Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS

El artículo se enfoca en las propiedades elásticas y las deformaciones de las rocas como lo son las fracturas o grietas, las propiedades elásticas determina la capacidad de las rocas para deformarse reversiblemente bajo la aplicación de una carga externa. Estas propiedades se describen típicamente m...

Full description

Autores:
Cardenas Torres, Mauricio Andrés
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/30484
Acceso en línea:
https://hdl.handle.net/10901/30484
Palabra clave:
Deformación de las rocas
Fracturas
Geología
Geotecnia
Grietas
Ingeniería civil
Propiedades elástica de las rocas
Tree of Science (ToS)
Web of Science
Rock deformation
Fractures
Geology
Geotechnics
Cracks
Civil engineering
Elastic properties of rocks
Tree of Science (ToS)
Web of Science
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_0efb0b50d51e6c850f7423ef84582009
oai_identifier_str oai:repository.unilibre.edu.co:10901/30484
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
dc.title.alternative.spa.fl_str_mv Bibliometrics of the Background of Elastic Properties and Rock Deformation through ToS
title Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
spellingShingle Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
Deformación de las rocas
Fracturas
Geología
Geotecnia
Grietas
Ingeniería civil
Propiedades elástica de las rocas
Tree of Science (ToS)
Web of Science
Rock deformation
Fractures
Geology
Geotechnics
Cracks
Civil engineering
Elastic properties of rocks
Tree of Science (ToS)
Web of Science
title_short Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
title_full Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
title_fullStr Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
title_full_unstemmed Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
title_sort Bibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToS
dc.creator.fl_str_mv Cardenas Torres, Mauricio Andrés
dc.contributor.advisor.none.fl_str_mv Alzate Buitrago, Alejandro
dc.contributor.author.none.fl_str_mv Cardenas Torres, Mauricio Andrés
dc.subject.spa.fl_str_mv Deformación de las rocas
Fracturas
Geología
Geotecnia
Grietas
Ingeniería civil
Propiedades elástica de las rocas
Tree of Science (ToS)
Web of Science
topic Deformación de las rocas
Fracturas
Geología
Geotecnia
Grietas
Ingeniería civil
Propiedades elástica de las rocas
Tree of Science (ToS)
Web of Science
Rock deformation
Fractures
Geology
Geotechnics
Cracks
Civil engineering
Elastic properties of rocks
Tree of Science (ToS)
Web of Science
dc.subject.subjectenglish.spa.fl_str_mv Rock deformation
Fractures
Geology
Geotechnics
Cracks
Civil engineering
Elastic properties of rocks
Tree of Science (ToS)
Web of Science
description El artículo se enfoca en las propiedades elásticas y las deformaciones de las rocas como lo son las fracturas o grietas, las propiedades elásticas determina la capacidad de las rocas para deformarse reversiblemente bajo la aplicación de una carga externa. Estas propiedades se describen típicamente mediante parámetros como el módulo de elasticidad, la relación de Poisson y la resistencia a la compresión. El módulo de elasticidad indica la rigidez de la roca y su capacidad para recuperar su forma original, la relación de Poisson describe cómo una roca se expande y comprende también la resistencia a la compresión es la capacidad de la roca para resistir la deformación bajo cargas de compresión. Las deformaciones que son los cambios ya sea en su forma, el tamaño o volumen de las rocas debido a la aplicación de fuerzas externas. En las rocas pueden encontrar y experimentar diferentes tipos de deformación, como: la elasticidad (deformación reversible), la plasticidad (deformación permanente) y la fractura (rotura). Conocer lo anteriormente mencionado nos permite tener una visión más amplia acerca de las rocas y asimismo entender la importancia que representa para la geotecnia, geología y la ingeniería civil dado que nos permite construir infraestructuras, presas, túneles, y cimientos. Este articulo destaca la importancia de las propiedades elásticas, deformaciones y grietas que presentan los macizos rocosos para brindar conocimientos y aportes en áreas como la geotecnia, geología y la ingeniería civil y con ayuda del modelo Tree of Science (ToS) y Web of Science (WoS) para presentar un amplio concepto desde los inicios y e ir unificando los desarrollos científicos, ideas para comprender de manera más adecuada la estructura de esta área de la ingeniería y Comprender cómo responden las rocas a las fuerzas aplicadas es fundamental para garantizar la estabilidad y seguridad de las estructuras construidas sobre ellas. Tree of Science (ToS) como apoyo para estructurar el tema y los conocimientos científicos de los investigadores referenciándolo como un árbol para comprender el proceso de crecimiento y evolutivo con el paso del tiempo. Actualmente empleando las tecnologías, empleadas para la búsqueda y recopilación de datos, monitoreo y análisis numéricos o matemáticos para las simulaciones. También herramienta como Web of Science (WoS) que es colección de bases de datos de referencias bibliográficas y citas de publicaciones periódicas que recogen información desde 1900 a la actualidad, que permite conocer las investigaciones y poder estructurar desde las bases o primeras ideas el conocimiento y como va progresando.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-24T14:39:11Z
dc.date.available.none.fl_str_mv 2025-01-24T14:39:11Z
dc.date.created.none.fl_str_mv 2025-01-16
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/30484
url https://hdl.handle.net/10901/30484
dc.relation.references.spa.fl_str_mv Berthelot, J. M., & Robert, J. L. (n.d.). Damage evaluation of concrete test specimens related to failure analysis.
Birch, F. (1960). The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 11. In Journal of Geophysical Research (Vol. 65, Issue 4).
Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Paton, G., & Escalona, A. (2016). Seismic characterisation of fault damage in 3D using mechanical and seismic modelling. Marine and Petroleum Geology, 77, 973–990. https://doi.org/10.1016/j.marpetgeo.2016.08.002
Czarny, R., Malinowski, M., Chamarczuk, M., Ćwiękała, M., Olechowski, S., Isakow, Z., & Sierodzki, P. (2021). Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences, 148. https://doi.org/10.1016/j.ijrmms.2021.104937
David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(7). https://doi.org/10.1029/2012JB009195
Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). of fault-related rocks, and implications for hydraulic structure of fault zones. In Journal of Structural Geology (Vol. 19, Issue 11).
Feng, X. T., Pan, P. Z., & Zhou, H. (2006). Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1091–1108. https://doi.org/10.1016/j.ijrmms.2006.02.006
Glubokovskikh, S., Gurevich, B., & Saxena, N. (2016). A dual-porosity scheme for fluid/solid substitution. Geophysical Prospecting, 64(4), 1112–1121. https://doi.org/10.1111/1365-2478.12389
Gómez Barreiro, J., Wenk, H. R., & Vogel, S. (2015). Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada). Journal of Structural Geology, 71, 100–111. https://doi.org/10.1016/j.jsg.2014.07.021
Gong, F., Di, B., Zeng, L., Wei, J., Cheng, J., & Gao, L. (2021). The elastic properties and anisotropy of artificial compacted clay samples. Geophysics, 86(1), MR1–MR15. https://doi.org/10.1190/geo2019-0608.1
Guo, J., Han, T., Fu, L. Y., Xu, D., & Fang, X. (2019). Effective Elastic Properties of Rocks With Transversely Isotropic Background Permeated by Aligned Penny-Shaped Cracks. Journal of Geophysical Research: Solid Earth, 124(1), 400–424. https://doi.org/10.1029/2018JB016412
Hamiel, Y., Lyakhovsky, V., Stanchits, S., Dresen, G., & Ben-Zion, Y. (2009). Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophysical Journal International, 178(2), 901–909. https://doi.org/10.1111/j.1365-246X.2009.04200.x
Hill H H, B. R. (1932). 138,330 ; 1932 b. In Dokl., Akad. Nauk, SSSR (Vol. 129).
Hossain, M. M., Arns, J. Y., Liang, Z., Chen, Z., & Arns, C. H. (2019). Humidity Effects on Effective Elastic Properties of Rock: An Integrated Experimental and Numerical Study. Journal of Geophysical Research: Solid Earth, 124(8), 7771–7791. https://doi.org/10.1029/2019JB017672
Jésus, J., Sobrinho, S., De Figueiredo, J. J. S., Lima, R. L., Santos, L. K., & Nascimento, M. J. (2018). STUDY OF ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE IN ANISOTROPIC CRACKED MEDIA: AN ULTRASONIC APPROACH 326 ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE. In Revista Brasileira de Geofísica (Vol. 36, Issue 3). www.scielo.br/rbg
Kenigsberg, A. R., Rivière, J., Marone, C., & Saffer, D. M. (2020). A method for determining absolute ultrasonic velocities and elastic properties of experimental shear zones. International Journal of Rock Mechanics and Mining Sciences, 130. https://doi.org/10.1016/j.ijrmms.2020.104306
Khajehpour Tadavani, S., Poduska, K. M., Malcolm, A. E., & Melnikov, A. (2020). A non-linear elastic approach to study the effect of ambient humidity on sandstone. Journal of Applied Physics, 128(24). https://doi.org/10.1063/5.0025936
Lebedev, T. S., Korchin, V. A., & Burtny, P. A. (1992). Geophysical applications of the results of a pt-study of elastic properties of rocks. In J. Geodynaraics (Vol. 15, Issue 3•4).
Lee, A. L., Walker, A. M., Lloyd, G. E., & Torvela, T. (2017). Modeling the impact of melt on seismic properties during mountain building. Geochemistry, Geophysics, Geosystems, 18(3), 1090–1110. https://doi.org/10.1002/2016GC006705
Levykin, A. I., & Parfenov, V. D. (1975). Plastic deformations and longitudinal wave velocities in barite at high pressures. International Geology Review, 17(3), 368–372. https://doi.org/10.1080/00206817509471706
Li, H., Lai, B., & Liu, H. (2019). Determination of Tensile Elastic Parameters from Brazilian Tensile Test: Theory and Experiments. Rock Mechanics and Rock Engineering, 52(8), 2551–2568. https://doi.org/10.1007/s00603-019-1738-8
Li, S., Wang, W., Su, Y., & Guo, J. (2023). Effective elastic properties and S-wave anisotropy for rocks containing any oriented penny-shaped cracks in transversely isotropic background. Geophysics, 88(3), MR65–MR81. https://doi.org/10.1190/geo2022-0388.1
Li, T., Wang, R., Wang, Z., & Wang, Y. (2016). Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks. Geophysics, 81(4), D441–D451. https://doi.org/10.1190/GEO2015-0661.1
Li, W., Rezakhani, R., Jin, C., Zhou, X., & Cusatis, G. (2017). A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. International Journal for Numerical and Analytical Methods in Geomechanics, 41(14), 1494–1522. https://doi.org/10.1002/nag.2684
Liu, C., Pollard, D. D., & Shi, B. (2013). Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research: Solid Earth, 118(1), 71–82. https://doi.org/10.1029/2012JB009615
Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 38–47. https://doi.org/10.1088/1742-2132/2/1/006
Lyakhovsky, V., & Ben-zion, Y. (2008). Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophysical Journal International, 172(2), 651–662. https://doi.org/10.1111/j.1365-246X.2007.03652.x
Markov, A., Ronquillo Jarillo, G., & Markov, M. (2014). Elastic properties of rocks containing oriented systems of ellipsoidal inclusions. Journal of Applied Geophysics, 103, 114–120. https://doi.org/10.1016/j.jappgeo.2014.01.010
Mavko, G. (1990). Introduction to Rock Physics.
O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412
Ostrovsky, L., Lebedev, A., Riviere, J., Shokouhi, P., Wu, C., Stuber Geesey, M. A., & Johnson, P. A. (2019). Long-Time Relaxation Induced by Dynamic Forcing in Geomaterials. Journal of Geophysical Research: Solid Earth, 124(5), 5003–5013. https://doi.org/10.1029/2018JB017076
Pan, P., Feng, X., & Zhou, H. (2008). Research on the effect of loading conditions on the strength and deformation behaviors of rocks. In International Journal of Modern Physics B (Vol. 22). www.worldscientific.com
Pimienta, L., Fortin, J., & Guéguen, Y. (2017). New method for measuring compressibility and poroelasticity coefficients in porous and permeable rocks. Journal of Geophysical Research: Solid Earth, 122(4), 2670–2689. https://doi.org/10.1002/2016JB013791
Pouragha, M., Eghbalian, M., & Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics and Mining Sciences, 125. https://doi.org/10.1016/j.ijrmms.2019.104154
Prada, M., Galvez, P., Ampuero, J. P., Sallarès, V., Sánchez-Linares, C., Macías, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021JB022328
Rivière, J., Pimienta, L., Scuderi, M., Candela, T., Shokouhi, P., Fortin, J., Schubnel, A., Marone, C., & Johnson, P. A. (2016). Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone. Geophysical Research Letters, 43(7), 3226–3236. https://doi.org/10.1002/2016GL068061
Roche, V., Homberg, C., David, C., & Rocher, M. (2014). Normal faults, layering and elastic properties of rocks. Tectonophysics, 622, 96–109. https://doi.org/10.1016/j.tecto.2014.03.006
Rozhko, A. Y. (2020). Effects of pore fluids on quasi-static shear modulus caused by pore-scale interfacial phenomena. Geophysical Prospecting, 68(2), 631–656. https://doi.org/10.1111/1365-2478.12864
Rudnicki, J. W. (n.d.). Conditions for compaction and shear bands in a transversely isotropic material q. www.elsevier.com/locate/ijsolstr
Sayers, C. M. (2012). The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78(2), D65–D74. https://doi.org/10.1190/GEO2012-0309.1
Sayers, C. M., & den Boer, L. D. (2018). The Elastic Properties of Clay in Shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965–5974. https://doi.org/10.1029/2018JB015600
Sayers, C. M., & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of brittle rocks. In Journal Of Geophysical Research: Vol. tOO (Issue B3).
Segall, P., & Fitzgerald, S. D. (1998). A note on induced stress changes in hydrocarbon and geothermal reservoirs. In Tectonophysics (Vol. 289).
Shen, L. W., & Playter, T. (2021). Determining the transverse isotropic rocks’ static elastic moduli with cylindrical plugs: Shortfalls, challenges, and expected outcomes. Geophysics, 86(3), W31–W46. https://doi.org/10.1190/geo2020-0439.1
Singh, R., Rai, C., & Sondergeld, C. (n.d.). Pressure dependence of elastic wave velocities in sandstones. http://library.seg.org/
Sirdesai, N. N., Gupta, T., Singh, T. N., & Ranjith, P. G. (2018). Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains. Construction and Building Materials, 168, 346–361. https://doi.org/10.1016/j.conbuildmat.2018.02.180
Suleymanov, V., El-Husseiny, A., Glatz, G., & Dvorkin, J. (2023). Rock physics and machine learning comparison: elastic properties prediction and scale dependency. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1095252
The determination of the elastic field of an ellipsoidal inclusion, and related problems. (n.d.). http://rspa.royalsocietypublishing.org/
Wals, J. B. (1965). The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. In •ANUA•Y (Vol. 70, Issue 2).
Wang, M., Yu, Z., Jin, Y., & Shao, J. (2020). Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. https://www.sciencedirect.com/science/article/pii/S0093641320301403
Wang, Y., Zhao, L., Han, D. H., Mitra, A., Li, H., & Aldin, S. (2021). Anisotropic dynamic and static mechanical properties of organic-rich shale: The influence of stress. Geophysics, 86(2), C51–C63. https://doi.org/10.1190/geo2020-0010.1
Wang, Z., & Gelius, L. J. (2010). Electric and elastic properties of rock samples: A unified measurement approach. Petroleum Geoscience, 16(2), 171–183. https://doi.org/10.1144/1354-079309-013
Xu, D., Han, T., Liu, S., & Fu, L. Y. (2020). Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks. Geophysics, 85(6), MR325–MR340. https://doi.org/10.1190/geo2019-0678.1
Xu, S., Ben-Zion, Y., Ampuero, J. P., & Lyakhovsky, V. (2015). Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion. Pure and Applied Geophysics, 172(5), 1243–1267. https://doi.org/10.1007/s00024-014-0923-7
Yan, F., & Han, D. H. (2018). Application of the power mean to modeling the elastic properties of reservoir rocks. Journal of Geophysics and Engineering, 15(6), 2686–2694. https://doi.org/10.1088/1742-2140/aae3be
Yu, D., Liu, E., Xiang, B., He, Y., Luo, F., & He, C. (2023). A micro–macro constitutive model for rock considering breakage effects. International Journal of Mining Science and Technology, 33(2), 173–184. https://doi.org/10.1016/j.ijmst.2022.09.027
Zamiran, S., Rafieepour, S., & Ostadhassan, M. (2018). A geomechanical study of Bakken Formation considering the anisotropic behavior of shale layers. Journal of Petroleum Science and Engineering, 165, 567–574. https://doi.org/10.1016/j.petrol.2018.02.059
Zhao, J., Qin, X., Wang, J., & He, M. (2020). Effect of mg(Ii) and na(i) doping on the electronic structure and mechanical properties of kaolinite. Minerals, 10(4). https://doi.org/10.3390/min10040368
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/30484/4/Bibliometria%20de%20los%20antecedentes%20de%20las%20propiedades%20El%c3%a1sticas%2c%20deformaci%c3%b3n%20de%20las%20rocas%20mediante%20la%20metodolog%c3%ada%20del%20%c3%a1rbol%20de%20la%20ciencia.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/30484/5/Autorizaci%c3%b3n%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/30484/3/license.txt
http://repository.unilibre.edu.co/bitstream/10901/30484/1/Autorizaci%c3%b3n%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf
http://repository.unilibre.edu.co/bitstream/10901/30484/2/Bibliometria%20de%20los%20antecedentes%20de%20las%20propiedades%20El%c3%a1sticas%2c%20deformaci%c3%b3n%20de%20las%20rocas%20mediante%20la%20metodolog%c3%ada%20del%20%c3%a1rbol%20de%20la%20ciencia.pdf
bitstream.checksum.fl_str_mv efe0db8337eed1bc38b8bed73d6bbf4d
1e01b0c017660c8eeb4f7b4bbe91b5fb
8a4605be74aa9ea9d79846c1fba20a33
b591b0b33498bc947c55bd0ea2748af2
10a5e11d45357f072e8032572292f8bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1831929212671361024
spelling Alzate Buitrago, AlejandroCardenas Torres, Mauricio AndrésPereira2025-01-24T14:39:11Z2025-01-24T14:39:11Z2025-01-16https://hdl.handle.net/10901/30484El artículo se enfoca en las propiedades elásticas y las deformaciones de las rocas como lo son las fracturas o grietas, las propiedades elásticas determina la capacidad de las rocas para deformarse reversiblemente bajo la aplicación de una carga externa. Estas propiedades se describen típicamente mediante parámetros como el módulo de elasticidad, la relación de Poisson y la resistencia a la compresión. El módulo de elasticidad indica la rigidez de la roca y su capacidad para recuperar su forma original, la relación de Poisson describe cómo una roca se expande y comprende también la resistencia a la compresión es la capacidad de la roca para resistir la deformación bajo cargas de compresión. Las deformaciones que son los cambios ya sea en su forma, el tamaño o volumen de las rocas debido a la aplicación de fuerzas externas. En las rocas pueden encontrar y experimentar diferentes tipos de deformación, como: la elasticidad (deformación reversible), la plasticidad (deformación permanente) y la fractura (rotura). Conocer lo anteriormente mencionado nos permite tener una visión más amplia acerca de las rocas y asimismo entender la importancia que representa para la geotecnia, geología y la ingeniería civil dado que nos permite construir infraestructuras, presas, túneles, y cimientos. Este articulo destaca la importancia de las propiedades elásticas, deformaciones y grietas que presentan los macizos rocosos para brindar conocimientos y aportes en áreas como la geotecnia, geología y la ingeniería civil y con ayuda del modelo Tree of Science (ToS) y Web of Science (WoS) para presentar un amplio concepto desde los inicios y e ir unificando los desarrollos científicos, ideas para comprender de manera más adecuada la estructura de esta área de la ingeniería y Comprender cómo responden las rocas a las fuerzas aplicadas es fundamental para garantizar la estabilidad y seguridad de las estructuras construidas sobre ellas. Tree of Science (ToS) como apoyo para estructurar el tema y los conocimientos científicos de los investigadores referenciándolo como un árbol para comprender el proceso de crecimiento y evolutivo con el paso del tiempo. Actualmente empleando las tecnologías, empleadas para la búsqueda y recopilación de datos, monitoreo y análisis numéricos o matemáticos para las simulaciones. También herramienta como Web of Science (WoS) que es colección de bases de datos de referencias bibliográficas y citas de publicaciones periódicas que recogen información desde 1900 a la actualidad, que permite conocer las investigaciones y poder estructurar desde las bases o primeras ideas el conocimiento y como va progresando.Universidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería CivilThe article focuses on the elastic properties and deformations of rocks, such as fractures or cracks. Elastic properties determine the rocks' ability to deform reversibly under the application of an external load. These properties are typically described using parameters such as the elasticity modulus, Poisson's ratio, and compressive strength. The elasticity modulus indicates the rock's stiffness and its capacity to recover its original shape, while Poisson's ratio describes how a rock expands. Compressive strength is the rock's capacity to resist deformation under compressive loads. Deformations, which are changes in the shape, size, or volume of rocks due to the application of external forces, can manifest in various forms such as elasticity (reversible deformation), plasticity (permanent deformation), and fracture (breakage). Understanding the aforementioned allows for a broader perspective on rocks and underscores their importance in geotechnics, geology, and civil engineering, enabling the construction of infrastructure, dams, tunnels, and foundations. This article highlights the significance of elastic properties, deformations, and cracks in rock masses to provide knowledge and contributions to areas like geotechnics, geology, and civil engineering. It utilizes the Tree of Science (ToS) and Web of Science (WoS) models to present a comprehensive concept from the beginning, unifying scientific developments and ideas for a better understanding of the structure of this engineering area. Understanding how rocks respond to applied forces is fundamental to ensuring the stability and safety of structures built upon them. The Tree of Science (ToS) serves as support to structure the topic and the scientific knowledge of researchers, referencing it as a tree to comprehend the growth and evolution process over time. Currently, technologies are employed for data search and collection, monitoring, and numerical or mathematical analysis for simulations. Also, tools like Web of Science (WoS), a collection of bibliographic references and citations from periodicals since 1900, aid in understanding research progress, allowing the structuring of knowledge from foundational ideas.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Deformación de las rocasFracturasGeologíaGeotecniaGrietasIngeniería civilPropiedades elástica de las rocasTree of Science (ToS)Web of ScienceRock deformationFracturesGeologyGeotechnicsCracksCivil engineeringElastic properties of rocksTree of Science (ToS)Web of ScienceBibliometría de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante ToSBibliometrics of the Background of Elastic Properties and Rock Deformation through ToSTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fBerthelot, J. M., & Robert, J. L. (n.d.). Damage evaluation of concrete test specimens related to failure analysis.Birch, F. (1960). The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 11. In Journal of Geophysical Research (Vol. 65, Issue 4).Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Paton, G., & Escalona, A. (2016). Seismic characterisation of fault damage in 3D using mechanical and seismic modelling. Marine and Petroleum Geology, 77, 973–990. https://doi.org/10.1016/j.marpetgeo.2016.08.002Czarny, R., Malinowski, M., Chamarczuk, M., Ćwiękała, M., Olechowski, S., Isakow, Z., & Sierodzki, P. (2021). Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences, 148. https://doi.org/10.1016/j.ijrmms.2021.104937David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(7). https://doi.org/10.1029/2012JB009195Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). of fault-related rocks, and implications for hydraulic structure of fault zones. In Journal of Structural Geology (Vol. 19, Issue 11).Feng, X. T., Pan, P. Z., & Zhou, H. (2006). Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1091–1108. https://doi.org/10.1016/j.ijrmms.2006.02.006Glubokovskikh, S., Gurevich, B., & Saxena, N. (2016). A dual-porosity scheme for fluid/solid substitution. Geophysical Prospecting, 64(4), 1112–1121. https://doi.org/10.1111/1365-2478.12389Gómez Barreiro, J., Wenk, H. R., & Vogel, S. (2015). Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada). Journal of Structural Geology, 71, 100–111. https://doi.org/10.1016/j.jsg.2014.07.021Gong, F., Di, B., Zeng, L., Wei, J., Cheng, J., & Gao, L. (2021). The elastic properties and anisotropy of artificial compacted clay samples. Geophysics, 86(1), MR1–MR15. https://doi.org/10.1190/geo2019-0608.1Guo, J., Han, T., Fu, L. Y., Xu, D., & Fang, X. (2019). Effective Elastic Properties of Rocks With Transversely Isotropic Background Permeated by Aligned Penny-Shaped Cracks. Journal of Geophysical Research: Solid Earth, 124(1), 400–424. https://doi.org/10.1029/2018JB016412Hamiel, Y., Lyakhovsky, V., Stanchits, S., Dresen, G., & Ben-Zion, Y. (2009). Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophysical Journal International, 178(2), 901–909. https://doi.org/10.1111/j.1365-246X.2009.04200.xHill H H, B. R. (1932). 138,330 ; 1932 b. In Dokl., Akad. Nauk, SSSR (Vol. 129).Hossain, M. M., Arns, J. Y., Liang, Z., Chen, Z., & Arns, C. H. (2019). Humidity Effects on Effective Elastic Properties of Rock: An Integrated Experimental and Numerical Study. Journal of Geophysical Research: Solid Earth, 124(8), 7771–7791. https://doi.org/10.1029/2019JB017672Jésus, J., Sobrinho, S., De Figueiredo, J. J. S., Lima, R. L., Santos, L. K., & Nascimento, M. J. (2018). STUDY OF ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE IN ANISOTROPIC CRACKED MEDIA: AN ULTRASONIC APPROACH 326 ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE. In Revista Brasileira de Geofísica (Vol. 36, Issue 3). www.scielo.br/rbgKenigsberg, A. R., Rivière, J., Marone, C., & Saffer, D. M. (2020). A method for determining absolute ultrasonic velocities and elastic properties of experimental shear zones. International Journal of Rock Mechanics and Mining Sciences, 130. https://doi.org/10.1016/j.ijrmms.2020.104306Khajehpour Tadavani, S., Poduska, K. M., Malcolm, A. E., & Melnikov, A. (2020). A non-linear elastic approach to study the effect of ambient humidity on sandstone. Journal of Applied Physics, 128(24). https://doi.org/10.1063/5.0025936Lebedev, T. S., Korchin, V. A., & Burtny, P. A. (1992). Geophysical applications of the results of a pt-study of elastic properties of rocks. In J. Geodynaraics (Vol. 15, Issue 3•4).Lee, A. L., Walker, A. M., Lloyd, G. E., & Torvela, T. (2017). Modeling the impact of melt on seismic properties during mountain building. Geochemistry, Geophysics, Geosystems, 18(3), 1090–1110. https://doi.org/10.1002/2016GC006705Levykin, A. I., & Parfenov, V. D. (1975). Plastic deformations and longitudinal wave velocities in barite at high pressures. International Geology Review, 17(3), 368–372. https://doi.org/10.1080/00206817509471706Li, H., Lai, B., & Liu, H. (2019). Determination of Tensile Elastic Parameters from Brazilian Tensile Test: Theory and Experiments. Rock Mechanics and Rock Engineering, 52(8), 2551–2568. https://doi.org/10.1007/s00603-019-1738-8Li, S., Wang, W., Su, Y., & Guo, J. (2023). Effective elastic properties and S-wave anisotropy for rocks containing any oriented penny-shaped cracks in transversely isotropic background. Geophysics, 88(3), MR65–MR81. https://doi.org/10.1190/geo2022-0388.1Li, T., Wang, R., Wang, Z., & Wang, Y. (2016). Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks. Geophysics, 81(4), D441–D451. https://doi.org/10.1190/GEO2015-0661.1Li, W., Rezakhani, R., Jin, C., Zhou, X., & Cusatis, G. (2017). A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. International Journal for Numerical and Analytical Methods in Geomechanics, 41(14), 1494–1522. https://doi.org/10.1002/nag.2684Liu, C., Pollard, D. D., & Shi, B. (2013). Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research: Solid Earth, 118(1), 71–82. https://doi.org/10.1029/2012JB009615Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 38–47. https://doi.org/10.1088/1742-2132/2/1/006Lyakhovsky, V., & Ben-zion, Y. (2008). Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophysical Journal International, 172(2), 651–662. https://doi.org/10.1111/j.1365-246X.2007.03652.xMarkov, A., Ronquillo Jarillo, G., & Markov, M. (2014). Elastic properties of rocks containing oriented systems of ellipsoidal inclusions. Journal of Applied Geophysics, 103, 114–120. https://doi.org/10.1016/j.jappgeo.2014.01.010Mavko, G. (1990). Introduction to Rock Physics.O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412Ostrovsky, L., Lebedev, A., Riviere, J., Shokouhi, P., Wu, C., Stuber Geesey, M. A., & Johnson, P. A. (2019). Long-Time Relaxation Induced by Dynamic Forcing in Geomaterials. Journal of Geophysical Research: Solid Earth, 124(5), 5003–5013. https://doi.org/10.1029/2018JB017076Pan, P., Feng, X., & Zhou, H. (2008). Research on the effect of loading conditions on the strength and deformation behaviors of rocks. In International Journal of Modern Physics B (Vol. 22). www.worldscientific.comPimienta, L., Fortin, J., & Guéguen, Y. (2017). New method for measuring compressibility and poroelasticity coefficients in porous and permeable rocks. Journal of Geophysical Research: Solid Earth, 122(4), 2670–2689. https://doi.org/10.1002/2016JB013791Pouragha, M., Eghbalian, M., & Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics and Mining Sciences, 125. https://doi.org/10.1016/j.ijrmms.2019.104154Prada, M., Galvez, P., Ampuero, J. P., Sallarès, V., Sánchez-Linares, C., Macías, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021JB022328Rivière, J., Pimienta, L., Scuderi, M., Candela, T., Shokouhi, P., Fortin, J., Schubnel, A., Marone, C., & Johnson, P. A. (2016). Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone. Geophysical Research Letters, 43(7), 3226–3236. https://doi.org/10.1002/2016GL068061Roche, V., Homberg, C., David, C., & Rocher, M. (2014). Normal faults, layering and elastic properties of rocks. Tectonophysics, 622, 96–109. https://doi.org/10.1016/j.tecto.2014.03.006Rozhko, A. Y. (2020). Effects of pore fluids on quasi-static shear modulus caused by pore-scale interfacial phenomena. Geophysical Prospecting, 68(2), 631–656. https://doi.org/10.1111/1365-2478.12864Rudnicki, J. W. (n.d.). Conditions for compaction and shear bands in a transversely isotropic material q. www.elsevier.com/locate/ijsolstrSayers, C. M. (2012). The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78(2), D65–D74. https://doi.org/10.1190/GEO2012-0309.1Sayers, C. M., & den Boer, L. D. (2018). The Elastic Properties of Clay in Shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965–5974. https://doi.org/10.1029/2018JB015600Sayers, C. M., & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of brittle rocks. In Journal Of Geophysical Research: Vol. tOO (Issue B3).Segall, P., & Fitzgerald, S. D. (1998). A note on induced stress changes in hydrocarbon and geothermal reservoirs. In Tectonophysics (Vol. 289).Shen, L. W., & Playter, T. (2021). Determining the transverse isotropic rocks’ static elastic moduli with cylindrical plugs: Shortfalls, challenges, and expected outcomes. Geophysics, 86(3), W31–W46. https://doi.org/10.1190/geo2020-0439.1Singh, R., Rai, C., & Sondergeld, C. (n.d.). Pressure dependence of elastic wave velocities in sandstones. http://library.seg.org/Sirdesai, N. N., Gupta, T., Singh, T. N., & Ranjith, P. G. (2018). Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains. Construction and Building Materials, 168, 346–361. https://doi.org/10.1016/j.conbuildmat.2018.02.180Suleymanov, V., El-Husseiny, A., Glatz, G., & Dvorkin, J. (2023). Rock physics and machine learning comparison: elastic properties prediction and scale dependency. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1095252The determination of the elastic field of an ellipsoidal inclusion, and related problems. (n.d.). http://rspa.royalsocietypublishing.org/Wals, J. B. (1965). The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. In •ANUA•Y (Vol. 70, Issue 2).Wang, M., Yu, Z., Jin, Y., & Shao, J. (2020). Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. https://www.sciencedirect.com/science/article/pii/S0093641320301403Wang, Y., Zhao, L., Han, D. H., Mitra, A., Li, H., & Aldin, S. (2021). Anisotropic dynamic and static mechanical properties of organic-rich shale: The influence of stress. Geophysics, 86(2), C51–C63. https://doi.org/10.1190/geo2020-0010.1Wang, Z., & Gelius, L. J. (2010). Electric and elastic properties of rock samples: A unified measurement approach. Petroleum Geoscience, 16(2), 171–183. https://doi.org/10.1144/1354-079309-013Xu, D., Han, T., Liu, S., & Fu, L. Y. (2020). Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks. Geophysics, 85(6), MR325–MR340. https://doi.org/10.1190/geo2019-0678.1Xu, S., Ben-Zion, Y., Ampuero, J. P., & Lyakhovsky, V. (2015). Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion. Pure and Applied Geophysics, 172(5), 1243–1267. https://doi.org/10.1007/s00024-014-0923-7Yan, F., & Han, D. H. (2018). Application of the power mean to modeling the elastic properties of reservoir rocks. Journal of Geophysics and Engineering, 15(6), 2686–2694. https://doi.org/10.1088/1742-2140/aae3beYu, D., Liu, E., Xiang, B., He, Y., Luo, F., & He, C. (2023). A micro–macro constitutive model for rock considering breakage effects. International Journal of Mining Science and Technology, 33(2), 173–184. https://doi.org/10.1016/j.ijmst.2022.09.027Zamiran, S., Rafieepour, S., & Ostadhassan, M. (2018). A geomechanical study of Bakken Formation considering the anisotropic behavior of shale layers. Journal of Petroleum Science and Engineering, 165, 567–574. https://doi.org/10.1016/j.petrol.2018.02.059Zhao, J., Qin, X., Wang, J., & He, M. (2020). Effect of mg(Ii) and na(i) doping on the electronic structure and mechanical properties of kaolinite. Minerals, 10(4). https://doi.org/10.3390/min10040368THUMBNAILBibliometria de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante la metodología del árbol de la ciencia.pdf.jpgBibliometria de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante la metodología del árbol de la ciencia.pdf.jpgIM Thumbnailimage/jpeg22526http://repository.unilibre.edu.co/bitstream/10901/30484/4/Bibliometria%20de%20los%20antecedentes%20de%20las%20propiedades%20El%c3%a1sticas%2c%20deformaci%c3%b3n%20de%20las%20rocas%20mediante%20la%20metodolog%c3%ada%20del%20%c3%a1rbol%20de%20la%20ciencia.pdf.jpgefe0db8337eed1bc38b8bed73d6bbf4dMD54Autorización publicación de trabajos en formato digital(V5).pdf.jpgAutorización publicación de trabajos en formato digital(V5).pdf.jpgIM Thumbnailimage/jpeg28034http://repository.unilibre.edu.co/bitstream/10901/30484/5/Autorizaci%c3%b3n%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg1e01b0c017660c8eeb4f7b4bbe91b5fbMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/30484/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAutorización publicación de trabajos en formato digital(V5).pdfAutorización publicación de trabajos en formato digital(V5).pdfapplication/pdf1279980http://repository.unilibre.edu.co/bitstream/10901/30484/1/Autorizaci%c3%b3n%20%20publicacio%cc%81n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdfb591b0b33498bc947c55bd0ea2748af2MD51Bibliometria de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante la metodología del árbol de la ciencia.pdfBibliometria de los antecedentes de las propiedades Elásticas, deformación de las rocas mediante la metodología del árbol de la ciencia.pdfapplication/pdf480468http://repository.unilibre.edu.co/bitstream/10901/30484/2/Bibliometria%20de%20los%20antecedentes%20de%20las%20propiedades%20El%c3%a1sticas%2c%20deformaci%c3%b3n%20de%20las%20rocas%20mediante%20la%20metodolog%c3%ada%20del%20%c3%a1rbol%20de%20la%20ciencia.pdf10a5e11d45357f072e8032572292f8bcMD5210901/30484oai:repository.unilibre.edu.co:10901/304842025-01-27 06:00:56.239Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=