Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático

En las últimas décadas, el rápido crecimiento de la economía y de la sociedad ha provocado un aumento en la generación de los residuos peligrosos (en adelante RESPEL, ver Imagen); causando problemas ambientales que afectan directamente la salud humana y dañan el medio ambiente [1]. Esta problemática...

Full description

Autores:
Puerto Cuadros, Eduard Gilberto
Adarme Jaimes, Marco Antonio
Adarme Jaimes, Marco Antonio
Tipo de recurso:
http://purl.org/coar/resource_type/c_baaf
Fecha de publicación:
2022
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
spa
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/9639
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/9639
Palabra clave:
Residuos Peligrosos
Aprendizaje de Máquina
Sistemas Autónomos
Inteligencia Artificial
Rights
openAccess
License
Derechos Reservados - Universidad Francisco de Paula Santander
id RUFPS2_cacb63cf14ed3eea449de585e9db9f6d
oai_identifier_str oai:repositorio.ufps.edu.co:ufps/9639
network_acronym_str RUFPS2
network_name_str Repositorio Digital UFPS
repository_id_str
dc.title.spa.fl_str_mv Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
title Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
spellingShingle Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
Residuos Peligrosos
Aprendizaje de Máquina
Sistemas Autónomos
Inteligencia Artificial
title_short Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
title_full Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
title_fullStr Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
title_full_unstemmed Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
title_sort Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático
dc.creator.fl_str_mv Puerto Cuadros, Eduard Gilberto
Adarme Jaimes, Marco Antonio
Adarme Jaimes, Marco Antonio
dc.contributor.author.none.fl_str_mv Puerto Cuadros, Eduard Gilberto
Adarme Jaimes, Marco Antonio
Adarme Jaimes, Marco Antonio
dc.contributor.researchgroup.spa.fl_str_mv GIA, GIDIS
dc.contributor.supervisor.none.fl_str_mv Judith Del Pilar Rodriguez Tenjo
dc.subject.proposal.spa.fl_str_mv Residuos Peligrosos
Aprendizaje de Máquina
Sistemas Autónomos
Inteligencia Artificial
topic Residuos Peligrosos
Aprendizaje de Máquina
Sistemas Autónomos
Inteligencia Artificial
description En las últimas décadas, el rápido crecimiento de la economía y de la sociedad ha provocado un aumento en la generación de los residuos peligrosos (en adelante RESPEL, ver Imagen); causando problemas ambientales que afectan directamente la salud humana y dañan el medio ambiente [1]. Esta problemática se asocia a una deficiente producción de conocimiento científico y tecnológico entorno a este fenómeno. Por ejemplo, la ausencia de modelos que permitan la supervisión y predicción de los RESPEL, o de simulaciones y sistemas para la toma de decisión basados datos RESPEL, el poco aprovechamiento de manera automática de los datos e información entorno al ecosistema RESPEL (datos sobre quien los produce, a donde se vierten, a quienes afecta, que los caracteriza, etc.), entre otras. En general, en Colombia se han desarrollado proyectos con acciones enfocadas a: i) educación y cultura en RESPEL ii) control y vigilancia de RESPEL iii) producción más limpia y iv) riesgo químico asociado al manejo de RESPEL, pero ninguno ha utilizado los datos del ecosistema de RESPEL para el desarrollo de estas propuestas, lo que muestra una deficiente transformación digital en sus procesos (AMVA 2017, IDEAM). Esta situación también se puede ver en el modelo de sistematización del conocimiento de Información de RESPEL que se tiene, el Sistema de Registro de Generadores de Residuos o Desechos Peligrosos (capítulo VI del decreto 4741 del 30 de diciembre de 2005), que si bien permite registrar información sobre los generados de RESPEL, no ofrece la capacidad para aprovechar la riqueza de los datos y explotarlos en función de procesos de toma de decisiones más precisos. A nivel del Departamento Norte de Santander el proyecto establece como indicador de referencia, cero (0) producciones científicas y sistemas autónomos sobre el aprovechamiento y explotación de los datos RESPEL usando técnicas de inteligencia artificial en el Departamento Norte de Santander [1]. Con base en lo anterior, el proyecto busca generar una nueva producción científica y tecnológica a través de la conceptualización de un Sistema Autónomo de Supervisión Inteligente de Residuos Peligrosos basado en técnicas de aprendizaje automático para el Departamento Norte de Santander, y hacer simulaciones en diferentes contextos industriales con producción de RESPEL. El sistema inteligente se caracteriza por tener una base tecnológica innovadora, basada en los paradigmas de Meta-aprendizaje y Ciclos Autónomos de Tareas de Análisis de Datos, permitiendo que el sistema adquiera la capacidad de auto-aprender a partir de los datos generados por el ecosistema de residuos peligrosos y experiencias de los expertos buscando un compromiso adecuado entre minimizar los residuos peligrosos (cuidado del medio ambiente) y maximizar los beneficios de las industrias, permitiendo una mayor eficiencia y precisión en el análisis y uso de los datos, lo cual se traduce en mayor rentabilidad para las empresas generadoras y gestoras de RESEPL. Esta propuesta también contempla usar tecnologías emergentes de la Industria 4.0, como en el paradigma IoT para la recolección y tratamiento de los datos, o Big Data para la gestión de los datos, de tal manera de que el sistema pueda gestionar autónomamente los RESPEL. Esta alternativa se va a desarrollar basada en la metodología MIDANO (Metodología para Investigar y Desarrollar Analítica de datos en una Organización, ver sección de Metodología), la cual prevé diferentes productos: El ciclo autónomo, el modelo de datos multidimensional, la concepción e implementación de las tareas de análisis de datos. Para el desarrollo de las tareas de análisis de datos se utilizará las metodología CRIS-DM (del inglés Cross Industry Standard Process for Data Mining, ver sección de metodología). Finalmente, para el desarrollo del proyecto se realizarán tareas científico-técnicas propias del área de Analítica de Datos, basadas en las metodologías CRISP-DM y MIDANO: comprender la problemática a estudiar del ecosistema de RESPEL, identificación de las fuentes de RESPEL para la extracción de conocimiento, comprensión de los datos de RESPEL, preparación y tratamiento de los datos de RESPEL, modelado de los ciclos autonómicos de análisis de datos, evaluación de los modelos de conocimiento definido, y por último, despliegue a nivel de prototipo en un contexto real.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2025-06-06T16:36:59Z
dc.date.available.none.fl_str_mv 2025-06-06T16:36:59Z
dc.type.spa.fl_str_mv Propuesta de investigación
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_baaf
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/PID
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_baaf
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.ufps.edu.co/handle/ufps/9639
url https://repositorio.ufps.edu.co/handle/ufps/9639
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.eng.fl_str_mv Derechos Reservados - Universidad Francisco de Paula Santander
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Francisco de Paula Santander
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 47 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.projectdates.spa.fl_str_mv 2022- 09 -16/ 2023-11-30
dc.publisher.spa.fl_str_mv Universidad Francisco de Paula Santander
dc.publisher.place.spa.fl_str_mv San José de Cúcuta
dc.source.spa.fl_str_mv file:///C:/Users/ufps/Downloads/PROYECTO%20FINU-2022-RESPEL-FIRMADO.pdf
institution Universidad Francisco de Paula Santander
bitstream.url.fl_str_mv https://repositorio.ufps.edu.co/bitstreams/337ac3e9-89ff-4a04-a505-811aaaa50e89/download
https://repositorio.ufps.edu.co/bitstreams/44dc1281-023f-4b6d-8fcf-f85fad5f5378/download
https://repositorio.ufps.edu.co/bitstreams/1723f406-6d84-4a7b-9089-658450273de9/download
https://repositorio.ufps.edu.co/bitstreams/da222a4c-4ec1-401c-a1ff-765385af66c7/download
bitstream.checksum.fl_str_mv e4b82ec777884546fe0893cf64b99e10
2f9959eaf5b71fae44bbf9ec84150c7a
5e28dbad73090868fdd05f073492dcb4
c1ab7e80afc436b922991e8b42353f1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Francisco de Paula Santander
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059587813212160
spelling Puerto Cuadros, Eduard GilbertoAdarme Jaimes, Marco AntonioAdarme Jaimes, Marco Antoniovirtual::392-1GIA, GIDISJudith Del Pilar Rodriguez Tenjo2025-06-06T16:36:59Z2025-06-06T16:36:59Z2022https://repositorio.ufps.edu.co/handle/ufps/9639En las últimas décadas, el rápido crecimiento de la economía y de la sociedad ha provocado un aumento en la generación de los residuos peligrosos (en adelante RESPEL, ver Imagen); causando problemas ambientales que afectan directamente la salud humana y dañan el medio ambiente [1]. Esta problemática se asocia a una deficiente producción de conocimiento científico y tecnológico entorno a este fenómeno. Por ejemplo, la ausencia de modelos que permitan la supervisión y predicción de los RESPEL, o de simulaciones y sistemas para la toma de decisión basados datos RESPEL, el poco aprovechamiento de manera automática de los datos e información entorno al ecosistema RESPEL (datos sobre quien los produce, a donde se vierten, a quienes afecta, que los caracteriza, etc.), entre otras. En general, en Colombia se han desarrollado proyectos con acciones enfocadas a: i) educación y cultura en RESPEL ii) control y vigilancia de RESPEL iii) producción más limpia y iv) riesgo químico asociado al manejo de RESPEL, pero ninguno ha utilizado los datos del ecosistema de RESPEL para el desarrollo de estas propuestas, lo que muestra una deficiente transformación digital en sus procesos (AMVA 2017, IDEAM). Esta situación también se puede ver en el modelo de sistematización del conocimiento de Información de RESPEL que se tiene, el Sistema de Registro de Generadores de Residuos o Desechos Peligrosos (capítulo VI del decreto 4741 del 30 de diciembre de 2005), que si bien permite registrar información sobre los generados de RESPEL, no ofrece la capacidad para aprovechar la riqueza de los datos y explotarlos en función de procesos de toma de decisiones más precisos. A nivel del Departamento Norte de Santander el proyecto establece como indicador de referencia, cero (0) producciones científicas y sistemas autónomos sobre el aprovechamiento y explotación de los datos RESPEL usando técnicas de inteligencia artificial en el Departamento Norte de Santander [1]. Con base en lo anterior, el proyecto busca generar una nueva producción científica y tecnológica a través de la conceptualización de un Sistema Autónomo de Supervisión Inteligente de Residuos Peligrosos basado en técnicas de aprendizaje automático para el Departamento Norte de Santander, y hacer simulaciones en diferentes contextos industriales con producción de RESPEL. El sistema inteligente se caracteriza por tener una base tecnológica innovadora, basada en los paradigmas de Meta-aprendizaje y Ciclos Autónomos de Tareas de Análisis de Datos, permitiendo que el sistema adquiera la capacidad de auto-aprender a partir de los datos generados por el ecosistema de residuos peligrosos y experiencias de los expertos buscando un compromiso adecuado entre minimizar los residuos peligrosos (cuidado del medio ambiente) y maximizar los beneficios de las industrias, permitiendo una mayor eficiencia y precisión en el análisis y uso de los datos, lo cual se traduce en mayor rentabilidad para las empresas generadoras y gestoras de RESEPL. Esta propuesta también contempla usar tecnologías emergentes de la Industria 4.0, como en el paradigma IoT para la recolección y tratamiento de los datos, o Big Data para la gestión de los datos, de tal manera de que el sistema pueda gestionar autónomamente los RESPEL. Esta alternativa se va a desarrollar basada en la metodología MIDANO (Metodología para Investigar y Desarrollar Analítica de datos en una Organización, ver sección de Metodología), la cual prevé diferentes productos: El ciclo autónomo, el modelo de datos multidimensional, la concepción e implementación de las tareas de análisis de datos. Para el desarrollo de las tareas de análisis de datos se utilizará las metodología CRIS-DM (del inglés Cross Industry Standard Process for Data Mining, ver sección de metodología). Finalmente, para el desarrollo del proyecto se realizarán tareas científico-técnicas propias del área de Analítica de Datos, basadas en las metodologías CRISP-DM y MIDANO: comprender la problemática a estudiar del ecosistema de RESPEL, identificación de las fuentes de RESPEL para la extracción de conocimiento, comprensión de los datos de RESPEL, preparación y tratamiento de los datos de RESPEL, modelado de los ciclos autonómicos de análisis de datos, evaluación de los modelos de conocimiento definido, y por último, despliegue a nivel de prototipo en un contexto real.Fondo de Investigaciones Universitarias - FINU - UFPSMediante la resolución 125 de 24 de mayo de 2011 se reglamenta los criterios y procedimientos para la financiación de los proyectos de investigación a través del fondo de investigaciones universitarias - finu – ufpsEl desarrollo científico-tecnológico del proyecto está pensado en el CRISP-DM (del ingles Cross Industry Standard Process for Data Mining) y MIDANO (Metodología para Investigar y Desarrollar Analítica de datos en una Organización). Ambas comprenden fases de análisis, comprensión, limpieza y modelado de los datos, así́como de desarrollo de tareas de análisis de datos de RESPEL a partir de los cuales se establece la arquitectura o modelo del sistema autonómico de supervisión inteligente de RESPEL. Fase 1: Caracterizar científico-tecnológicamente el problema de RESPEL en el contexto de estudio. Actividad 1. Elaborar una Revisión Sistemática de la Literatura entorno al desarrollo de modelos, arquitecturas y sistemas de supervisión, control y aprovechamiento de los Datos de RESPEL usando Técnicas de Inteligencia Artificial. Sub-actividad 1.1: Estudiar métodos de recomendación basados en datos para la toma de decisiones. Sub-actividad 1.2: Analizar el uso de las técnicas avanzadas de aprendizaje automático para la gestión y tratamiento de los datos de RESPEL Sub-actividad 1.3: Investigar métodos de análisis de riesgos de RESPEL basados en datos. Sub-actividad 1.4: Investigar técnicas de analítica de datos más adecuadas para el estudio de escenario de gestión de RESPEL. Actividad 2. Realizar ingeniería de conocimiento a los procesos de las Empresas generadoras y gestoras de RESPEL, orientado a caracterizar el problema de RESPEL en su contexto organizacional. Sub actividad 2.1: Caracterizar el problema del Ecosistema RESPEL: Identificar las fuentes de RESPEL para la extracción de conocimiento en las empresas productoras y gestoras de RESPEL. Sub actividad 2.2: Realizar un proceso de ingeniería de conocimiento, orientado al problema RESEL y su contexto organizacional. Sub-actividad 2.3: Determinar las necesidades de tareas de análisis de datos y la viabilidad de su desarrollo. Actividad 3. Elaborar el Documento de investigación con base en los resultados de las anteriores actividades relacionadas con el Objetivo 1 del Proyecto. Actividad 3.1 Escribir un artículo científico con los resultados de investigación hallados en la primera fase. Fase 2: Establecer la arquitectura del sistema de supervisión Inteligente de RESPEL con técnicas de aprendizaje automático para el aprovechamiento de los datos RESPEL. Para establecer el modelo computacional del sistema autónomo de supervisión inteligente RESPEL, se plantean las siguientes actividades: Actividad 1. Definir los ciclos autónomos de supervisión RESPEL con base en los escenarios de la dinámica de los datos de RESPEL en los modelos de negocio de las Industrias productoras y gestoras RESPEL usando el paradigma de aprendizaje automático. Sub-actividad 1.1: Preparar y tratar los Datos RESPEL: En esta actividad se realiza la preparación de los datos desarrollando dos etapas: determinación y extracción desde las fuentes, e ingeniería de características sobre los datos. Los productos más resaltantes de esta fase son las vistas minables (conceptual y operativa), las variables objetivas, y el modelo de datos multidimensional. Sub-actividad 1.2 Analizar los datos: Los datos aportados por la problemática serán explorados mediante estadística descriptiva, para entender su naturaleza, relevancia y potencial aplicabilidad en la resolución del problema de gestión de RESPEL. En particular, en esta actividad hay que realizar ingeniería de descriptores, para determinar las variables claves del modelo. Actividad 2. Diseñar y Desarrollar las tareas de Analítica de Datos de RESPEL en función de los procesos de las Empresas generadoras y gestoras de RESPEL y los ciclos autónomos definidos. Sub-Actividad 2.1: Definición de la Vista Minable Conceptual RESPEL(VMC, por sus siglas en español) y Vista Minable Operativa RESPEL (VMO, por sus siglas en español): describe en detalle cada una de las variables a tomar en cuenta para c/tarea de AdD, y carga los datos del historial y de realizar la etapa de tratamiento de datos. Sub-Actividad 2.2: Diseño de las tareas de Análisis de Datos preliminares: Es la definición específica de cada tarea, y el desarrollo inicial de los modelos de conocimiento usando los datos iniciales en la VMO. Actividad 3. Escribir dos artículos científicos con los resultados de investigación de esta segunda fase. Fase 3. Desarrollar un prototipo de sistema autónomo inteligente para el apoyo a la toma de decisiones en cuanto al tratamiento y manejo de los RESPEL y realizar pruebas simuladas o reales en el contexto de las empresas productoras y gestoras de RESPEL de Norte de Santander. Actividad 1: implementación de las tareas de AdD para un contexto concreto de RESPEL. En esta fase se evalúa la herramienta computacional utilizada para el desarrollo de las tareas de AdD, y se implementan los ciclos autonómicos de tareas de AdD RESPEL: Actividad 2: validación del producto a nivel funcional; en este caso, del Sistema Autónomo de Supervisión de Residuos Peligrosos basado en Técnicas de Aprendizaje Automático para Norte de Santander. Actividad 3. Escribir artículos científicos con los resultados de investigación hallados en esta tercera fase. Finalmente, a modo de resumen, los resultados estarían vinculados a la generación de conocimiento de 2 artículos científicos, un informe de investigación, y un prototipo del sistema. Además de la divulgación de los mismos a través de ponencias y/o seminarios internacionales. Este conocimiento va a ampliar el know-how en el área de RESPEL.Línea de Investigación en Sistemas Inteligentes Aplicados47 Páginasapplication/pdfspaUniversidad Francisco de Paula SantanderSan José de CúcutaDerechos Reservados - Universidad Francisco de Paula Santanderhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2file:///C:/Users/ufps/Downloads/PROYECTO%20FINU-2022-RESPEL-FIRMADO.pdfSistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automáticoPropuesta de investigaciónhttp://purl.org/coar/resource_type/c_baafhttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttps://purl.org/redcol/resource_type/PIDinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia2022- 09 -16/ 2023-11-30Residuos PeligrososAprendizaje de MáquinaSistemas AutónomosInteligencia Artificial[1] Banco Mundial (septiembre 20, 2018). Los desechos a nivel mundial crecerán un 70 % para 2050, a menos que se adopten medidas urgentes. [online]. Disponible: https://www.bancomundial.org/es/news/press-release/2018/09/20/global-waste-to-growby-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report.[2] Fuente, revisión en la base de datos Web Science, Google Scholar y Scopus, ventana 2018-2019-2020, usando las cadenas de búsqueda (“hazardous waste” AND "machine learning") y ("Residuos Peligrosos" y "Aprendizaje de Maquina") en el título o resumen de los documentos]. Se espera con el proyecto aumentar a una (1) nueva producción científica para el aprovechamiento de los datos RESPEL en el Departamento de Antioquía[3] Ciclo Autonómico de Análisis de Datos para el Diseño de Descriptores para Algoritmos de Aprendizaje Automático", Coautores: R. Vargas, E. Puerto, ReVeCom, Vol. 5, No. 2, pp. 1-11, 2018.[4] A multi-HVAC system autonomic management architecture for smart buildings", Coautores: A. Garces-Jimenez, N. Gallego-Salvador, J. Gutiérrez de Mesa, J. GómezPulido, A. García-Tejedor, IEEE Access, Vol, 7, pp. 123402 - 123415, 2019.[5] Experimental Comparison of the Diagnostic Capabilities of Classification and Clustering Algorithms for the QoS Management in an Autonomic IoT Platform", Coautores: L. Morales, C. Ouedraogo, C. Chassot, S. Medjiah, K. Drira, Service Oriented Computing and Applications, Elsevier, Vol. 13, No. 3, pp 199-219, 2019.[6] Design of an autonomic communication system", Coautores: K. Aguilar, J. Torres, Int. J. Autonomous and Adaptive Communications Systems, Vol. 12, No. 4, pp. 299-330, 2019.[7] Specification of the Autonomic Cycles of Learning Analytic Tasks for a Smart Classroom", Coautores: J. Cordero, O. Buendia, Journal of Educational Computing Research, vol 56 no. 6, pp. 866-891, 2018.[8] J. Zavala. Tratados internacionales sobre desechos peligrosos: técnicas del Convenio de Basilea de 1989 para evitar los problemas de incompatibilidad. Universidad Carlos III de Madrid. Instituto de Estudios Internacionales y Europeos Francisco de Vitoria. UNEP. www.basel.int. 2001.[9] C. Estocolmo (ONU 2004). Ginebra. UNEP Chemicals, 2001. www.pops.int[10] C. de Rotterdam, (2004). Convenio de Rotterdam sobre el procedimiento de consentimiento fundamentado previo aplicable a ciertos plaguicidas y productos químicos peligrosos objeto de comercio internacional. Programa de las Naciones Unidas para el Medio Ambiente y Organización de las Naciones Unidas para la Agricultura y la Alimentación. Rotterdam, Holanda.[11] A. I. Azevedo.& M. Santos. “KDD, SEMMA and CRISP-DM: a parallel overview”. IADSDM. Tesis de Maestría. Instituto Politécnico do Porto. Instituto Superior de Contabilidade e Administração do Porto. 2008. http://hdl.handle.net/10400.22/136.[12] Pacheco, Fannia, et al. "Methodological framework for data processing based on the Data Science paradigm." 2014 XL Latin American Computing Conference (CLEI). IEEE, 2014.[13] Marín Aguilar, D. H., & Arboleda López, N. A. (2008). Gestión de residuos peligrosos industriales en el Valle de Aburrá en los últimos diez años (1997-2007): un estado del arte.[13] Marín Aguilar, D. H., & Arboleda López, N. A. (2008). Gestión de residuos peligrosos industriales en el Valle de Aburrá en los últimos diez años (1997-2007): un estado del arte.[15] Segura, Á., Rojas, L., & Pulido, Y. (2020). Referentes mundiales en sistemas de gestión de residuos sólidos. Revista Espacios, 41(17).053-2022Sistema autónomo de supervisión de residuos peligrosos basado en técnicas de aprendizaje automático053-2022Universidad Francisco de Paula SantanderPublication4bbf42a2-cb39-4896-8832-7cd9e6894314virtual::392-14bbf42a2-cb39-4896-8832-7cd9e6894314virtual::392-1ORIGINALPROYECTO FINU-2022-RESPEL-FIRMADO.pdfPROYECTO FINU-2022-RESPEL-FIRMADO.pdfProyecto FINUapplication/pdf1752677https://repositorio.ufps.edu.co/bitstreams/337ac3e9-89ff-4a04-a505-811aaaa50e89/downloade4b82ec777884546fe0893cf64b99e10MD51trueLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.ufps.edu.co/bitstreams/44dc1281-023f-4b6d-8fcf-f85fad5f5378/download2f9959eaf5b71fae44bbf9ec84150c7aMD52falseAnonymousREADTEXTPROYECTO FINU-2022-RESPEL-FIRMADO.pdf.txtPROYECTO FINU-2022-RESPEL-FIRMADO.pdf.txtExtracted texttext/plain97052https://repositorio.ufps.edu.co/bitstreams/1723f406-6d84-4a7b-9089-658450273de9/download5e28dbad73090868fdd05f073492dcb4MD53falseTHUMBNAILPROYECTO FINU-2022-RESPEL-FIRMADO.pdf.jpgPROYECTO FINU-2022-RESPEL-FIRMADO.pdf.jpgGenerated Thumbnailimage/jpeg16841https://repositorio.ufps.edu.co/bitstreams/da222a4c-4ec1-401c-a1ff-765385af66c7/downloadc1ab7e80afc436b922991e8b42353f1aMD54falseufps/9639oai:repositorio.ufps.edu.co:ufps/96392025-11-05 10:11:38.11https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados - Universidad Francisco de Paula Santanderrestrictedhttps://repositorio.ufps.edu.coRepositorio Universidad Francisco de Paula Santanderbdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=