Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México

El creciente aumento en la temperatura a nivel global ha hecho que se tengan que buscar alternativas sostenibles para poder mitigar el impacto de los gases de efecto invernadero. El metano es conocido por ser el segundo gas de efecto invernadero con mayor impacto a nivel global, además, se encuentra...

Full description

Autores:
Guzmán Viloria, Fabio Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/31522
Acceso en línea:
https://hdl.handle.net/10901/31522
Palabra clave:
Metagenómas
Metilótrofos
Genomas ensamblados de metagenomas
Metagenomes
Methylotrophs
Metagenome-assembled genomes
Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_0c223b27eb07c77f8794995e05dce22e
oai_identifier_str oai:repository.unilibre.edu.co:10901/31522
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
spellingShingle Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
Metagenómas
Metilótrofos
Genomas ensamblados de metagenomas
Metagenomes
Methylotrophs
Metagenome-assembled genomes
Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title_short Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title_full Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title_fullStr Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title_full_unstemmed Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
title_sort Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
dc.creator.fl_str_mv Guzmán Viloria, Fabio Andrés
dc.contributor.advisor.none.fl_str_mv Tito David, Peña Montenegro
Juan David, Sanchez Calderón
dc.contributor.author.none.fl_str_mv Guzmán Viloria, Fabio Andrés
dc.subject.spa.fl_str_mv Metagenómas
Metilótrofos
Genomas ensamblados de metagenomas
topic Metagenómas
Metilótrofos
Genomas ensamblados de metagenomas
Metagenomes
Methylotrophs
Metagenome-assembled genomes
Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
dc.subject.subjectenglish.spa.fl_str_mv Metagenomes
Methylotrophs
Metagenome-assembled genomes
dc.subject.lemb.spa.fl_str_mv Perspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de México
description El creciente aumento en la temperatura a nivel global ha hecho que se tengan que buscar alternativas sostenibles para poder mitigar el impacto de los gases de efecto invernadero. El metano es conocido por ser el segundo gas de efecto invernadero con mayor impacto a nivel global, además, se encuentra categorizado como uno de los llamados compuestos C1. Dichos compuestos son de difícil asimilación y utilización por microorganismos que no cuenten con las enzimas necesarias. Afortunadamente, existe un grupo de microorganismos conocidos como metilótrofos, capaces de utilizar compuestos carentes de enlaces carbono-carbono (C1). Sin embargo, su estudio se ha visto comprometido por su dificultad a la hora de ser aislados. En la presente tesis se ensamblaron genomas con la finalidad de reportar microorganismos metilótrofos en el Golfo de México, un ambiente con alta concentración de compuestos C1. Adicionalmente, se consolidó una base de datos con genes marcadores de microorganismos en contextos extremos y un diccionario de vocabulario restringido para la notación taxonómica de genomas ensamblados de metagenomas (MAGs). Finalmente, fueron obtenidos un diccionario de notación taxonómica con lenguaje restringido, una base de datos curada de genes marcadores y MAGs de microorganismos del Golfo de México, se destaca un grupo que podría ser indicativo de actividad metilótrofa.
publishDate 2024
dc.date.created.none.fl_str_mv 2024-11-27
dc.date.accessioned.none.fl_str_mv 2025-07-17T15:44:00Z
dc.date.available.none.fl_str_mv 2025-07-17T15:44:00Z
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/31522
url https://hdl.handle.net/10901/31522
dc.relation.references.spa.fl_str_mv Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ Chem Lett 18, 2069–2094 (2020).
Pratt, C. & Tate, K. Mitigating methane: emerging technologies to combat climate change’s second leading contributor. Environ Sci Technol 52, 6084–6097 (2018).
Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth Sci Rev 57, 177–210 (2002).
Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).
Chistoserdova, L. Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99, 5763–5779 (2015).
Kumar, M., Tomar, R. S., Lade, H. & Paul, D. Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32, 1–9 (2016).
Epstein, S. S. The phenomenon of microbial uncultivability. Curr Opin Microbiol 16, 636–642 (2013).
Murrell, J. C. & Radajewski, S. Cultivation-independent techniques for studying methanotroph ecology. Res Microbiol 151, 807–814 (2000).
Setubal, J. C. Metagenome-assembled genomes: concepts, analogies, and challenges. Biophys Rev 13, 905–909 (2021).
Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).
Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).
Udara Willhelm Abeydeera, L. H., Wadu Mesthrige, J. & Samarasinghalage, T. I. Global research on carbon emissions: A scientometric review. Sustainability 11, 3972 (2019).
Jeffry, L. et al. Greenhouse gases utilization: A review. Fuel 301, 121017 (2021).
Houghton, J. Global warming. Reports on progress in physics 68, 1343 (2005).
Shakoor, A. et al. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research 27, 38513–38536 (2020).
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (1979) 355, eaai9214 (2017).
Malhi, G. S., Kaur, M. & Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 1318 (2021).
Organización de las Naciones Unidas. Informe de Los Objetivos de Desarrollo Sostenible 2023: Edición Especial. (2023).
Masson-Delmotte, V. et al. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. (Cambridge University Press, 2022).
Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 47, 1895–1907 (2019).
Kumar, M. et al. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. Biocatal Agric Biotechnol 33, 102005 (2021).
Picone, N. et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 12, 666929 (2021).
Nazir, R. & Zaffar, R. Climate Change Extenuation by Greenhouse Gas Quenching Microflora. Microbiomes and the Global Climate Change 31–41 (2021).
Kumar, M., Saxena, R., Tomar, R. S., Rai, P. K. & Paul, D. Role of methylotrophic bacteria in climate change mitigation. Microbes for climate resilient agriculture 149–164 (2018).
Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63, 477–499 (2009).
Chistoserdova, L. Modularity of methylotrophy, revisited. Environ Microbiol 13, 2603–2622 (2011).
Dedysh, S. N., Knief, C. & Dunfield, P. F. Methylocella species are facultatively methanotrophic. J Bacteriol 187, 4665–4670 (2005).
Dedysh, S. N. & Dunfield, P. F. Facultative and obligate methanotrophs: how to identify and differentiate them. in Methods in enzymology vol. 495 31–44 (Elsevier, 2011).
Bajpai, A. et al. Prospect of pink pigmented facultative methylotrophs in mitigating abiotic stress and climate change. J Basic Microbiol 62, 889–899 (2022).
Nazir, R. & Zaffar, R. Climate Change Extenuation by Greenhouse Gas Quenching Microflora. Microbiomes and the Global Climate Change 31–41 (2021).
Masood, F., Ahmad, S. & Malik, A. Role of methanotrophs in mitigating global warming. Microbiomes and the Global Climate Change 43–60 (2021).
Rani, V. et al. Synergistic interaction of methanotrophs and methylotrophs in regulating methane emission. Microbial technology for sustainable environment 419–437 (2021).
Rodriguez-r, L. M. & Konstantinidis, K. T. Estimating coverage in metagenomic data sets and why it matters. ISME J 8, 2349–2351 (2014).
Hiraoka, S., Yang, C. & Iwasaki, W. Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31, 204–212 (2016).
Streit, W. R. & Schmitz, R. A. Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7, 492–498 (2004).
Singh, J. et al. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnology Journal: Healthcare Nutrition Technology 4, 480–494 (2009).
Lapidus, A. L. & Korobeynikov, A. I. Metagenomic data assembly–the way of decoding unknown microorganisms. Front Microbiol 12, 613791 (2021).
Taş, N. et al. Metagenomic tools in microbial ecology research. Curr Opin Biotechnol 67, 184–191 (2021).
Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol Oceanogr 65, S2–S20 (2020).
Hug, L. A. et al. A new view of the tree of life. Nat Microbiol 1, 1–6 (2016).
Yang, C. et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 19, 6301–6314 (2021).
Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).
Grettenberger, C. L. & Hamilton, T. L. Metagenome-assembled genomes of novel taxa from an acid mine drainage environment. Appl Environ Microbiol 87, e00772-21 (2021).
Dueholm, M. K. D. et al. Genetic potential for exopolysaccharide synthesis in activated sludge bacteria uncovered by genome-resolved metagenomics. Water Res 229, 119485 (2023).
Liu, Y.-F. et al. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’(JS1) inferred from genomics. ISME J 13, 2377–2390 (2019).
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35, 725–731 (2017).
Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31, 533–538 (2013).
Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2, e00569 (2013).
Chistoserdova, L. Methanotrophy: An evolving field. Methane Biocatalysis: Paving the Way to Sustainability 1–15 (2018).
Chistoserdova, L. Methanotrophy: An evolving field. Methane Biocatalysis: Paving the Way to Sustainability 1–15 (2018).
Tuyishime, P. & Sinumvayo, J. P. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol 36, 118 (2020).
Matsen, J. B., Yang, S., Stein, L. Y., Beck, D. A. & Kalyuzhanaya, M. G. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4, 43697 (2013).
Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 17, 219–232 (2019).
Ho, A., Kwon, M., Horn, M. A. & Yoon, S. Environmental applications of methanotrophs. Methanotrophs: Microbiology Fundamentals and Biotechnological Applications 231–255 (2019).
Hakemian, A. S. & Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007).
Dumont, M. G. & Murrell, J. C. Community‐level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397, 413–427 (2005).
Sirajuddin, S. & Rosenzweig, A. C. Enzymatic oxidation of methane. Biochemistry 54, 2283–2294 (2015).
Jones, J. C., Banerjee, R., Shi, K., Semonis, M. M., Aihara, H., Pomerantz, W. C., & Lipscomb, J. D. (2021). Soluble methane monooxygenase component interactions monitored by 19F NMR. Biochemistry, 60(25), 1995-2010.
Ho, A., Kwon, M., Horn, M. A. & Yoon, S. Environmental applications of methanotrophs. Methanotrophs: Microbiology Fundamentals and Biotechnological Applications 231–255 (2019).
Samanta, D. et al. Genetical and Biochemical Basis of Methane Monooxygenases of Methylosinus trichosporium OB3b in Response to Copper. Methane 3, 103–121 (2024).
Taubert, M. et al. Communal metabolism by Methylococcaceae and Methylophilaceae is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ Microbiol 21, 3780–3795 (2019).
van Grinsven, S., Sinninghe Damsté, J. S., Harrison, J., Polerecky, L. & Villanueva, L. Nitrate promotes the transfer of methane‐derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr 66, 878–891 (2021).
Gwak, J. H., Awala, S. I., Nguyen, N. L., Yu, W. J., Yang, H. Y., von Bergen, M., ... & Rhee, S. K. (2022). Sulfur and methane oxidation by a single microorganism. Proceedings of the National Academy of Sciences, 119(32), e2114799119.
Picone, N. et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 12, 666929 (2021).
Sharon, I. & Banfield, J. F. Genomes from metagenomics. Science (1979) 342, 1057–1058 (2013).
Ghurye, J. S., Cepeda-Espinoza, V. & Pop, M. Focus: microbiome: metagenomic assembly: overview, challenges and applications. Yale J Biol Med 89, 353 (2016).
Suzuki, Y. & Myers, G. Accurate k-mer classification using read profiles. in 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022).
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
Pérez-Cobas, A. E., Gomez-Valero, L. & Buchrieser, C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 6, e000409 (2020).
Sangwan, N., Xia, F. & Gilbert, J. A. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4, 1–11 (2016).
Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief Bioinform 23, bbac431 (2022).
Haryono, M. A. S. et al. Recovery of high quality metagenome-assembled genomes from full-scale activated sludge microbial communities in a tropical climate using longitudinal metagenome sampling. Front Microbiol 13: 869135. Preprint at (2022).
Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 12, 2009 (2021).
Zhu, J. et al. Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa. Genomics Proteomics Bioinformatics 20, 246–259 (2022).
Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev 5, 481–499 (2018).
Li, M. et al. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun 6, 8933 (2015).
Wang, L. Microbial control of the carbon cycle in the ocean. Natl Sci Rev 5, 287–291 (2018).
Sun, J. et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6, e23973 (2011).
Halsey, K. H., Carter, A. E. & Giovannoni, S. J. Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol 14, 630–640 (2012).
Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar Pollut Bull 73, 129–143 (2013).
Hu, L., Yvon‐Lewis, S. A., Kessler, J. D. & MacDonald, I. R. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico. J Geophys Res Oceans 117, (2012).
Rakowski, C. V et al. Methane and microbial dynamics in the Gulf of Mexico water column. Front Mar Sci 2, 69 (2015).
Zhuang, G., Peña‐Montenegro, T. D., Montgomery, A., Hunter, K. S. & Joye, S. B. Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling. Environ Microbiol 20, 4543–4554 (2018).
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).
Kingsford, C., Schatz, M. C. & Pop, M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11, 1–11 (2010).
Paszkiewicz, K. & Studholme, D. J. De novo assembly of short sequence reads. Brief Bioinform 11, 457–472 (2010).
Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31, 533–538 (2013).
Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform 20, 1140–1150 (2019).
Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37, (2019).
Lin, L. et al. Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. ISME J 17, 172–184 (2023).
Xie, F., Xu, L., Wang, Y. & Mao, S. Metagenomic sequencing reveals that high-grain feeding alters the composition and metabolism of cecal microbiota and induces cecal mucosal injury in sheep. mSystems 6, 10–1128 (2021).
Nelkner, J. et al. Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes (Basel) 10, 424 (2019).
Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews 68, 669–685 (2004).
Dhamodharan, R. & Rajasekar, A. Isolation and characterization of methylotrophic bacteria from Western Ghats. Int J Eng Tech Res 2, 1752–1756 (2013).
Zhao, D. et al. Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea. ISME J 18, wrad033 (2024).
von Arx, J. N. et al. Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic. Nat Commun 14, 6529 (2023).
Orata, F. D., Meier-Kolthoff, J. P., Sauvageau, D. & Stein, L. Y. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 9, 3162 (2018).
Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).
Toulza, E., Tagliabue, A., Blain, S. & Piganeau, G. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes. PLoS One 7, e30931 (2012).
Gwak, J.-H. et al. Sulfur and methane oxidation by a single microorganism. Proceedings of the National Academy of Sciences 119, e2114799119 (2022).
Kop, L. F. M., Koch, H., Jetten, M. S. M., Daims, H. & Lücker, S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME communications 4, ycad017 (2024).
Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67, 2873–2882 (2001).
Schmitz, R. A. et al. Simultaneous sulfide and methane oxidation by an extremophile. Nat Commun 14, 2974 (2023).
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).
Shaiber, A. & Eren, A. M. Composite metagenome-assembled genomes reduce the quality of public genome repositories. mBio 10, 10–1128 (2019).
Tørresen, O. K. et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 47, 10994–11006 (2019).
Chen, Q. et al. Quality matters: biocuration experts on the impact of duplication and other data quality issues in biological databases. Genomics Proteomics Bioinformatics 18, 91–103 (2020).
Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D. H. & Soo, R. M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J 15, 1879–1892 (2021).
Tripp, H. J. The unique metabolism of SAR11 aquatic bacteria. Journal of Microbiology 51, 147–153 (2013).
Singer, E. et al. Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77, 2763–2771 (2011).
Amin, S. A., Green, D. H., Al Waheeb, D., Gärdes, A. & Carrano, C. J. Iron transport in the genus Marinobacter. Biometals 25, 135–147 (2012).
Barbeau, K., Zhang, G., Live, D. H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124, 378–379 (2002).
Peña-Montenegro, T. D. et al. Species-specific responses of marine bacteria to environmental perturbation. ISME communications 3, 99 (2023).
Gauglitz, J. M., Zhou, H. & Butler, A. A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inorg Biochem 107, 90–95 (2012).
Amin, S. A. et al. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Biometals 25, 181–192 (2012).
Amin, S. A., Green, D. H., Al Waheeb, D., Gärdes, A. & Carrano, C. J. Iron transport in the genus Marinobacter. Biometals 25, 135–147 (2012).
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Barranquilla
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/31522/4/GUZM%c3%81N.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/31522/5/AUTORIZACI%c3%93N%20GUZM%c3%81N.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/31522/3/license.txt
http://repository.unilibre.edu.co/bitstream/10901/31522/1/AUTORIZACI%c3%93N%20GUZM%c3%81N.pdf
http://repository.unilibre.edu.co/bitstream/10901/31522/2/GUZM%c3%81N.pdf
bitstream.checksum.fl_str_mv c24fa2a3d316ed6bd2473ee6f547699c
25ffd4863994847d918fa530961d71bd
8a4605be74aa9ea9d79846c1fba20a33
a770bea3ca6cd96a545a46d402694474
ae8db2113975b5dd2e2beec10f811c8e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1851053893534875648
spelling Tito David, Peña MontenegroJuan David, Sanchez CalderónGuzmán Viloria, Fabio AndrésBarranquilla2025-07-17T15:44:00Z2025-07-17T15:44:00Z2024-11-27https://hdl.handle.net/10901/31522El creciente aumento en la temperatura a nivel global ha hecho que se tengan que buscar alternativas sostenibles para poder mitigar el impacto de los gases de efecto invernadero. El metano es conocido por ser el segundo gas de efecto invernadero con mayor impacto a nivel global, además, se encuentra categorizado como uno de los llamados compuestos C1. Dichos compuestos son de difícil asimilación y utilización por microorganismos que no cuenten con las enzimas necesarias. Afortunadamente, existe un grupo de microorganismos conocidos como metilótrofos, capaces de utilizar compuestos carentes de enlaces carbono-carbono (C1). Sin embargo, su estudio se ha visto comprometido por su dificultad a la hora de ser aislados. En la presente tesis se ensamblaron genomas con la finalidad de reportar microorganismos metilótrofos en el Golfo de México, un ambiente con alta concentración de compuestos C1. Adicionalmente, se consolidó una base de datos con genes marcadores de microorganismos en contextos extremos y un diccionario de vocabulario restringido para la notación taxonómica de genomas ensamblados de metagenomas (MAGs). Finalmente, fueron obtenidos un diccionario de notación taxonómica con lenguaje restringido, una base de datos curada de genes marcadores y MAGs de microorganismos del Golfo de México, se destaca un grupo que podría ser indicativo de actividad metilótrofa.Universidad Libre - Facultad de Ciencias de la Salud, Exactas y Naturales - Programa de MicrobiologíaGlobal temperature increase has led to the need to find sustainable alternatives to mitigate the impact generated by greenhouse gas emissions. Methane is known as the second greenhouse gas with greatest impact globally, moreover, is categorized as one of the so-called C1 compounds. These compounds are difficult to use by microorganisms that do not have the necessary enzymes. Nevertheless, there is a group of microorganisms known as methylotrophs, capable of using compounds lacking carbon-carbon bounds as their sole carbon source. However, their study has been hindered by the challenges associated with their isolation. In this thesis, genomes were assembled with the aim of identifying methylotrophic microorganisms in the Gulf of Mexico, an environmental with high levels of C1 compounds. Additionally, a curated database of maker genes from microorganisms in extreme environments was developed, along with a dictionary for taxonomic annotation of metagenome-assembled genomes (MAGs). Finally, this research obtained a restricted language dictionary for taxonomic annotation, a curated database of marker genes and MAGs of microorganisms from the Gulf of Mexico, highlighting a group that could be a hint of methylotrophic activity.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MetagenómasMetilótrofosGenomas ensamblados de metagenomasMetagenomesMethylotrophsMetagenome-assembled genomesPerspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de MéxicoPerspectivas metagenómicas y taxonómicas de poblaciones metilótrofas del Golfo de MéxicoTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisFawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ Chem Lett 18, 2069–2094 (2020).Pratt, C. & Tate, K. Mitigating methane: emerging technologies to combat climate change’s second leading contributor. Environ Sci Technol 52, 6084–6097 (2018).Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth Sci Rev 57, 177–210 (2002).Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).Chistoserdova, L. Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99, 5763–5779 (2015).Kumar, M., Tomar, R. S., Lade, H. & Paul, D. Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32, 1–9 (2016).Epstein, S. S. The phenomenon of microbial uncultivability. Curr Opin Microbiol 16, 636–642 (2013).Murrell, J. C. & Radajewski, S. Cultivation-independent techniques for studying methanotroph ecology. Res Microbiol 151, 807–814 (2000).Setubal, J. C. Metagenome-assembled genomes: concepts, analogies, and challenges. Biophys Rev 13, 905–909 (2021).Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).Udara Willhelm Abeydeera, L. H., Wadu Mesthrige, J. & Samarasinghalage, T. I. Global research on carbon emissions: A scientometric review. Sustainability 11, 3972 (2019).Jeffry, L. et al. Greenhouse gases utilization: A review. Fuel 301, 121017 (2021).Houghton, J. Global warming. Reports on progress in physics 68, 1343 (2005).Shakoor, A. et al. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research 27, 38513–38536 (2020).Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (1979) 355, eaai9214 (2017).Malhi, G. S., Kaur, M. & Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 1318 (2021).Organización de las Naciones Unidas. Informe de Los Objetivos de Desarrollo Sostenible 2023: Edición Especial. (2023).Masson-Delmotte, V. et al. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. (Cambridge University Press, 2022).Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 47, 1895–1907 (2019).Kumar, M. et al. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. Biocatal Agric Biotechnol 33, 102005 (2021).Picone, N. et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 12, 666929 (2021).Nazir, R. & Zaffar, R. Climate Change Extenuation by Greenhouse Gas Quenching Microflora. Microbiomes and the Global Climate Change 31–41 (2021).Kumar, M., Saxena, R., Tomar, R. S., Rai, P. K. & Paul, D. Role of methylotrophic bacteria in climate change mitigation. Microbes for climate resilient agriculture 149–164 (2018).Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63, 477–499 (2009).Chistoserdova, L. Modularity of methylotrophy, revisited. Environ Microbiol 13, 2603–2622 (2011).Dedysh, S. N., Knief, C. & Dunfield, P. F. Methylocella species are facultatively methanotrophic. J Bacteriol 187, 4665–4670 (2005).Dedysh, S. N. & Dunfield, P. F. Facultative and obligate methanotrophs: how to identify and differentiate them. in Methods in enzymology vol. 495 31–44 (Elsevier, 2011).Bajpai, A. et al. Prospect of pink pigmented facultative methylotrophs in mitigating abiotic stress and climate change. J Basic Microbiol 62, 889–899 (2022).Nazir, R. & Zaffar, R. Climate Change Extenuation by Greenhouse Gas Quenching Microflora. Microbiomes and the Global Climate Change 31–41 (2021).Masood, F., Ahmad, S. & Malik, A. Role of methanotrophs in mitigating global warming. Microbiomes and the Global Climate Change 43–60 (2021).Rani, V. et al. Synergistic interaction of methanotrophs and methylotrophs in regulating methane emission. Microbial technology for sustainable environment 419–437 (2021).Rodriguez-r, L. M. & Konstantinidis, K. T. Estimating coverage in metagenomic data sets and why it matters. ISME J 8, 2349–2351 (2014).Hiraoka, S., Yang, C. & Iwasaki, W. Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31, 204–212 (2016).Streit, W. R. & Schmitz, R. A. Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7, 492–498 (2004).Singh, J. et al. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnology Journal: Healthcare Nutrition Technology 4, 480–494 (2009).Lapidus, A. L. & Korobeynikov, A. I. Metagenomic data assembly–the way of decoding unknown microorganisms. Front Microbiol 12, 613791 (2021).Taş, N. et al. Metagenomic tools in microbial ecology research. Curr Opin Biotechnol 67, 184–191 (2021).Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol Oceanogr 65, S2–S20 (2020).Hug, L. A. et al. A new view of the tree of life. Nat Microbiol 1, 1–6 (2016).Yang, C. et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 19, 6301–6314 (2021).Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).Grettenberger, C. L. & Hamilton, T. L. Metagenome-assembled genomes of novel taxa from an acid mine drainage environment. Appl Environ Microbiol 87, e00772-21 (2021).Dueholm, M. K. D. et al. Genetic potential for exopolysaccharide synthesis in activated sludge bacteria uncovered by genome-resolved metagenomics. Water Res 229, 119485 (2023).Liu, Y.-F. et al. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’(JS1) inferred from genomics. ISME J 13, 2377–2390 (2019).Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35, 725–731 (2017).Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31, 533–538 (2013).Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2, e00569 (2013).Chistoserdova, L. Methanotrophy: An evolving field. Methane Biocatalysis: Paving the Way to Sustainability 1–15 (2018).Chistoserdova, L. Methanotrophy: An evolving field. Methane Biocatalysis: Paving the Way to Sustainability 1–15 (2018).Tuyishime, P. & Sinumvayo, J. P. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol 36, 118 (2020).Matsen, J. B., Yang, S., Stein, L. Y., Beck, D. A. & Kalyuzhanaya, M. G. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4, 43697 (2013).Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 17, 219–232 (2019).Ho, A., Kwon, M., Horn, M. A. & Yoon, S. Environmental applications of methanotrophs. Methanotrophs: Microbiology Fundamentals and Biotechnological Applications 231–255 (2019).Hakemian, A. S. & Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007).Dumont, M. G. & Murrell, J. C. Community‐level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397, 413–427 (2005).Sirajuddin, S. & Rosenzweig, A. C. Enzymatic oxidation of methane. Biochemistry 54, 2283–2294 (2015).Jones, J. C., Banerjee, R., Shi, K., Semonis, M. M., Aihara, H., Pomerantz, W. C., & Lipscomb, J. D. (2021). Soluble methane monooxygenase component interactions monitored by 19F NMR. Biochemistry, 60(25), 1995-2010.Ho, A., Kwon, M., Horn, M. A. & Yoon, S. Environmental applications of methanotrophs. Methanotrophs: Microbiology Fundamentals and Biotechnological Applications 231–255 (2019).Samanta, D. et al. Genetical and Biochemical Basis of Methane Monooxygenases of Methylosinus trichosporium OB3b in Response to Copper. Methane 3, 103–121 (2024).Taubert, M. et al. Communal metabolism by Methylococcaceae and Methylophilaceae is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ Microbiol 21, 3780–3795 (2019).van Grinsven, S., Sinninghe Damsté, J. S., Harrison, J., Polerecky, L. & Villanueva, L. Nitrate promotes the transfer of methane‐derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr 66, 878–891 (2021).Gwak, J. H., Awala, S. I., Nguyen, N. L., Yu, W. J., Yang, H. Y., von Bergen, M., ... & Rhee, S. K. (2022). Sulfur and methane oxidation by a single microorganism. Proceedings of the National Academy of Sciences, 119(32), e2114799119.Picone, N. et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 12, 666929 (2021).Sharon, I. & Banfield, J. F. Genomes from metagenomics. Science (1979) 342, 1057–1058 (2013).Ghurye, J. S., Cepeda-Espinoza, V. & Pop, M. Focus: microbiome: metagenomic assembly: overview, challenges and applications. Yale J Biol Med 89, 353 (2016).Suzuki, Y. & Myers, G. Accurate k-mer classification using read profiles. in 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022).Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).Pérez-Cobas, A. E., Gomez-Valero, L. & Buchrieser, C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 6, e000409 (2020).Sangwan, N., Xia, F. & Gilbert, J. A. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4, 1–11 (2016).Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief Bioinform 23, bbac431 (2022).Haryono, M. A. S. et al. Recovery of high quality metagenome-assembled genomes from full-scale activated sludge microbial communities in a tropical climate using longitudinal metagenome sampling. Front Microbiol 13: 869135. Preprint at (2022).Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 12, 2009 (2021).Zhu, J. et al. Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa. Genomics Proteomics Bioinformatics 20, 246–259 (2022).Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev 5, 481–499 (2018).Li, M. et al. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun 6, 8933 (2015).Wang, L. Microbial control of the carbon cycle in the ocean. Natl Sci Rev 5, 287–291 (2018).Sun, J. et al. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6, e23973 (2011).Halsey, K. H., Carter, A. E. & Giovannoni, S. J. Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol 14, 630–640 (2012).Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar Pollut Bull 73, 129–143 (2013).Hu, L., Yvon‐Lewis, S. A., Kessler, J. D. & MacDonald, I. R. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico. J Geophys Res Oceans 117, (2012).Rakowski, C. V et al. Methane and microbial dynamics in the Gulf of Mexico water column. Front Mar Sci 2, 69 (2015).Zhuang, G., Peña‐Montenegro, T. D., Montgomery, A., Hunter, K. S. & Joye, S. B. Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling. Environ Microbiol 20, 4543–4554 (2018).Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).Kingsford, C., Schatz, M. C. & Pop, M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11, 1–11 (2010).Paszkiewicz, K. & Studholme, D. J. De novo assembly of short sequence reads. Brief Bioinform 11, 457–472 (2010).Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31, 533–538 (2013).Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform 20, 1140–1150 (2019).Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37, (2019).Lin, L. et al. Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. ISME J 17, 172–184 (2023).Xie, F., Xu, L., Wang, Y. & Mao, S. Metagenomic sequencing reveals that high-grain feeding alters the composition and metabolism of cecal microbiota and induces cecal mucosal injury in sheep. mSystems 6, 10–1128 (2021).Nelkner, J. et al. Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes (Basel) 10, 424 (2019).Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews 68, 669–685 (2004).Dhamodharan, R. & Rajasekar, A. Isolation and characterization of methylotrophic bacteria from Western Ghats. Int J Eng Tech Res 2, 1752–1756 (2013).Zhao, D. et al. Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea. ISME J 18, wrad033 (2024).von Arx, J. N. et al. Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic. Nat Commun 14, 6529 (2023).Orata, F. D., Meier-Kolthoff, J. P., Sauvageau, D. & Stein, L. Y. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 9, 3162 (2018).Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).Toulza, E., Tagliabue, A., Blain, S. & Piganeau, G. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes. PLoS One 7, e30931 (2012).Gwak, J.-H. et al. Sulfur and methane oxidation by a single microorganism. Proceedings of the National Academy of Sciences 119, e2114799119 (2022).Kop, L. F. M., Koch, H., Jetten, M. S. M., Daims, H. & Lücker, S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME communications 4, ycad017 (2024).Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67, 2873–2882 (2001).Schmitz, R. A. et al. Simultaneous sulfide and methane oxidation by an extremophile. Nat Commun 14, 2974 (2023).Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).Shaiber, A. & Eren, A. M. Composite metagenome-assembled genomes reduce the quality of public genome repositories. mBio 10, 10–1128 (2019).Tørresen, O. K. et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 47, 10994–11006 (2019).Chen, Q. et al. Quality matters: biocuration experts on the impact of duplication and other data quality issues in biological databases. Genomics Proteomics Bioinformatics 18, 91–103 (2020).Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D. H. & Soo, R. M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J 15, 1879–1892 (2021).Tripp, H. J. The unique metabolism of SAR11 aquatic bacteria. Journal of Microbiology 51, 147–153 (2013).Singer, E. et al. Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77, 2763–2771 (2011).Amin, S. A., Green, D. H., Al Waheeb, D., Gärdes, A. & Carrano, C. J. Iron transport in the genus Marinobacter. Biometals 25, 135–147 (2012).Barbeau, K., Zhang, G., Live, D. H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124, 378–379 (2002).Peña-Montenegro, T. D. et al. Species-specific responses of marine bacteria to environmental perturbation. ISME communications 3, 99 (2023).Gauglitz, J. M., Zhou, H. & Butler, A. A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inorg Biochem 107, 90–95 (2012).Amin, S. A. et al. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Biometals 25, 181–192 (2012).Amin, S. A., Green, D. H., Al Waheeb, D., Gärdes, A. & Carrano, C. J. Iron transport in the genus Marinobacter. Biometals 25, 135–147 (2012).THUMBNAILGUZMÁN.pdf.jpgGUZMÁN.pdf.jpgIM Thumbnailimage/jpeg7909http://repository.unilibre.edu.co/bitstream/10901/31522/4/GUZM%c3%81N.pdf.jpgc24fa2a3d316ed6bd2473ee6f547699cMD54AUTORIZACIÓN GUZMÁN.pdf.jpgAUTORIZACIÓN GUZMÁN.pdf.jpgIM Thumbnailimage/jpeg28676http://repository.unilibre.edu.co/bitstream/10901/31522/5/AUTORIZACI%c3%93N%20GUZM%c3%81N.pdf.jpg25ffd4863994847d918fa530961d71bdMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/31522/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAUTORIZACIÓN GUZMÁN.pdfAUTORIZACIÓN GUZMÁN.pdfapplication/pdf364097http://repository.unilibre.edu.co/bitstream/10901/31522/1/AUTORIZACI%c3%93N%20GUZM%c3%81N.pdfa770bea3ca6cd96a545a46d402694474MD51GUZMÁN.pdfGUZMÁN.pdfapplication/pdf3190247http://repository.unilibre.edu.co/bitstream/10901/31522/2/GUZM%c3%81N.pdfae8db2113975b5dd2e2beec10f811c8eMD5210901/31522oai:repository.unilibre.edu.co:10901/315222025-07-19 06:00:42.05Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=