelmann, M. (2022). Integrating economic resilience in disaster risk reduction: A systematic review. International Journal of Disaster Risk Reduction, 67, 102620. Aldrich, D. P., & Meyer, M. A. (2015). Social capital and community resilience. American Behavioral Scientist, 59(2), 254–269. Balica, S. F., Popescu, I., & Dorobanțu, M. (2020). Urban planning for flood risk mitigation: The case of Craiova, Romania. Natural Hazards and Earth System Sciences, 20, 3035–3053. Basher, R. (2020). Disaster risk governance and planning: State of the art and future directions. Journal of Environmental Management, 266, 110597. Birkmann, J., Welle, T., & Solecki, W. (2021). Adaptation strategies in territorial planning to reduce disaster risk. Sustainability Science, 16(3), 813–828. Cardona, O. D., Arbelaez, C., & Pulwarty, R. (2017). Economic assessment of disaster risk in Colombia. International Journal of Disaster Risk Reduction, 21, 12–24. Carraminana, D., Bernardos, A. M., Besada, J. A., & Casar, J. R. (2025). Towards resilient cities: A hybrid simulation framework. ArXiv preprint. Cretney, R. (2022). Resilience for whom? Emerging critical geographies of socio-ecological resilience. Geography Compass, 16(5), e12668. Cutter, S. L., Burton, C. G., & Emrich, C. T. (2018). Social vulnerability to natural hazards: Review of definitions and mapping methods. Annals of the American Association of Geographers, 109(3), 791–805. Fainstein, S. S. (2025). Planning in the era of disaster risk: Equity and opportunity in reconstruction. Built Environment, 11, 158604. Gallo Álvarez, A. G., & Sánchez Dávila, D. K. (2021). Gestión de riesgos de desastres y cambio climático en la provincia de Alto Amazonas. Ciencia Latina Revista Científica Multidisciplinar, 5(5), 6686-6724. https://doi.org/10.37811/cl_rcm.v5i5.791 Gómez, D., García-Aristizábal, E., & Aristizábal, E. (2021). Spatial and temporal patterns of fatal landslides in Colombia. 13th Landslides and Engineered Slopes. Experience, Theory and Practice, ISL. Gupta, S., Fischer, H., & Svensson, J. (2018). Economic losses from natural disasters: A review and recommendations. Disaster Prevention and Management, 27(1), 20–43. Hallegatte, S., Fay, M., & Barbier, E. B. (2017). Building back better: Achieving resilience through stronger, faster, more inclusive reconstruction. Global Facility for Disaster Reduction and Recovery. Huang, Z., & Rozelle, S. (2024). Urban planning, design and management approaches to building resilience. Journal of Urban Planning and Development. IPCC. (2015). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report. Cambridge Univ. Press. IRI. (2024). Why do we care about El Niño and La Niña? International Research Institute for Climate. Li, H., et al. (2023). Towards resilient cities: A hybrid simulation framework for risk mitigation. Journal of Simulation and Modelling. Llasat, M. C., et al. (2021). Urban planning for disaster risk reduction: A systematic review. International Journal of Disaster Risk Reduction. Ma, J., & Mostafavi, A. (2023). Urban form and spatial inequality of property flood risk in US counties. Science of the Total Environment. Mitchell, T. (2016). Disaster risk governance in urban contexts. Development Policy Review, 34, O794–O812. Mugambiwa, S., & Makhubele, J. (2021). Anthropogenic flash floods and climate change in rural Zimbabwe: Impacts and adaptation. Technium Social Sciences Journal. Mugambiwa, S., & Munsaka, E. (2021). When disaster risk management systems fail: The case of Cyclone Idai. International Journal of Disaster Risk Science, 12, 445–453. Nirupama, N. (2013). Disaster risk management. In Encyclopedia of Earth Sciences Series (pp. 164–169). Springer. https://doi.org/10.1007/978-1-4020-4399-4_300. Pelling, M., & Dill, K. (2016). Disaster politics: Tipping points for change in the adaptation of urban governance. Progress in Human Geography, 40(4), 489–506. Poledna, S., Hochrainer-Stigler, S., Miess, M. G., & Sorger, J. (2018). When does a disaster become a systemic event? Journal of Economic Dynamics & Control, 94, 84–109. Rajabi, E., Bazyar, J., Delshad, V., & Khankeh, H. R. (2022). The evolution of disaster risk management: Historical approach. Disaster Medicine and Public Health Preparedness, 16(4), 1623–1627. https://doi.org/10.1017/dmp.2021.194 Ranger, N., & Surminski, S. (2013). Disasters and their economic impacts in developing countries. Disaster Risk Management Report, ODI. Rezvani, S. M., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023). A systematic literature review on urban resilience enabled with asset and disaster risk management approaches and GIS-based decision support tools. Applied Sciences, 13(4), 2223. Roslan, A. F., Fernando, T., Biscaya, S., & Sulaiman, N. (2021). Transformation towards risksensitive urban development: A systematic review of the issues and challenges. Sustainability, 13(19), 10631. Sandoval, V., Voss, M., Flörchinger, V., & Lorenz, S. (2023). Integrated disaster risk management: Elements to advance its study. International Journal of Disaster Risk Science, 14, 343–356. Sanyal, S., & Routray, J. K. (2016). Social capital for disaster risk reduction in Sundarbans, India. International Journal of Disaster Risk Reduction, 20, 16–27. Schipper, E., Martin, M., & Anderlini, N. (2019). The use of land use planning tools in disaster risk reduction. Land Use Policy, 87, 104061. Singh, K., Sharma, E., Baath, P. K., Kaur, K., & Singh, H. (2025). CNN-based smart disaster management framework for forest fires. International Journal of Sensors, Wireless Communications and Control. Singh, K., Sharma, E., Baath, P. K., Kaur, K., & Singh, H. (2025). Convolutional Neural Network-based Smart Disaster Management Framework for Real-time Detection and Management of Forest Fires. International Journal of Sensors, Wireless Communications and Control. https://doi.org/10.2174/0122103279339983241028073645 Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., & Doswald, N. (2021). Scientific evidence for ecosystem-based disaster risk reduction. Nature Sustainability, 4, 123–131. Tan, M. C. J. (2023). Building resilience and community-based disaster risk management: Lessons from communities in the Philippines. In International Handbook of Disaster Research (pp. 845–862). Springer. https://doi.org/10.1007/978-981-19-8388-7_52 Terrones, V., & Tol, R. S. J. (2022). Financial development and fiscal stability in disaster management. Economic Modelling, 109, 105739. UNDRR. (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. UN Office for Disaster Risk Reduction. Vargas, G., Hernández, Y., & Pabón, J. D. (2018). La Niña event 2010–2011: Hydroclimatic effects and socioeconomic impacts in Colombia. In S. Mal, R. Singh, & C. Huggel (Eds.), Climate Change, Extreme Events and Disaster Risk Reduction (SDGS) (pp. 217–232). Springer. White, G. F., & Haas, J. E. (1975). Assessment of research on natural hazards. Department of Geography, MIT. Wilches, O. M., Gómez, D., & Casas, B. (2020). Fatal landslides in the Colombian Andes: Spatial patterns and implications. Landslides, 17, 79–91. Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At Risk: Natural Hazards, People’s Vulnerability and Disasters (2nd ed.). Routledge. Yarnal, B., & Hansen, A. (2021). Local governance for disaster resilience: A comparative analysis. International Journal of Disaster Risk Reduction, 54, 102029. Zhang, Y., Li, H., & Burnham, M. (2022). Incorporating resilience into territorial spatial planning in China. Land Use Policy, 112, 105800. |
| dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.spa.fl_str_mv |
PDF |
| dc.coverage.spatial.spa.fl_str_mv |
Pereira |
| institution |
Universidad Libre |
| bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/31582/4/Ana%cc%81lisis%20descriptivo%20de%20emergencias%20en%20Dosquebradas.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31582/5/Autorizacion%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31582/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/31582/1/Ana%cc%81lisis%20descriptivo%20de%20emergencias%20en%20Dosquebradas.pdf http://repository.unilibre.edu.co/bitstream/10901/31582/2/Autorizacion%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital.pdf |
| bitstream.checksum.fl_str_mv |
a099c30e994a5f6986a0e83066118313 919251d0a9a8c49eaf804c7c6bb95d70 8a4605be74aa9ea9d79846c1fba20a33 e982a7530271b70a95de85bfb0c6cc9c 98ea3ef9f15c4f93a4aa0388025863f8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
| repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
| _version_ |
1851053895832305664 |
| spelling |
Álzate Buitrago, AlejandroBetancouth Arias, MarianaPerdomo Rios, Nini ValeriaPereira2025-07-24T16:04:15Z2025-07-24T16:04:15Z2025-07-23https://hdl.handle.net/10901/31582El presente artículo tiene como objetivo realizar un análisis descriptivo de las emergencias ocurridas en el municipio de Dosquebradas, Risaralda, durante los años 2019, 2020 y 2022, como aporte a la comprensión del riesgo territorial y al fortalecimiento de los procesos locales de gestión del riesgo de desastres (GRD). A través de una metodología cuantitativa y no experimental, se analizaron los registros suministrados por la Dirección de Gestión del Riesgo del municipio, aplicando herramientas estadísticas y técnicas de georreferenciación mediante Google Earth Pro. Se organizaron y procesaron variables como fecha, tipo de emergencia, tipo de afectación, comuna, barrio y localización exacta, lo que permitió construir una caracterización detallada del comportamiento de los eventos en el territorio. Entre los hallazgos más relevantes se destaca que los eventos de lluvias fuertes y deslizamientos fueron los más recurrentes, representando más del 80 % del total de emergencias, con picos marcados en los meses de junio y julio, coincidiendo con la temporada invernal y la presencia del fenómeno La Niña. Asimismo, las comunas 9 y 2 fueron las más afectadas en el periodo analizado, evidenciando una alta concentración espacial del riesgo. La comparación interanual mostró un aumento considerable de emergencias en 2022, con un crecimiento del 292 % frente a 2020, lo que refuerza la influencia de factores climáticos sobre la ocurrencia de desastres. Los resultados permiten identificar patrones temporales y territoriales claves que deben ser tenidos en cuenta en los instrumentos de planificación urbana y en la priorización de intervenciones estructurales y comunitarias. Se concluye que la generación de conocimiento técnico local, a través de datos sistematizados y representaciones geográficas, es fundamental para tomar decisiones efectivas en materia de prevención, mitigación y preparación ante emergencias.Universidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería CivilThis article aims to conduct a descriptive analysis of the emergencies that occurred in the municipality of Dosquebradas, Risaralda, during the years 2019, 2020, and 2022, as a contribution to the understanding of territorial risk and the strengthening of local disaster risk management (DRM) processes. Using a quantitative and non-experimental methodology, official records provided by the Municipal Risk Management Office were analyzed through statistical tools and georeferencing techniques using Google Earth Pro. Variables such as date, type of emergency, type of impact, commune, neighborhood, and exact location were organized and processed, allowing for a detailed characterization of event behavior across the territory. Among the most relevant findings, heavy rainfall and landslides were identified as the most frequent events, accounting for over 80% of all emergencies, with critical peaks in the months of June and July, coinciding with the rainy season and the presence of the La Niña phenomenon. Likewise, communes 9 and 2 were the most affected during the study period, showing a high spatial concentration of risk. A considerable increase in emergencies was observed in 2022, with a 292% rise compared to 2020, further highlighting the influence of climatic factors on the occurrence of disasters. The results identify key temporal and territorial patterns that should be considered in urban planning instruments and in the prioritization of structural and community-level interventions. The study concludes that the generation of local technical knowledge through systematized data and geospatial representations is essential for effective decision-making in prevention, mitigation, and preparedness for emergencies.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis espacialPlanificación territorialLluviasGestión del riesgoFenómeno la NiñaEmergencias climáticasDosquebradasClimatic emergenciesUrban planningSpatial analysisRisk managementPhenomenon La NiñaDosquebradasDisaster preventionAnálisis descriptivo de emergencias en Dosquebradas (2019–2022) como base para la gestión del riesgo de desastres.Descriptive Assessment of Emergencies in Dosquebradas (2019–2022) to Support Disaster Risk Management PlanningTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAkanbi, A. K., Kumar, S., & Fidelis, U. (2013). Application of remote sensing, GIS and GPS for efficient urban management planning. ArXiv preprint.Albrecht, F., & Stadelmann, M. (2022). Integrating economic resilience in disaster risk reduction: A systematic review. International Journal of Disaster Risk Reduction, 67, 102620.Aldrich, D. P., & Meyer, M. A. (2015). Social capital and community resilience. American Behavioral Scientist, 59(2), 254–269.Balica, S. F., Popescu, I., & Dorobanțu, M. (2020). Urban planning for flood risk mitigation: The case of Craiova, Romania. Natural Hazards and Earth System Sciences, 20, 3035–3053.Basher, R. (2020). Disaster risk governance and planning: State of the art and future directions. Journal of Environmental Management, 266, 110597.Birkmann, J., Welle, T., & Solecki, W. (2021). Adaptation strategies in territorial planning to reduce disaster risk. Sustainability Science, 16(3), 813–828.Cardona, O. D., Arbelaez, C., & Pulwarty, R. (2017). Economic assessment of disaster risk in Colombia. International Journal of Disaster Risk Reduction, 21, 12–24.Carraminana, D., Bernardos, A. M., Besada, J. A., & Casar, J. R. (2025). Towards resilient cities: A hybrid simulation framework. ArXiv preprint.Cretney, R. (2022). Resilience for whom? Emerging critical geographies of socio-ecological resilience. Geography Compass, 16(5), e12668.Cutter, S. L., Burton, C. G., & Emrich, C. T. (2018). Social vulnerability to natural hazards: Review of definitions and mapping methods. Annals of the American Association of Geographers, 109(3), 791–805.Fainstein, S. S. (2025). Planning in the era of disaster risk: Equity and opportunity in reconstruction. Built Environment, 11, 158604.Gallo Álvarez, A. G., & Sánchez Dávila, D. K. (2021). Gestión de riesgos de desastres y cambio climático en la provincia de Alto Amazonas. Ciencia Latina Revista Científica Multidisciplinar, 5(5), 6686-6724. https://doi.org/10.37811/cl_rcm.v5i5.791Gómez, D., García-Aristizábal, E., & Aristizábal, E. (2021). Spatial and temporal patterns of fatal landslides in Colombia. 13th Landslides and Engineered Slopes. Experience, Theory and Practice, ISL.Gupta, S., Fischer, H., & Svensson, J. (2018). Economic losses from natural disasters: A review and recommendations. Disaster Prevention and Management, 27(1), 20–43.Hallegatte, S., Fay, M., & Barbier, E. B. (2017). Building back better: Achieving resilience through stronger, faster, more inclusive reconstruction. Global Facility for Disaster Reduction and Recovery.Huang, Z., & Rozelle, S. (2024). Urban planning, design and management approaches to building resilience. Journal of Urban Planning and Development.IPCC. (2015). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report. Cambridge Univ. Press.IRI. (2024). Why do we care about El Niño and La Niña? International Research Institute for Climate.Li, H., et al. (2023). Towards resilient cities: A hybrid simulation framework for risk mitigation. Journal of Simulation and Modelling.Llasat, M. C., et al. (2021). Urban planning for disaster risk reduction: A systematic review. International Journal of Disaster Risk Reduction.Ma, J., & Mostafavi, A. (2023). Urban form and spatial inequality of property flood risk in US counties. Science of the Total Environment.Mitchell, T. (2016). Disaster risk governance in urban contexts. Development Policy Review, 34, O794–O812.Mugambiwa, S., & Makhubele, J. (2021). Anthropogenic flash floods and climate change in rural Zimbabwe: Impacts and adaptation. Technium Social Sciences Journal.Mugambiwa, S., & Munsaka, E. (2021). When disaster risk management systems fail: The case of Cyclone Idai. International Journal of Disaster Risk Science, 12, 445–453.Nirupama, N. (2013). Disaster risk management. In Encyclopedia of Earth Sciences Series (pp. 164–169). Springer. https://doi.org/10.1007/978-1-4020-4399-4_300.Pelling, M., & Dill, K. (2016). Disaster politics: Tipping points for change in the adaptation of urban governance. Progress in Human Geography, 40(4), 489–506.Poledna, S., Hochrainer-Stigler, S., Miess, M. G., & Sorger, J. (2018). When does a disaster become a systemic event? Journal of Economic Dynamics & Control, 94, 84–109.Rajabi, E., Bazyar, J., Delshad, V., & Khankeh, H. R. (2022). The evolution of disaster risk management: Historical approach. Disaster Medicine and Public Health Preparedness, 16(4), 1623–1627. https://doi.org/10.1017/dmp.2021.194Ranger, N., & Surminski, S. (2013). Disasters and their economic impacts in developing countries. Disaster Risk Management Report, ODI.Rezvani, S. M., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023). A systematic literature review on urban resilience enabled with asset and disaster risk management approaches and GIS-based decision support tools. Applied Sciences, 13(4), 2223.Roslan, A. F., Fernando, T., Biscaya, S., & Sulaiman, N. (2021). Transformation towards risksensitive urban development: A systematic review of the issues and challenges. Sustainability, 13(19), 10631.Sandoval, V., Voss, M., Flörchinger, V., & Lorenz, S. (2023). Integrated disaster risk management: Elements to advance its study. International Journal of Disaster Risk Science, 14, 343–356.Sanyal, S., & Routray, J. K. (2016). Social capital for disaster risk reduction in Sundarbans, India. International Journal of Disaster Risk Reduction, 20, 16–27.Schipper, E., Martin, M., & Anderlini, N. (2019). The use of land use planning tools in disaster risk reduction. Land Use Policy, 87, 104061.Singh, K., Sharma, E., Baath, P. K., Kaur, K., & Singh, H. (2025). CNN-based smart disaster management framework for forest fires. International Journal of Sensors, Wireless Communications and Control.Singh, K., Sharma, E., Baath, P. K., Kaur, K., & Singh, H. (2025). Convolutional Neural Network-based Smart Disaster Management Framework for Real-time Detection and Management of Forest Fires. International Journal of Sensors, Wireless Communications and Control. https://doi.org/10.2174/0122103279339983241028073645Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., & Doswald, N. (2021). Scientific evidence for ecosystem-based disaster risk reduction. Nature Sustainability, 4, 123–131.Tan, M. C. J. (2023). Building resilience and community-based disaster risk management: Lessons from communities in the Philippines. In International Handbook of Disaster Research (pp. 845–862). Springer. https://doi.org/10.1007/978-981-19-8388-7_52Terrones, V., & Tol, R. S. J. (2022). Financial development and fiscal stability in disaster management. Economic Modelling, 109, 105739.UNDRR. (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. UN Office for Disaster Risk Reduction.Vargas, G., Hernández, Y., & Pabón, J. D. (2018). La Niña event 2010–2011: Hydroclimatic effects and socioeconomic impacts in Colombia. In S. Mal, R. Singh, & C. Huggel (Eds.), Climate Change, Extreme Events and Disaster Risk Reduction (SDGS) (pp. 217–232). Springer.White, G. F., & Haas, J. E. (1975). Assessment of research on natural hazards. Department of Geography, MIT.Wilches, O. M., Gómez, D., & Casas, B. (2020). Fatal landslides in the Colombian Andes: Spatial patterns and implications. Landslides, 17, 79–91.Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At Risk: Natural Hazards, People’s Vulnerability and Disasters (2nd ed.). Routledge.Yarnal, B., & Hansen, A. (2021). Local governance for disaster resilience: A comparative analysis. International Journal of Disaster Risk Reduction, 54, 102029.Zhang, Y., Li, H., & Burnham, M. (2022). Incorporating resilience into territorial spatial planning in China. Land Use Policy, 112, 105800.THUMBNAILAnálisis descriptivo de emergencias en Dosquebradas.pdf.jpgAnálisis descriptivo de emergencias en Dosquebradas.pdf.jpgIM Thumbnailimage/jpeg22218http://repository.unilibre.edu.co/bitstream/10901/31582/4/Ana%cc%81lisis%20descriptivo%20de%20emergencias%20en%20Dosquebradas.pdf.jpga099c30e994a5f6986a0e83066118313MD54Autorizacion publicación de trabajos en formato digital.pdf.jpgAutorizacion publicación de trabajos en formato digital.pdf.jpgIM Thumbnailimage/jpeg28686http://repository.unilibre.edu.co/bitstream/10901/31582/5/Autorizacion%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital.pdf.jpg919251d0a9a8c49eaf804c7c6bb95d70MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/31582/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAnálisis descriptivo de emergencias en Dosquebradas.pdfAnálisis descriptivo de emergencias en Dosquebradas.pdfArtículo principalapplication/pdf523530http://repository.unilibre.edu.co/bitstream/10901/31582/1/Ana%cc%81lisis%20descriptivo%20de%20emergencias%20en%20Dosquebradas.pdfe982a7530271b70a95de85bfb0c6cc9cMD51Autorizacion publicación de trabajos en formato digital.pdfAutorizacion publicación de trabajos en formato digital.pdfAutorización de publicaciónapplication/pdf301720http://repository.unilibre.edu.co/bitstream/10901/31582/2/Autorizacion%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital.pdf98ea3ef9f15c4f93a4aa0388025863f8MD5210901/31582oai:repository.unilibre.edu.co:10901/315822025-07-25 06:00:24.742Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
