Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos
En la presente monografía, se resalta la importancia del cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos. Luego de realizar la consulta bibliográfica de artículos de revisión y artículos científicos se determinaron las ven...
- Autores:
-
García Henríquez, Giovanni Arlex
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Francisco de Paula Santander
- Repositorio:
- Repositorio Digital UFPS
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ufps.edu.co:ufps/10394
- Acceso en línea:
- https://repositorio.ufps.edu.co/handle/ufps/10394
- Palabra clave:
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
| id |
RUFPS2_e691a614f4e3a13cb6bb928ee52e9f65 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufps.edu.co:ufps/10394 |
| network_acronym_str |
RUFPS2 |
| network_name_str |
Repositorio Digital UFPS |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| spellingShingle |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title_short |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title_full |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title_fullStr |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title_full_unstemmed |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| title_sort |
Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos |
| dc.creator.fl_str_mv |
García Henríquez, Giovanni Arlex |
| dc.contributor.advisor.none.fl_str_mv |
Roman Hernandez, Paola Andrea |
| dc.contributor.author.none.fl_str_mv |
García Henríquez, Giovanni Arlex |
| dc.contributor.corporatename.none.fl_str_mv |
Universidad Francisco de Paula Santander |
| dc.contributor.jury.none.fl_str_mv |
Suarez Gelvez, John Hermogenes Muñoz Peñaloza, Yaneth Amparo Arismendy Pabón, Ana María |
| description |
En la presente monografía, se resalta la importancia del cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos. Luego de realizar la consulta bibliográfica de artículos de revisión y artículos científicos se determinaron las ventajas y desventajas de la producción de carne in vitro. También se obtuvo la comparación teórica de las distintas formas de producción hasta el momento aplicadas, finalmente se formuló un protocolo para el cultivo y conservación de la carne in vitro a escala piloto. Se establece como base teórica y metodológica para futuras investigaciones. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-23T15:02:04Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_46ec |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.ufps.edu.co/handle/ufps/10394 |
| dc.identifier.local.none.fl_str_mv |
TIB V00112/2024 |
| url |
https://repositorio.ufps.edu.co/handle/ufps/10394 |
| identifier_str_mv |
TIB V00112/2024 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
ANDI cámara de la industria de alimentos. (2019). Industria de Alimentos: Una industria que Innova y Construye un País. Bogota: +Contenido. https://www.andi.com.co/Uploads/ANDIAlimentos.pdf ¿Cuál ha sido el consumo per cápita del cerdo, pollo, pescado y carne desde el 2014? (n.d.). Retrieved March 9, 2023, from https://www.larepublica.co/consumo/cual-ha-sido-elconsumo-per-capita-de-las-carnes-en-2022-3554126 Adhikari, J., Roy, A., Das, A., Ghosh, M., Thomas, S., Sinha, A., Kim, J., & Saha, P. (2021). Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromolecular Bioscience, 21(1), 2000179. https://doi.org/10.1002/MABI.202000179 Aditya, A., & Kim, N. P. (2022). 3D Printing of Meat Following Supercritical Fluid Extraction. Foods, 11(4). https://doi.org/10.3390/FOODS11040554 Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926. https://doi.org/10.1016/J.POLYMER.2021.123926 Ahmed, S., Chauhan, V. M., Ghaemmaghami, A. M., & Aylott, J. W. (2019). New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnology Letters, 41(1). https://doi.org/10.1007/S10529-018-2611-7 Allan, S. J., De Bank, P. A., & Ellis, M. J. (2019). Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor. Frontiers in Sustainable Food Systems, 3, 432843. https://doi.org/10.3389/FSUFS.2019.00044/BIBTEX An, L. (2016). Animal Cloning Drawbacks An-Overview. Journal of Dairy, Veterinary & Animal Research, 3(4). https://doi.org/10.15406/JDVAR.2016.03.00087 Anvari, B. (2021). Grand Challenges and Opportunities in Biophotonics. Frontiers in Photonics, 2. https://doi.org/10.3389/FPHOT.2021.719131 Anvari, B. (2021). Grand Challenges and Opportunities in Biophotonics. Frontiers in Photonics, 2. https://doi.org/10.3389/FPHOT.2021.719131 Arias, R., Velásquez, A., Morales, R., & Alvarado-Gilis, C. (2022). La carne bovina como parte de una dieta saludable. Una revisión. Agro Sur, 50(1), 21–30. https://doi.org/10.4206/AGROSUR.2022.V50N1-03 Ashammakhi, N., Ahadian, S., Xu, C., Montazerian, H., Ko, H., Nasiri, R., Barros, N., & Khademhosseini, A. (2019). Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 1, 100008. https://doi.org/10.1016/J.MTBIO.2019.100008 Balasubramanian, B., Liu, W., Pushparaj, K., & Park, S. (2021). The epic of in vitro meat production—a fiction into reality. Foods, 10(6), 1–21. https://doi.org/10.3390/foods10061395 Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K., & Chang, K. C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology, 13. https://doi.org/10.1186/1471-2121-13-16 Barbosa, W., Correia, P., Vieira, J., Leal, I., Rodrigues, L., Nery, T., Barbosa, J., & Soares, M. (2023). Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Applied Sciences 2023, Vol. 13, Page 12158, 13(22), 12158. https://doi.org/10.3390/APP132212158 Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of threedimensional bovine skeletal muscle tissue for cell-based meat. Nature Food 2020 1:4, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5 Benjaminson, M. A., Gilchriest, J. A., & Lorenz, M. (2002). In vitro edible muscle protein production system (mpps): stage 1, fish. Acta Astronautica, 51(12), 879–889. https://doi.org/10.1016/S0094-5765(02)00033-4 Bentzinger, C. F., Von Maltzahn, J., & Rudnicki, M. A. (2010). Extrinsic regulation of satellite cell specification. Stem Cell Research & Therapy, 1(3). https://doi.org/10.1186/SCRT27 Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E. D. A., & Bhat, H. F. (2019). Technological, Regulatory, and Ethical Aspects of In Vitro Meat: A Future Slaughter-Free Harvest. Comprehensive Reviews in Food Science and Food Safety, 18(4). https://doi.org/10.1111/1541-4337.12473 Bomkamp, C., Skaalure, S. C., Fernando, G. F., Ben-Arye, T., Swartz, E. W., & Specht, E. A. (2022). Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(3). https://doi.org/10.1002/ADVS.202102908 Bonny, S. P. F., Gardner, G. E., Pethick, D. W., & Hocquette, J. F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2), 255–263. https://doi.org/10.1016/S2095-3119(14)60888-1 Bonny, S. P. F., Gardner, G. E., Pethick, D. W., & Hocquette, J. F. (2017). Artificial meat and the future of the meat industry. Animal Production Science, 57(11), 2216–2223. https://doi.org/10.1071/AN17307 Bott, J., Störmer, A., & Franz, R. (2014). A comprehensive study into the migration potential of nano silver particles from food contact polyolefins. ACS Symposium Series, 1159, 51–70. https://doi.org/10.1021/BK-2014-1159.CH005 Choi, J., Kwon, O. C., Jo, W., Lee, H. J., & Moon, M. W. (2015). 4D printing technology: A review. 3D Printing and Additive Manufacturing, 2(4), 159–167. https://doi.org/10.1089/3DP.2015.0039 Choi, K. H., Yoon, J. W., Kim, M., Lee, H. J., Jeong, J., Ryu, M., Jo, C., & Lee, C. K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429–457. https://doi.org/10.1111/1541-4337.12661 Chriki, S., & Hocquette, J. F. (2020). The Myth of Cultured Meat: A Review. Frontiers in Nutrition, 7. https://doi.org/10.3389/FNUT.2020.00007 Clonación | EFSA. (n.d.). Retrieved January 30, 2024, from https://www.efsa.europa.eu/es/topics/topic/cloning Consumo | Fedegán. (n.d.). Retrieved March 9, 2023, from https://www.fedegan.org.co/estadisticas/consumo-0 DANE - Escala de experiencia de inseguridad alimentaria (FIES) 2022. (n.d.). Retrieved February 26, 2024, from https://www.dane.gov.co/index.php/estadisticas-portema/salud/escala-de-experiencia-de-inseguridad-alimentaria-fies-2022 Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381– 400. https://doi.org/10.1016/J.FOODRES.2015.01.005 Datar, I., & Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 11(1), 13–22. https://doi.org/10.1016/J.IFSET.2009.10.007 Dick, A., Bhandari, B., & Prakash, S. (2019). Post-processing feasibility of composite-layer 3D printed beef. Meat Science, 153, 9–18. https://doi.org/10.1016/J.MEATSCI.2019.02.024 Duque, P., & Cervantes-Cervantes, L. S. (2019). University social responsibility: A systematic review and a bibliometric analysis. Estudios Gerenciales, 35(153), 451–464. https://doi.org/10.18046/J.ESTGER.2019.153.3389 Estados Unidos y Australia, los países que tienen el mayor consumo de carne. (n.d.). Retrieved February 22, 2024, from https://www.larepublica.co/globoeconomia/estados-unidos-yaustralia-los-paises-que-tienen-el-mayor-consumo-de-carne-3684321 Europa se abre a la carne de laboratorio | Empresas. (n.d.). Retrieved January 22, 2024, from https://www.expansion.com/empresas/2023/08/12/64d7731be5fdea3b6d8b4623.html Furuhashi, M., Morimoto, Y., Shima, A., Nakamura, F., Ishikawa, H., & Takeuchi, S. (2021). Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. Npj Science of Food 2021 5:1, 5(1), 1–8. https://doi.org/10.1038/s41538- 021-00090-7 Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y., & Xu, F. (2016). 4D Bioprinting for Biomedical Applications. Trends in Biotechnology, 34(9), 746–756. https://doi.org/10.1016/J.TIBTECH.2016.03.004 Hartmann, C., Furtwaengler, P., & Siegrist, M. (2022). Consumers’ evaluation of the environmental friendliness, healthiness and naturalness of meat, meat substitutes, and other protein-rich foods. Food Quality and Preference, 97. https://doi.org/10.1016/j.foodqual.2021.104486 Hocquette, J. F. (2016). Is in vitro meat the solution for the future? Meat Science, 120, 167–176. https://doi.org/10.1016/J.MEATSCI.2016.04.036 Human Food Made with Cultured Animal Cells | FDA. (n.d.). Retrieved January 22, 2024, from https://www.fda.gov/food/food-ingredients-packaging/human-food-made-cultured-animal-cells Ian Gibson, David Rosen, B. S. (2014). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and ... - Ian Gibson, David Rosen, Brent Stucker - Google Libros. https://books.google.com.co/books/about/Additive_Manufacturing_Technologies.html?id= OPGbBQAAQBAJ&redir_esc=y Jayme, D. W., & Smith, S. R. (2000). Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology, 33(1–3), 27–36. https://doi.org/10.1023/A:1008133717035 Jürgens, M., Mayerhöfer, T., Popp, J., Lee, G., Matthews, D. L., & Wilson, B. C. (2012). Introduction to Biophotonics. Handbook of Biophotonics, 1–38. https://doi.org/10.1002/9783527643981.BPHOT001 K. Handral, H., Hua Tay, S., Wan Chan, W., & Choudhury, D. (2022). 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 62(1), 272–281. https://doi.org/10.1080/10408398.2020.1815172 Kang, D. H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H., Kakitani, M., Takagi, D., Kasa, D., Nagamori, E., Irie, S., Kitano, S., & Matsusaki, M. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications 2021 12:1, 12(1), 1–12. https://doi.org/10.1038/s41467-021- 25236-9 Khodabukus, A., & Baar, K. (2016). Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology. Cells, Tissues, Organs, 202(3–4), 159–168. https://doi.org/10.1159/000446067 Koçak, E., Yıldız, A., & Acartürk, F. (2021). Three dimensional bioprinting technology: Applications in pharmaceutical and biomedical area. Colloids and Surfaces B: Biointerfaces, 197, 111396. https://doi.org/10.1016/J.COLSURFB.2020.111396 Kumar, P., Sharma, N., Sharma, S., Mehta, N., Verma, A. K., Chemmalar, S., & Sazili, A. Q. (2021). In-vitro meat: A promising solution for sustainability of meat sector. In Journal of Animal Science and Technology (Vol. 63, Issue 4). https://doi.org/10.5187/jast.2021.e85 Lanzoni, D., Bracco, F., Cheli, F., Colosimo, B. M., Moscatelli, D., Baldi, A., Rebucci, R., & Giromini, C. (2022). Biotechnological and Technical Challenges Related to Cultured Meat Production. Applied Sciences 2022, Vol. 12, Page 6771, 12(13), 6771. https://doi.org/10.3390/APP12136771 Lee, D. K., Kim, M., Jeong, J., Lee, Y. S., Yoon, J. W., An, M. J., Jung, H. Y., Kim, C. H., Ahn, Y., Choi, K. H., Jo, C., & Lee, C. K. (2023). Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Current Research in Food Science, 7. https://doi.org/10.1016/J.CRFS.2023.100551 Lee, H. J., Yong, H. I., Kim, M., Choi, Y. S., & Jo, C. (2020). Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australasian Journal of Animal Sciences, 33(10), 1533. https://doi.org/10.5713/AJAS.20.0419 Lee, S. Y., Kang, H. J., Lee, D. Y., Kang, J. H., Ramani, S., Park, S., & Hur, S. J. (2021). Principal protocols for the processing of cultured meat. Journal of Animal Science and Technology, 63(4), 673–680. https://doi.org/10.5187/JAST.2021.E40 Li, B. J., Li, P. H., Huang, R. H., Sun, W. X., Wang, H., Li, Q. F., Chen, J., Wu, W. J., & Liu, H. L. (2015). Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells. Asian-Australasian Journal of Animal Sciences, 28(8), 1171–1177. https://doi.org/10.5713/AJAS.14.0848 Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Picard, B., & Bugeon, J. (2016). How Muscle Structure and Composition Influence Meat and Flesh Quality. TheScientificWorldJournal, 2016. https://doi.org/10.1155/2016/3182746 Liu, W., Hao, Z., Florkowski, W. J., Wu, L., & Yang, Z. (2022). A Review of the Challenges Facing Global Commercialization of the Artificial Meat Industry. Foods, 11(22), 3609. https://doi.org/10.3390/foods11223609 Lupton, D., & Turner, B. (2018). Food of the Future? Consumer Responses to the Idea of 3DPrinted Meat and Insect-Based Foods. Food and Foodways, 26(4), 269–289. https://doi.org/10.1080/07409710.2018.1531213 MacQueen, L. A., Alver, C. G., Chantre, C. O., Ahn, S., Cera, L., Gonzalez, G. M., O’Connor, B. B., Drennan, D. J., Peters, M. M., Motta, S. E., Zimmerman, J. F., & Parker, K. K. (2019). Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Science of Food, 3(1). https://doi.org/10.1038/S41538-019-0054-8 Mateti, T., Laha, A., & Shenoy, P. (2022). Artificial Meat Industry: Production Methodology, Challenges, and Future. JOM, 74(9), 3428–3444. https://doi.org/10.1007/S11837-022- 05316-X/FIGURES/3 McGillicuddy, N., Floris, P., Albrecht, S., & Bones, J. (2018). Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnology Letters, 40(1), 5–21. https://doi.org/10.1007/S10529-017-2437-8 Medio Eagle modificado de Dulbecco (DMEM). (n.d.). Retrieved March 15, 2024, from https://www.sigmaaldrich.com/CO/es/products/cell-culture-and-analysis/cell-culture-mediaand-buffers/classical-media-and-buffers/dulbeccos-modified-eagle-medium Melzener, L., Verzijden, K. E., Buijs, A. J., Post, M. J., & Flack, J. E. (2021). Cultured beef: from small biopsy to substantial quantity. Journal of the Science of Food and Agriculture, 101(1), 7. https://doi.org/10.1002/JSFA.10663 Moritz, M. S. M., Verbruggen, S. E. L., & Post, M. J. (2015). Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture, 14(2), 208–216. https://doi.org/10.1016/S2095-3119(14)60889-3 Munteanu, C., Mireşan, V., Răducu, C., Ihuţ, A., Uiuiu, P., Pop, D., Neacşu, A., Cenariu, M., & Groza, I. (2021). Can Cultured Meat Be an Alternative to Farm Animal Production for a Sustainable and Healthier Lifestyle? Frontiers in Nutrition, 8. https://doi.org/10.3389/FNUT.2021.749298 Nakagawa, K. (2014). Nano- and Microencapsulation of Flavor in Food Systems. Nano- and Microencapsulation for Foods, 9781118292334, 249–271. https://doi.org/10.1002/9781118292327.CH10 No-kill, lab-grown meat to go on sale for first time | Meat industry | The Guardian. (n.d.). Retrieved January 18, 2024, from https://www.theguardian.com/environment/2020/dec/02/no-kill-lab-grown-meat-to-go-onsale-for-first-time Nuevos cambios en el enfoque japonés de la regulación y la seguridad de la carne cultivada. (n.d.). Retrieved January 23, 2024, from https://vegconomist.es/politica/enfoque-japonescarne-cultivada-primer-ministro-kishida/ O’Mara, P., Farrell, A., Bones, J., & Twomey, K. (2018). Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta, 176, 130–139. https://doi.org/10.1016/J.TALANTA.2017.07.088 Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N., Gadjanski, I., & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2428–2454. https://doi.org/10.1111/1541- 4337.12727 Ong, K. J., Johnston, J., Datar, I., Sewalt, V., Holmes, D., & Shatkin, J. A. (2021). Food safety considerations and research priorities for the cultured meat and seafood industry. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5421–5448. https://doi.org/10.1111/1541-4337.12853 Pandurangan, M., & Kim, D. H. (2015). A novel approach for in vitro meat production. Applied Microbiology and Biotechnology, 99(13), 5391–5395. https://doi.org/10.1007/S00253-015- 6671-5 Panel | Modelo de Evaluación Ambiental de la Ganadería Mundial (GLEAM) | Organización de las Naciones Unidas para la Alimentación y la Agricultura. (n.d.). Retrieved March 10, 2023, from https://www.fao.org/gleam/results/es/ Pereira, R. F., & Bártolo, P. J. (2015). 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 132(48). https://doi.org/10.1002/APP.42458 Plant-based and cultivated meat innovation | GFI. (n.d.). Retrieved January 20, 2024, from https://gfi.org/ Post, M. J. (2012). Cultured meat from stem cells: challenges and prospects. Meat Science, 92(3), 297–301. https://doi.org/10.1016/J.MEATSCI.2012.04.008 Post, M. J. (2014). Cultured beef: medical technology to produce food. Journal of the Science of Food and Agriculture, 94(6), 1039–1041. https://doi.org/10.1002/JSFA.6474 Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403–415. https://doi.org/10.1038/S43016-020-0112-Z Priyadarshini, M., Mohanty, S., Mahapatra, T., Mohapatra, P., & Dash, R. (2020). Threedimensional tumor model and their implication in drug screening for tackling chemoresistance. Biomaterials for 3D Tumor Modeling, 481–503. https://doi.org/10.1016/B978-0-12-818128-7.00020-4 Ramani, S., Ko, D., Kim, B., Cho, C., Kim, W., Jo, C., Lee, C. K., Kang, J., Hur, S., & Park, S. (2021). Technical requirements for cultured meat production: A review. Journal of Animal Science and Technology, 63(4), 681–692. https://doi.org/10.5187/JAST.2021.E45 Ramiah, P., du Toit, L. C., Choonara, Y. E., Kondiah, P. P. D., & Pillay, V. (2020). HydrogelBased Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 7, 506968. https://doi.org/10.3389/FMATS.2020.00076/BIBTEX Rauch, C., Feifel, E., Amann, E. M., Spötl, H. P., Schennach, H., Pfaller, W., & Gstraunthaler, G. (2011). Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. Altex, 28(4), 305–316. https://doi.org/10.14573/ALTEX.2011.4.305 Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/IJMS22147513 Rodriguez, B. L., & Larkin, L. M. (2018). Functional three-dimensional scaffolds for skeletal muscle tissue engineering. Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications, 279–304. https://doi.org/10.1016/B978-0-08-100979- 6.00012-4 Roy, B., Hagappa, A., Ramalingam, Y. D., Mahalingam, N., & Alaudeen, A. banu S. (2021). A review on lab-grown meat: Advantages and disadvantages. Quest International Journal of Medical and Health Sciences, 4(1), 19–24. https://ojs.qiu.edu.my/journal/index.php/qijmhs/article/view/48 Sahafnejad-Mohammadi, I., Karamimoghadam, M., Zolfagharian, A., Akrami, M., & Bodaghi, M. (2022). 4D printing technology in medical engineering: a narrative review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6), 1–26. https://doi.org/10.1007/S40430-022-03514-X/FIGURES/16 Schnitzler, A. C., Verma, A., Kehoe, D. E., Jing, D., Murrell, J. R., Der, K. A., Aysola, M., Rapiejko, P. J., Punreddy, S., & Rook, M. S. (2016). Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochemical Engineering Journal, 108, 3–13. https://doi.org/10.1016/J.BEJ.2015.08.014 Seah, J. S. H., Singh, S., Tan, L. P., & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 42(2), 311–323. https://doi.org/10.1080/07388551.2021.1931803 Shahin-Shamsabadi, A., & Selvaganapathy, P. R. (2022). Engineering Murine Adipocytes and Skeletal Muscle Cells in Meat-like Constructs Using Self-Assembled Layer-by-Layer Biofabrication: A Platform for Development of Cultivated Meat. Cells, Tissues, Organs, 211(3), 304–312. https://doi.org/10.1159/000511764 Sharma, S., Thind, S. S., & Kaur, A. (2015). In vitro meat production system: why and how? Journal of Food Science and Technology, 52(12), 7599. https://doi.org/10.1007/S13197- 015-1972-3 Simsa, R., Yuen, J., Stout, A., Rubio, N., Fogelstrand, P., & Kaplan, D. L. (2019). Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of CellBased Meat. Foods 2019, Vol. 8, Page 521, 8(10), 521. https://doi.org/10.3390/FOODS8100521 Sinacore, M. S., Drapeau, D., & Adamson, S. R. (2000). Adaptation of mammalian cells to growth in serum-free media. Molecular Biotechnology, 15(3), 249–257. https://doi.org/10.1385/MB:15:3:249 Singapur es el primer país que aprueba la carne cultivada en laboratorio. (n.d.). Retrieved January 20, 2024, from https://cnnespanol.cnn.com/2020/12/03/singapur-es-el-primer-paisque-aprueba-la-carne-cultivada-en-laboratorio/ Singh, T., Shukla, S., Kumar, P., Wahla, V., & Bajpai, V. K. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8(AUG), 268461. https://doi.org/10.3389/FMICB.2017.01501/BIBTEX Skardal, A., & Atala, A. (2015). Biomaterials for integration with 3-D bioprinting. Annals of Biomedical Engineering, 43(3), 730–746. https://doi.org/10.1007/S10439-014-1207-1 Specht, E. A., Welch, D. R., Rees Clayton, E. M., & Lagally, C. D. (2018). Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal, 132, 161–168. https://doi.org/10.1016/J.BEJ.2018.01.015 Specht, L. (2020). GFI.ORG Creating a healthy, humane, and sustainable food supply. An analysis of culture medium costs and production volumes for cultivated meat. The Good Food Institute. Srutee, R., Sowmya, R. S., & Annapure, U. S. (2022). Clean meat: techniques for meat production and its upcoming challenges. Animal Biotechnology, 33(7), 1721–1729. https://doi.org/10.1080/10495398.2021.1911810 Statement on Cultured Quail as a Novel Food application | Food Standards Australia New Zealand. (n.d.). Retrieved January 20, 2024, from https://www.foodstandards.gov.au/news/Statement-on-Cultured-Quail-as-a-Novel-Foodapplication Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78, 155–166. https://doi.org/10.1016/J.TIFS.2018.04.010 Strathearn, K. E., Maria, A., & Pardo, P. (2014). Parameters to Consider When Expanding Cells on Corning ® Microcarriers Application Note. Suresh, S. (2018). “Friend” or “Fiend”: In vitro lab meat and how Canada might regulate its production and sale “FRIEND” OR “FIEND”: IN VITRO LAB MEAT AND HOW CANADA MIGHT REGULATE ITS PRODUCTION AND SALE “FRIEND” OR “FIEND”: IN VITRO LAB MEAT AND HOW CANADA MIGHT REGULATE ITS PRODUCTION AND SALE CANADIAN AGRI-FOOD POLICY INSTITUTE. Sustainable, J., Chodkowska, K. A., Wódz, K., & Wojciechowski, J. (2022). Citation: Chodkowska, K Sustainable Future Protein Foods: The Challenges and the Future of Cultivated Meat. https://doi.org/10.3390/foods11244008 Swartz, E. (2019). SBE Special Section: Industrial Biotechnology. www.aiche.org/cep Tarassoli, S. P., Jessop, Z. M., Jovic, T., Hawkins, K., & Whitaker, I. S. (2021). Candidate Bioinks for Extrusion 3D Bioprinting—A Systematic Review of the Literature. Frontiers in Bioengineering and Biotechnology, 9, 616753. https://doi.org/10.3389/FBIOE.2021.616753/BIBTEX The Better Butchers Plans to Open the World’s First Cultivated Meat Butchery. (n.d.). Retrieved January 22, 2024, from https://www.greenqueen.com.hk/the-better-butchers-world-firstcultivated-meat-butchery-canada/ Treich, N. (2021). Cultured Meat: Promises and Challenges. Environmental and Resource Economics, 79(1), 33–61. https://doi.org/10.1007/s10640-021-00551-3 Tuomisto, H. L. (2019). The eco‐friendly burger. EMBO Reports, 20(1). https://doi.org/10.15252/EMBR.201847395 Tuomisto, H. L., & Teixeira De Mattos, M. J. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14), 6117–6123 UK’s first cultivated meat approval submitted. (n.d.). Retrieved January 22, 2024, from https://www.foodnavigator.com/Article/2023/08/04/UK-s-first-cultivated-meat-approvalsubmitted Upside y Good Meat abren una nueva era en la industria cárnica al lograr la aprobación final para su pollo cultivado. (n.d.). Retrieved January 22, 2024, from https://www.alimarket.es/alimentacion/noticia/373550/upside-y-good-meat-abren-unanueva-era-en-la-industria-carnica-al-lograr-la-aprobacion-final-para-su-pollo-cultivado Van Eenennaam, A. L. (2017). Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27–34. https://doi.org/10.1016/J.COPBIO.2016.10.007 Verbruggen, S., Luining, D., van Essen, A., & Post, M. J. (2018). Bovine myoblast cell production in a microcarriers-based system. Cytotechnology, 70(2), 503–512. https://doi.org/10.1007/S10616-017-0101-8/FIGURES/4 Vergeer, R., Sinke, P., & Odegard, I. (2021). TEA of cultivated meat Future projections of different scenarios-corrigendum clean. www.cedelft.eu Villena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238, 1–11. https://doi.org/10.1016/J.JFOODENG.2018.05.024 Wang, Y., Xiao, X., & Wang, L. (2020). In vitro characterization of goat skeletal muscle satellite cells. Animal Biotechnology, 31(2), 115–121. https://doi.org/10.1080/10495398.2018.1551230 Xiang, N., Yao, Y., Yuen, J. S. K., Stout, A. J., Fennelly, C., Sylvia, R., Schnitzler, A., Wong, S., & Kaplan, D. L. (2022). Edible films for cultivated meat production. Biomaterials, 287, 121659. https://doi.org/10.1016/J.BIOMATERIALS.2022.121659 Zhang, B., Gao, L., Ma, L., Luo, Y., Yang, H., & Cui, Z. (2019). 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering, 5(4), 777–794. https://doi.org/10.1016/J.ENG.2019.03.009 Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443–450. https://doi.org/10.1016/J.TIFS.2020.01.026 Zidarič, T., Milojević, M., Vajda, J., Vihar, B., & Maver, U. (2020). Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. Food Engineering Reviews, 12(4), 498–519. https://doi.org/10.1007/S12393-020-09253-W/METRICS |
| dc.rights.none.fl_str_mv |
Derechos Reservados Universidad Francisco de Paula Santander, 2024 |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Derechos Reservados Universidad Francisco de Paula Santander, 2024 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
97 páginas. ilustraciones, (Trabajo completo) 1.194 KB |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Francisco de Paula Santander |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Agrarias y del Ambiente |
| dc.publisher.place.none.fl_str_mv |
San José de Cúcuta |
| dc.publisher.program.none.fl_str_mv |
Ingeniería Biotecnológica |
| publisher.none.fl_str_mv |
Universidad Francisco de Paula Santander |
| dc.source.none.fl_str_mv |
https://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=27172f067f1617850aaf9a3df74e0459 |
| institution |
Universidad Francisco de Paula Santander |
| bitstream.url.fl_str_mv |
https://repositorio.ufps.edu.co/bitstreams/79dd9b33-ef02-4677-ae64-9520de48935f/download https://repositorio.ufps.edu.co/bitstreams/74893a14-e5e6-419f-a979-0bea0e3d472f/download https://repositorio.ufps.edu.co/bitstreams/94d258ed-ee35-4cb3-b97c-461f9bcae40a/download https://repositorio.ufps.edu.co/bitstreams/543ee125-0a3b-47af-a449-30281a24fbe7/download |
| bitstream.checksum.fl_str_mv |
b76e7a76e24cf2f94b3ce0ae5ed275d0 8a357973727bbef92abdc2758530d8c7 b41830337213d5c0d1c83e04b4aead80 6284be791a0462f8a698d5b38d742357 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad Francisco de Paula Santander |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059588466475008 |
| spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Derechos Reservados Universidad Francisco de Paula Santander, 2024https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roman Hernandez, Paola Andreavirtual::49-1García Henríquez, Giovanni ArlexUniversidad Francisco de Paula SantanderSuarez Gelvez, John Hermogenesvirtual::50-1Muñoz Peñaloza, Yaneth Amparovirtual::51-1Arismendy Pabón, Ana María2025-10-23T15:02:04Z2024https://repositorio.ufps.edu.co/handle/ufps/10394TIB V00112/2024En la presente monografía, se resalta la importancia del cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentos. Luego de realizar la consulta bibliográfica de artículos de revisión y artículos científicos se determinaron las ventajas y desventajas de la producción de carne in vitro. También se obtuvo la comparación teórica de las distintas formas de producción hasta el momento aplicadas, finalmente se formuló un protocolo para el cultivo y conservación de la carne in vitro a escala piloto. Se establece como base teórica y metodológica para futuras investigaciones.PregradoIngeniero(a) Biotecnológico(a)97 páginas. ilustraciones, (Trabajo completo) 1.194 KBapplication/pdfspaUniversidad Francisco de Paula SantanderFacultad de Ciencias Agrarias y del AmbienteSan José de CúcutaIngeniería Biotecnológicahttps://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=27172f067f1617850aaf9a3df74e0459Cultivo y conservación de carne in vitro como alternativa biotecnológica para el fortalecimiento de la industria de alimentosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_46echttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionANDI cámara de la industria de alimentos. (2019). Industria de Alimentos: Una industria que Innova y Construye un País. Bogota: +Contenido. https://www.andi.com.co/Uploads/ANDIAlimentos.pdf¿Cuál ha sido el consumo per cápita del cerdo, pollo, pescado y carne desde el 2014? (n.d.). Retrieved March 9, 2023, from https://www.larepublica.co/consumo/cual-ha-sido-elconsumo-per-capita-de-las-carnes-en-2022-3554126Adhikari, J., Roy, A., Das, A., Ghosh, M., Thomas, S., Sinha, A., Kim, J., & Saha, P. (2021). Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromolecular Bioscience, 21(1), 2000179. https://doi.org/10.1002/MABI.202000179Aditya, A., & Kim, N. P. (2022). 3D Printing of Meat Following Supercritical Fluid Extraction. Foods, 11(4). https://doi.org/10.3390/FOODS11040554Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926. https://doi.org/10.1016/J.POLYMER.2021.123926Ahmed, S., Chauhan, V. M., Ghaemmaghami, A. M., & Aylott, J. W. (2019). New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnology Letters, 41(1). https://doi.org/10.1007/S10529-018-2611-7Allan, S. J., De Bank, P. A., & Ellis, M. J. (2019). Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor. Frontiers in Sustainable Food Systems, 3, 432843. https://doi.org/10.3389/FSUFS.2019.00044/BIBTEXAn, L. (2016). Animal Cloning Drawbacks An-Overview. Journal of Dairy, Veterinary & Animal Research, 3(4). https://doi.org/10.15406/JDVAR.2016.03.00087Anvari, B. (2021). Grand Challenges and Opportunities in Biophotonics. Frontiers in Photonics, 2. https://doi.org/10.3389/FPHOT.2021.719131Anvari, B. (2021). Grand Challenges and Opportunities in Biophotonics. Frontiers in Photonics, 2. https://doi.org/10.3389/FPHOT.2021.719131Arias, R., Velásquez, A., Morales, R., & Alvarado-Gilis, C. (2022). La carne bovina como parte de una dieta saludable. Una revisión. Agro Sur, 50(1), 21–30. https://doi.org/10.4206/AGROSUR.2022.V50N1-03Ashammakhi, N., Ahadian, S., Xu, C., Montazerian, H., Ko, H., Nasiri, R., Barros, N., & Khademhosseini, A. (2019). Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 1, 100008. https://doi.org/10.1016/J.MTBIO.2019.100008Balasubramanian, B., Liu, W., Pushparaj, K., & Park, S. (2021). The epic of in vitro meat production—a fiction into reality. Foods, 10(6), 1–21. https://doi.org/10.3390/foods10061395Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K., & Chang, K. C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology, 13. https://doi.org/10.1186/1471-2121-13-16Barbosa, W., Correia, P., Vieira, J., Leal, I., Rodrigues, L., Nery, T., Barbosa, J., & Soares, M. (2023). Trends and Technological Challenges of 3D Bioprinting in Cultured Meat: Technological Prospection. Applied Sciences 2023, Vol. 13, Page 12158, 13(22), 12158. https://doi.org/10.3390/APP132212158Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of threedimensional bovine skeletal muscle tissue for cell-based meat. Nature Food 2020 1:4, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5Benjaminson, M. A., Gilchriest, J. A., & Lorenz, M. (2002). In vitro edible muscle protein production system (mpps): stage 1, fish. Acta Astronautica, 51(12), 879–889. https://doi.org/10.1016/S0094-5765(02)00033-4Bentzinger, C. F., Von Maltzahn, J., & Rudnicki, M. A. (2010). Extrinsic regulation of satellite cell specification. Stem Cell Research & Therapy, 1(3). https://doi.org/10.1186/SCRT27Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E. D. A., & Bhat, H. F. (2019). Technological, Regulatory, and Ethical Aspects of In Vitro Meat: A Future Slaughter-Free Harvest. Comprehensive Reviews in Food Science and Food Safety, 18(4). https://doi.org/10.1111/1541-4337.12473Bomkamp, C., Skaalure, S. C., Fernando, G. F., Ben-Arye, T., Swartz, E. W., & Specht, E. A. (2022). Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(3). https://doi.org/10.1002/ADVS.202102908Bonny, S. P. F., Gardner, G. E., Pethick, D. W., & Hocquette, J. F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2), 255–263. https://doi.org/10.1016/S2095-3119(14)60888-1Bonny, S. P. F., Gardner, G. E., Pethick, D. W., & Hocquette, J. F. (2017). Artificial meat and the future of the meat industry. Animal Production Science, 57(11), 2216–2223. https://doi.org/10.1071/AN17307Bott, J., Störmer, A., & Franz, R. (2014). A comprehensive study into the migration potential of nano silver particles from food contact polyolefins. ACS Symposium Series, 1159, 51–70. https://doi.org/10.1021/BK-2014-1159.CH005Choi, J., Kwon, O. C., Jo, W., Lee, H. J., & Moon, M. W. (2015). 4D printing technology: A review. 3D Printing and Additive Manufacturing, 2(4), 159–167. https://doi.org/10.1089/3DP.2015.0039Choi, K. H., Yoon, J. W., Kim, M., Lee, H. J., Jeong, J., Ryu, M., Jo, C., & Lee, C. K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429–457. https://doi.org/10.1111/1541-4337.12661Chriki, S., & Hocquette, J. F. (2020). The Myth of Cultured Meat: A Review. Frontiers in Nutrition, 7. https://doi.org/10.3389/FNUT.2020.00007Clonación | EFSA. (n.d.). Retrieved January 30, 2024, from https://www.efsa.europa.eu/es/topics/topic/cloningConsumo | Fedegán. (n.d.). Retrieved March 9, 2023, from https://www.fedegan.org.co/estadisticas/consumo-0DANE - Escala de experiencia de inseguridad alimentaria (FIES) 2022. (n.d.). Retrieved February 26, 2024, from https://www.dane.gov.co/index.php/estadisticas-portema/salud/escala-de-experiencia-de-inseguridad-alimentaria-fies-2022Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381– 400. https://doi.org/10.1016/J.FOODRES.2015.01.005Datar, I., & Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 11(1), 13–22. https://doi.org/10.1016/J.IFSET.2009.10.007Dick, A., Bhandari, B., & Prakash, S. (2019). Post-processing feasibility of composite-layer 3D printed beef. Meat Science, 153, 9–18. https://doi.org/10.1016/J.MEATSCI.2019.02.024Duque, P., & Cervantes-Cervantes, L. S. (2019). University social responsibility: A systematic review and a bibliometric analysis. Estudios Gerenciales, 35(153), 451–464. https://doi.org/10.18046/J.ESTGER.2019.153.3389Estados Unidos y Australia, los países que tienen el mayor consumo de carne. (n.d.). Retrieved February 22, 2024, from https://www.larepublica.co/globoeconomia/estados-unidos-yaustralia-los-paises-que-tienen-el-mayor-consumo-de-carne-3684321Europa se abre a la carne de laboratorio | Empresas. (n.d.). Retrieved January 22, 2024, from https://www.expansion.com/empresas/2023/08/12/64d7731be5fdea3b6d8b4623.htmlFuruhashi, M., Morimoto, Y., Shima, A., Nakamura, F., Ishikawa, H., & Takeuchi, S. (2021). Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. Npj Science of Food 2021 5:1, 5(1), 1–8. https://doi.org/10.1038/s41538- 021-00090-7Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y., & Xu, F. (2016). 4D Bioprinting for Biomedical Applications. Trends in Biotechnology, 34(9), 746–756. https://doi.org/10.1016/J.TIBTECH.2016.03.004Hartmann, C., Furtwaengler, P., & Siegrist, M. (2022). Consumers’ evaluation of the environmental friendliness, healthiness and naturalness of meat, meat substitutes, and other protein-rich foods. Food Quality and Preference, 97. https://doi.org/10.1016/j.foodqual.2021.104486Hocquette, J. F. (2016). Is in vitro meat the solution for the future? Meat Science, 120, 167–176. https://doi.org/10.1016/J.MEATSCI.2016.04.036Human Food Made with Cultured Animal Cells | FDA. (n.d.). Retrieved January 22, 2024, from https://www.fda.gov/food/food-ingredients-packaging/human-food-made-cultured-animal-cellsIan Gibson, David Rosen, B. S. (2014). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and ... - Ian Gibson, David Rosen, Brent Stucker - Google Libros. https://books.google.com.co/books/about/Additive_Manufacturing_Technologies.html?id= OPGbBQAAQBAJ&redir_esc=yJayme, D. W., & Smith, S. R. (2000). Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology, 33(1–3), 27–36. https://doi.org/10.1023/A:1008133717035Jürgens, M., Mayerhöfer, T., Popp, J., Lee, G., Matthews, D. L., & Wilson, B. C. (2012). Introduction to Biophotonics. Handbook of Biophotonics, 1–38. https://doi.org/10.1002/9783527643981.BPHOT001K. Handral, H., Hua Tay, S., Wan Chan, W., & Choudhury, D. (2022). 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 62(1), 272–281. https://doi.org/10.1080/10408398.2020.1815172Kang, D. H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H., Kakitani, M., Takagi, D., Kasa, D., Nagamori, E., Irie, S., Kitano, S., & Matsusaki, M. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications 2021 12:1, 12(1), 1–12. https://doi.org/10.1038/s41467-021- 25236-9Khodabukus, A., & Baar, K. (2016). Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology. Cells, Tissues, Organs, 202(3–4), 159–168. https://doi.org/10.1159/000446067Koçak, E., Yıldız, A., & Acartürk, F. (2021). Three dimensional bioprinting technology: Applications in pharmaceutical and biomedical area. Colloids and Surfaces B: Biointerfaces, 197, 111396. https://doi.org/10.1016/J.COLSURFB.2020.111396Kumar, P., Sharma, N., Sharma, S., Mehta, N., Verma, A. K., Chemmalar, S., & Sazili, A. Q. (2021). In-vitro meat: A promising solution for sustainability of meat sector. In Journal of Animal Science and Technology (Vol. 63, Issue 4). https://doi.org/10.5187/jast.2021.e85Lanzoni, D., Bracco, F., Cheli, F., Colosimo, B. M., Moscatelli, D., Baldi, A., Rebucci, R., & Giromini, C. (2022). Biotechnological and Technical Challenges Related to Cultured Meat Production. Applied Sciences 2022, Vol. 12, Page 6771, 12(13), 6771. https://doi.org/10.3390/APP12136771Lee, D. K., Kim, M., Jeong, J., Lee, Y. S., Yoon, J. W., An, M. J., Jung, H. Y., Kim, C. H., Ahn, Y., Choi, K. H., Jo, C., & Lee, C. K. (2023). Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat. Current Research in Food Science, 7. https://doi.org/10.1016/J.CRFS.2023.100551Lee, H. J., Yong, H. I., Kim, M., Choi, Y. S., & Jo, C. (2020). Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australasian Journal of Animal Sciences, 33(10), 1533. https://doi.org/10.5713/AJAS.20.0419Lee, S. Y., Kang, H. J., Lee, D. Y., Kang, J. H., Ramani, S., Park, S., & Hur, S. J. (2021). Principal protocols for the processing of cultured meat. Journal of Animal Science and Technology, 63(4), 673–680. https://doi.org/10.5187/JAST.2021.E40Li, B. J., Li, P. H., Huang, R. H., Sun, W. X., Wang, H., Li, Q. F., Chen, J., Wu, W. J., & Liu, H. L. (2015). Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells. Asian-Australasian Journal of Animal Sciences, 28(8), 1171–1177. https://doi.org/10.5713/AJAS.14.0848Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Picard, B., & Bugeon, J. (2016). How Muscle Structure and Composition Influence Meat and Flesh Quality. TheScientificWorldJournal, 2016. https://doi.org/10.1155/2016/3182746Liu, W., Hao, Z., Florkowski, W. J., Wu, L., & Yang, Z. (2022). A Review of the Challenges Facing Global Commercialization of the Artificial Meat Industry. Foods, 11(22), 3609. https://doi.org/10.3390/foods11223609Lupton, D., & Turner, B. (2018). Food of the Future? Consumer Responses to the Idea of 3DPrinted Meat and Insect-Based Foods. Food and Foodways, 26(4), 269–289. https://doi.org/10.1080/07409710.2018.1531213MacQueen, L. A., Alver, C. G., Chantre, C. O., Ahn, S., Cera, L., Gonzalez, G. M., O’Connor, B. B., Drennan, D. J., Peters, M. M., Motta, S. E., Zimmerman, J. F., & Parker, K. K. (2019). Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Science of Food, 3(1). https://doi.org/10.1038/S41538-019-0054-8Mateti, T., Laha, A., & Shenoy, P. (2022). Artificial Meat Industry: Production Methodology, Challenges, and Future. JOM, 74(9), 3428–3444. https://doi.org/10.1007/S11837-022- 05316-X/FIGURES/3McGillicuddy, N., Floris, P., Albrecht, S., & Bones, J. (2018). Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnology Letters, 40(1), 5–21. https://doi.org/10.1007/S10529-017-2437-8Medio Eagle modificado de Dulbecco (DMEM). (n.d.). Retrieved March 15, 2024, from https://www.sigmaaldrich.com/CO/es/products/cell-culture-and-analysis/cell-culture-mediaand-buffers/classical-media-and-buffers/dulbeccos-modified-eagle-mediumMelzener, L., Verzijden, K. E., Buijs, A. J., Post, M. J., & Flack, J. E. (2021). Cultured beef: from small biopsy to substantial quantity. Journal of the Science of Food and Agriculture, 101(1), 7. https://doi.org/10.1002/JSFA.10663Moritz, M. S. M., Verbruggen, S. E. L., & Post, M. J. (2015). Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture, 14(2), 208–216. https://doi.org/10.1016/S2095-3119(14)60889-3Munteanu, C., Mireşan, V., Răducu, C., Ihuţ, A., Uiuiu, P., Pop, D., Neacşu, A., Cenariu, M., & Groza, I. (2021). Can Cultured Meat Be an Alternative to Farm Animal Production for a Sustainable and Healthier Lifestyle? Frontiers in Nutrition, 8. https://doi.org/10.3389/FNUT.2021.749298Nakagawa, K. (2014). Nano- and Microencapsulation of Flavor in Food Systems. Nano- and Microencapsulation for Foods, 9781118292334, 249–271. https://doi.org/10.1002/9781118292327.CH10No-kill, lab-grown meat to go on sale for first time | Meat industry | The Guardian. (n.d.). Retrieved January 18, 2024, from https://www.theguardian.com/environment/2020/dec/02/no-kill-lab-grown-meat-to-go-onsale-for-first-timeNuevos cambios en el enfoque japonés de la regulación y la seguridad de la carne cultivada. (n.d.). Retrieved January 23, 2024, from https://vegconomist.es/politica/enfoque-japonescarne-cultivada-primer-ministro-kishida/O’Mara, P., Farrell, A., Bones, J., & Twomey, K. (2018). Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta, 176, 130–139. https://doi.org/10.1016/J.TALANTA.2017.07.088Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N., Gadjanski, I., & Vidić, J. (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2428–2454. https://doi.org/10.1111/1541- 4337.12727Ong, K. J., Johnston, J., Datar, I., Sewalt, V., Holmes, D., & Shatkin, J. A. (2021). Food safety considerations and research priorities for the cultured meat and seafood industry. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5421–5448. https://doi.org/10.1111/1541-4337.12853Pandurangan, M., & Kim, D. H. (2015). A novel approach for in vitro meat production. Applied Microbiology and Biotechnology, 99(13), 5391–5395. https://doi.org/10.1007/S00253-015- 6671-5Panel | Modelo de Evaluación Ambiental de la Ganadería Mundial (GLEAM) | Organización de las Naciones Unidas para la Alimentación y la Agricultura. (n.d.). Retrieved March 10, 2023, from https://www.fao.org/gleam/results/es/Pereira, R. F., & Bártolo, P. J. (2015). 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 132(48). https://doi.org/10.1002/APP.42458Plant-based and cultivated meat innovation | GFI. (n.d.). Retrieved January 20, 2024, from https://gfi.org/Post, M. J. (2012). Cultured meat from stem cells: challenges and prospects. Meat Science, 92(3), 297–301. https://doi.org/10.1016/J.MEATSCI.2012.04.008Post, M. J. (2014). Cultured beef: medical technology to produce food. Journal of the Science of Food and Agriculture, 94(6), 1039–1041. https://doi.org/10.1002/JSFA.6474Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403–415. https://doi.org/10.1038/S43016-020-0112-ZPriyadarshini, M., Mohanty, S., Mahapatra, T., Mohapatra, P., & Dash, R. (2020). Threedimensional tumor model and their implication in drug screening for tackling chemoresistance. Biomaterials for 3D Tumor Modeling, 481–503. https://doi.org/10.1016/B978-0-12-818128-7.00020-4Ramani, S., Ko, D., Kim, B., Cho, C., Kim, W., Jo, C., Lee, C. K., Kang, J., Hur, S., & Park, S. (2021). Technical requirements for cultured meat production: A review. Journal of Animal Science and Technology, 63(4), 681–692. https://doi.org/10.5187/JAST.2021.E45Ramiah, P., du Toit, L. C., Choonara, Y. E., Kondiah, P. P. D., & Pillay, V. (2020). HydrogelBased Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 7, 506968. https://doi.org/10.3389/FMATS.2020.00076/BIBTEXRauch, C., Feifel, E., Amann, E. M., Spötl, H. P., Schennach, H., Pfaller, W., & Gstraunthaler, G. (2011). Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. Altex, 28(4), 305–316. https://doi.org/10.14573/ALTEX.2011.4.305Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/IJMS22147513Rodriguez, B. L., & Larkin, L. M. (2018). Functional three-dimensional scaffolds for skeletal muscle tissue engineering. Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications, 279–304. https://doi.org/10.1016/B978-0-08-100979- 6.00012-4Roy, B., Hagappa, A., Ramalingam, Y. D., Mahalingam, N., & Alaudeen, A. banu S. (2021). A review on lab-grown meat: Advantages and disadvantages. Quest International Journal of Medical and Health Sciences, 4(1), 19–24. https://ojs.qiu.edu.my/journal/index.php/qijmhs/article/view/48Sahafnejad-Mohammadi, I., Karamimoghadam, M., Zolfagharian, A., Akrami, M., & Bodaghi, M. (2022). 4D printing technology in medical engineering: a narrative review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6), 1–26. https://doi.org/10.1007/S40430-022-03514-X/FIGURES/16Schnitzler, A. C., Verma, A., Kehoe, D. E., Jing, D., Murrell, J. R., Der, K. A., Aysola, M., Rapiejko, P. J., Punreddy, S., & Rook, M. S. (2016). Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochemical Engineering Journal, 108, 3–13. https://doi.org/10.1016/J.BEJ.2015.08.014Seah, J. S. H., Singh, S., Tan, L. P., & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 42(2), 311–323. https://doi.org/10.1080/07388551.2021.1931803Shahin-Shamsabadi, A., & Selvaganapathy, P. R. (2022). Engineering Murine Adipocytes and Skeletal Muscle Cells in Meat-like Constructs Using Self-Assembled Layer-by-Layer Biofabrication: A Platform for Development of Cultivated Meat. Cells, Tissues, Organs, 211(3), 304–312. https://doi.org/10.1159/000511764Sharma, S., Thind, S. S., & Kaur, A. (2015). In vitro meat production system: why and how? Journal of Food Science and Technology, 52(12), 7599. https://doi.org/10.1007/S13197- 015-1972-3Simsa, R., Yuen, J., Stout, A., Rubio, N., Fogelstrand, P., & Kaplan, D. L. (2019). Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of CellBased Meat. Foods 2019, Vol. 8, Page 521, 8(10), 521. https://doi.org/10.3390/FOODS8100521Sinacore, M. S., Drapeau, D., & Adamson, S. R. (2000). Adaptation of mammalian cells to growth in serum-free media. Molecular Biotechnology, 15(3), 249–257. https://doi.org/10.1385/MB:15:3:249Singapur es el primer país que aprueba la carne cultivada en laboratorio. (n.d.). Retrieved January 20, 2024, from https://cnnespanol.cnn.com/2020/12/03/singapur-es-el-primer-paisque-aprueba-la-carne-cultivada-en-laboratorio/Singh, T., Shukla, S., Kumar, P., Wahla, V., & Bajpai, V. K. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8(AUG), 268461. https://doi.org/10.3389/FMICB.2017.01501/BIBTEXSkardal, A., & Atala, A. (2015). Biomaterials for integration with 3-D bioprinting. Annals of Biomedical Engineering, 43(3), 730–746. https://doi.org/10.1007/S10439-014-1207-1Specht, E. A., Welch, D. R., Rees Clayton, E. M., & Lagally, C. D. (2018). Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal, 132, 161–168. https://doi.org/10.1016/J.BEJ.2018.01.015Specht, L. (2020). GFI.ORG Creating a healthy, humane, and sustainable food supply. An analysis of culture medium costs and production volumes for cultivated meat. The Good Food Institute.Srutee, R., Sowmya, R. S., & Annapure, U. S. (2022). Clean meat: techniques for meat production and its upcoming challenges. Animal Biotechnology, 33(7), 1721–1729. https://doi.org/10.1080/10495398.2021.1911810Statement on Cultured Quail as a Novel Food application | Food Standards Australia New Zealand. (n.d.). Retrieved January 20, 2024, from https://www.foodstandards.gov.au/news/Statement-on-Cultured-Quail-as-a-Novel-FoodapplicationStephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78, 155–166. https://doi.org/10.1016/J.TIFS.2018.04.010Strathearn, K. E., Maria, A., & Pardo, P. (2014). Parameters to Consider When Expanding Cells on Corning ® Microcarriers Application Note.Suresh, S. (2018). “Friend” or “Fiend”: In vitro lab meat and how Canada might regulate its production and sale “FRIEND” OR “FIEND”: IN VITRO LAB MEAT AND HOW CANADA MIGHT REGULATE ITS PRODUCTION AND SALE “FRIEND” OR “FIEND”: IN VITRO LAB MEAT AND HOW CANADA MIGHT REGULATE ITS PRODUCTION AND SALE CANADIAN AGRI-FOOD POLICY INSTITUTE.Sustainable, J., Chodkowska, K. A., Wódz, K., & Wojciechowski, J. (2022). Citation: Chodkowska, K Sustainable Future Protein Foods: The Challenges and the Future of Cultivated Meat. https://doi.org/10.3390/foods11244008Swartz, E. (2019). SBE Special Section: Industrial Biotechnology. www.aiche.org/cepTarassoli, S. P., Jessop, Z. M., Jovic, T., Hawkins, K., & Whitaker, I. S. (2021). Candidate Bioinks for Extrusion 3D Bioprinting—A Systematic Review of the Literature. Frontiers in Bioengineering and Biotechnology, 9, 616753. https://doi.org/10.3389/FBIOE.2021.616753/BIBTEXThe Better Butchers Plans to Open the World’s First Cultivated Meat Butchery. (n.d.). Retrieved January 22, 2024, from https://www.greenqueen.com.hk/the-better-butchers-world-firstcultivated-meat-butchery-canada/Treich, N. (2021). Cultured Meat: Promises and Challenges. Environmental and Resource Economics, 79(1), 33–61. https://doi.org/10.1007/s10640-021-00551-3Tuomisto, H. L. (2019). The eco‐friendly burger. EMBO Reports, 20(1). https://doi.org/10.15252/EMBR.201847395Tuomisto, H. L., & Teixeira De Mattos, M. J. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14), 6117–6123UK’s first cultivated meat approval submitted. (n.d.). Retrieved January 22, 2024, from https://www.foodnavigator.com/Article/2023/08/04/UK-s-first-cultivated-meat-approvalsubmittedUpside y Good Meat abren una nueva era en la industria cárnica al lograr la aprobación final para su pollo cultivado. (n.d.). Retrieved January 22, 2024, from https://www.alimarket.es/alimentacion/noticia/373550/upside-y-good-meat-abren-unanueva-era-en-la-industria-carnica-al-lograr-la-aprobacion-final-para-su-pollo-cultivadoVan Eenennaam, A. L. (2017). Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27–34. https://doi.org/10.1016/J.COPBIO.2016.10.007Verbruggen, S., Luining, D., van Essen, A., & Post, M. J. (2018). Bovine myoblast cell production in a microcarriers-based system. Cytotechnology, 70(2), 503–512. https://doi.org/10.1007/S10616-017-0101-8/FIGURES/4Vergeer, R., Sinke, P., & Odegard, I. (2021). TEA of cultivated meat Future projections of different scenarios-corrigendum clean. www.cedelft.euVillena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238, 1–11. https://doi.org/10.1016/J.JFOODENG.2018.05.024Wang, Y., Xiao, X., & Wang, L. (2020). In vitro characterization of goat skeletal muscle satellite cells. Animal Biotechnology, 31(2), 115–121. https://doi.org/10.1080/10495398.2018.1551230Xiang, N., Yao, Y., Yuen, J. S. K., Stout, A. J., Fennelly, C., Sylvia, R., Schnitzler, A., Wong, S., & Kaplan, D. L. (2022). Edible films for cultivated meat production. Biomaterials, 287, 121659. https://doi.org/10.1016/J.BIOMATERIALS.2022.121659Zhang, B., Gao, L., Ma, L., Luo, Y., Yang, H., & Cui, Z. (2019). 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering, 5(4), 777–794. https://doi.org/10.1016/J.ENG.2019.03.009Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443–450. https://doi.org/10.1016/J.TIFS.2020.01.026Zidarič, T., Milojević, M., Vajda, J., Vihar, B., & Maver, U. (2020). Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. Food Engineering Reviews, 12(4), 498–519. https://doi.org/10.1007/S12393-020-09253-W/METRICSPublication746ed5cb-f1b9-498e-bec2-16b81e76eeafvirtual::49-1746ed5cb-f1b9-498e-bec2-16b81e76eeafvirtual::49-144b1e648-7687-44a8-9b59-baca0b40dab4virtual::50-169cd1e8b-f6cc-4d3b-9469-e1f1523cce4cvirtual::51-144b1e648-7687-44a8-9b59-baca0b40dab4virtual::50-169cd1e8b-f6cc-4d3b-9469-e1f1523cce4cvirtual::51-1LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.ufps.edu.co/bitstreams/79dd9b33-ef02-4677-ae64-9520de48935f/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD51falseAnonymousREADORIGINALTG_1611625 .pdfTG_1611625 .pdfProyecto de pregradoapplication/pdf1221853https://repositorio.ufps.edu.co/bitstreams/74893a14-e5e6-419f-a979-0bea0e3d472f/download8a357973727bbef92abdc2758530d8c7MD52trueAnonymousREADTEXTTG_1611625 .pdf.txtTG_1611625 .pdf.txtExtracted texttext/plain101968https://repositorio.ufps.edu.co/bitstreams/94d258ed-ee35-4cb3-b97c-461f9bcae40a/downloadb41830337213d5c0d1c83e04b4aead80MD53falseAnonymousREADTHUMBNAILTG_1611625 .pdf.jpgTG_1611625 .pdf.jpgGenerated Thumbnailimage/jpeg12984https://repositorio.ufps.edu.co/bitstreams/543ee125-0a3b-47af-a449-30281a24fbe7/download6284be791a0462f8a698d5b38d742357MD54falseAnonymousREADufps/10394oai:repositorio.ufps.edu.co:ufps/103942025-10-24 04:01:17.41https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad Francisco de Paula Santander, 2024open.accesshttps://repositorio.ufps.edu.coRepositorio Universidad Francisco de Paula Santanderbdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
