Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhid...
- Autores:
-
Velasco Estévez, Anyela Milena
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Francisco de Paula Santander
- Repositorio:
- Repositorio Digital UFPS
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ufps.edu.co:ufps/10406
- Acceso en línea:
- https://repositorio.ufps.edu.co/handle/ufps/10406
- Palabra clave:
- Anhidrasa carbónica
Fármacos
Sulfonamidas
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
| id |
RUFPS2_8b152060321cea9926653e3c88a99f1f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufps.edu.co:ufps/10406 |
| network_acronym_str |
RUFPS2 |
| network_name_str |
Repositorio Digital UFPS |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| title |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| spellingShingle |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. Anhidrasa carbónica Fármacos Sulfonamidas |
| title_short |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| title_full |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| title_fullStr |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| title_full_unstemmed |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| title_sort |
Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis. |
| dc.creator.fl_str_mv |
Velasco Estévez, Anyela Milena |
| dc.contributor.advisor.none.fl_str_mv |
Ortíz Pérez, Eyra Liliana Rivera Sánchez, Giraldo |
| dc.contributor.author.none.fl_str_mv |
Velasco Estévez, Anyela Milena |
| dc.contributor.jury.none.fl_str_mv |
Vega Contreras, Nelson Alfonso Jurgensen Rangel, Mónica Durán Jaramillo, Andrés |
| dc.subject.lemb.none.fl_str_mv |
Anhidrasa carbónica Fármacos Sulfonamidas |
| topic |
Anhidrasa carbónica Fármacos Sulfonamidas |
| description |
Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhidrasa carbónica (β-AC) de los protozoarios causantes de estas enfermedades, Entamoeba histolytica, Leishmania mexicana y Trichomona vaginalis. Se utilizó técnicas bioinformáticas o in silico como el cribado virtual y el acoplamiento molecular identificando compuestos con buena energía de unión como el venetoclax, zafirlukast, ciclopentiazida, pazopanib, benzotiazida, tenoxicam, ciclotiazida, triclormetiazida y lornoxicam que mostraron interacciones clave con las enzimas. Las evaluaciones in vitro no revelaron efectos antiprotozoarios, posiblemente debido a factores como la solubilidad, tamaño molecular, estabilidad del complejo y características del sitio activo. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-27T15:55:35Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_46ec |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.ufps.edu.co/handle/ufps/10406 |
| dc.identifier.local.none.fl_str_mv |
TIB V00119/2024 |
| url |
https://repositorio.ufps.edu.co/handle/ufps/10406 |
| identifier_str_mv |
TIB V00119/2024 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294 Adelusi, T. I., Oyedele, A.-Q., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O., Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., Xiaoxing, Y., & AbdulHammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29, 100880. https://doi.org/10.1016/j.imu.2022.100880 Alberca, L. N., Sbaraglini, M. L., Balcazar, D., Fraccaroli, L., Carrillo, C., Medeiros, A., Benitez, D., Comini, M., & Talevi, A. (2016). Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. Journal of Computer-Aided Molecular Design, 30(4), 305-321. https://doi.org/10.1007/s10822-016-9903-6 Alves, M. S. D., Sena-Lopes, Â., das Neves, R. N., Casaril, A. M., Domingues, M., Birmann, P. T., da Silva, E. T., de Souza, M. V. N., Savegnago, L., & Borsuk, S. (2022). In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitology Research, 121(9), 2697-2711. https://doi.org/10.1007/s00436-022-07598-1 Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., & Carvalho, D. T. (2020). From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides [Text]. Bentham Science Publishers. https://doi.org/10.2174/1389557520666200905125738 Azim, M., Khan, S. A., Ullah, S., Ullah, S., & Anjum, S. I. (2021). Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLOS Neglected Tropical Diseases, 15(3), e0009099. https://doi.org/10.1371/journal.pntd.0009099 Baek, M., & Baker, D. (2022). Deep learning and protein structure modeling. Nature Methods, 19(1), 13-14. https://doi.org/10.1038/s41592-021-01360-8 Ballón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: Criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Con-Ciencia, 7(2), 55-72 Barril, X., & Fradera, X. (2006). Incorporating protein flexibility into docking and structurebased drug design. Expert opinion on drug discovery, 1, 335-349. https://doi.org/10.1517/17460441.1.4.335 Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2021). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 39(5), 1838-1852. https://doi.org/10.1080/07391102.2020.1739557 Bouchemal, K., Bories, C., & Loiseau, P. M. (2017). Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clinical Microbiology Reviews, 30(3), 811-825. https://doi.org/10.1128/cmr.00109-16 Bua, S., Haapanen, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. International Journal of Molecular Sciences, 19(12), Article 12. https://doi.org/10.3390/ijms19123946 Cabaleiro-Lago, C., & Lundqvist, M. (2020). The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules, 25(19), Article 19. https://doi.org/10.3390/molecules25194405 Canché-Pool, E. B., Canto-Hau, D. M., Vargas-Meléndez, M. A., Tello-Martín, R., ReyesNovelo, E., Escobedo-Ortegón, F. J., Ruiz-Piña, H. A., Cambranes-Puc, L. H., TorresCastro, J. R., Palacio-Vargas, J. A., Durán-Caamal, C., Cerón-Espinosa, J., Carpio-Pedroza, J. C., & Rivera-Hernández, O. C. (2022). Report of autochthonous cases of localized cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana in vulnerable, susceptible areas of Southeastern Mexico. Do Instituto de Medicina Tropical de São Paulo, 64, e35. https://doi.org/10.1590/S1678-9946202264035 Carrero, J. C., Reyes-López, M., Serrano-Luna, J., Shibayama, M., Unzueta, J., León-Sicairos, N., & de la Garza, M. (2020). Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. International Journal of Medical Microbiology, 310(1), 151358. https://doi.org/10.1016/j.ijmm.2019.151358 Carta, F., Supuran, C. T., & Scozzafava, A. (2014). Sulfonamides and Their Isosters As Carbonic Anhydrase Inhibitors. Future Medicinal Chemistry, 6(10), 1149-1165. https://doi.org/10.4155/fmc.14.68 Christianson, D. W. (1991). Structural biology of zinc. Advances in Protein Chemistry, 42, 281- 355. https://doi.org/10.1016/s0065-3233(08)60538-0 Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511-1519. https://doi.org/10.1002/pro.5560020916 Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machinelearning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151- 164. https://doi.org/10.1016/j.drudis.2021.09.007 D’Ambrosio, K., Smaine, F.-Z., Carta, F., De Simone, G., Winum, J.-Y., & Supuran, C. T. (2012). Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 55(15), 6776-6783. https://doi.org/10.1021/jm300818k David, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold Database of Protein Structures: A Biologist’s Guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336 Delgado-Maldonado, T., Moreno-Rodríguez, A., González-Morales, L. D., Flores-Villegas, A. L., Rodríguez-González, J., Rodríguez-Páez, L., Aguirre-Alvarado, C., Sánchez-Palestino, L. M., Ortiz-Pérez, E., & Rivera, G. (2024). Design, Synthesis, and In Vitro and In Silico Evaluation of 1,3,4-Oxadiazoles as Anti-Trypanosoma cruzi and Anti-Leishmania mexicana Agents. ChemMedChem, n/a(n/a), e202400241. https://doi.org/10.1002/cmdc.202400241 Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Estructura cristalina de la isoforma 3 de O-acetilserina sulfhidralasa (OASS) de Entamoeba histolytica: Detección virtual basada en farmacóforos y validación de nuevos inhibidores. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157 Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), Article 7. https://doi.org/10.3390/molecules200713384 González-González, A., Méndez-Álvarez, D., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Ortiz-Pérez, E., Paz-González, A. D., Bandyopadhyay, D., & Rivera, G. (2023). Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica. Journal of Molecular Modeling, 29(6), 180. https://doi.org/10.1007/s00894-023-05579-4 González-González, A., Sánchez-Sánchez, O., Yépez-Mulia, L., Delgado-Maldonado, T., Vázquez-Jiménez, L. K., López-Velázquez, G., de la Mora-de la Mora, J. I., PachecoGutierrez, S., Chino-Ríos, L., Arias, D., Moreno-Rodríguez, A., Paz-González, A., OrtízPérez, E., & Rivera, G. (2024). Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 39(1), 2413018. https://doi.org/10.1080/14756366.2024.2413018 Gouy, M., Tannier, E., Comte, N., & Parsons, D. P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods in Molecular Biology (Clifton, N.J.), 2231, 241-260. https://doi.org/10.1007/978-1-0716-1036-7_15 Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75-87. https://doi.org/10.1007/s12551-013-0130-2 Güzel-Akdemir, Ö., Akdemir, A., Pan, P., Vermelho, A. B., Parkkila, S., Scozzafava, A., Capasso, C., & Supuran, C. T. (2013). A Class of Sulfonamides with Strong Inhibitory Action against the α-Carbonic Anhydrase from Trypanosoma cruzi. Journal of Medicinal Chemistry, 56(14), 5773-5781. https://doi.org/10.1021/jm400418p Haapanen, S., Bua, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules, 23(12), Article 12. https://doi.org/10.3390/molecules23123112 Haapanen, S., & Parkkila, S. (2022). Management of Entamoeba histolytica Infection: Treatment Strategies and Possible New Drug Targets. En A. B. Vermelho & C. T. Supuran (Eds.), Antiprotozoal Drug Development and Delivery (pp. 259-269). Springer International Publishing. https://doi.org/10.1007/7355_2021_127 Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. McGraw Hill España. https://dialnet.unirioja.es/servlet/libro?codigo=775008 Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. 1(3-4), 271-283. https://doi.org/10.1515/bmc.2010.022 Impressum / Datenschutzerklärung. (2024). [Document]. TU Dresden. Recuperado 9 de abril de 2024, de https://tu-dresden.de/impressum/impressum?set_language=de Imtaiyaz Hassan, Md., Shajee, B., Waheed, A., Ahmad, F., & Sly, W. S. (2013). Structure, function and applications of carbonic anhydrase isozymes. Bioorganic & Medicinal Chemistry, 21(6), 1570-1582. https://doi.org/10.1016/j.bmc.2012.04.044 Instituto Politecnico Nacional. (2024). Portal del Instituto Politecnico Nacional. Recuperado 9 de abril de 2024, de https://www.ipn.mx/ Ioannides, C. (2002). Xenobiotic Metabolism: An Overview. 1–32. https://doi.org/10.1002/0470846305.ch1 Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 46. https://doi.org/10.1186/s13321-020-00450-7 Juárez-Saldivar, A., Barbosa-Cabrera, E., Lara-Ramírez, E. E., Paz-González, A. D., MartínezVázquez, A. V., Bocanegra-García, V., Palos, I., Campillo, N. E., & Rivera, G. (2021). Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. International Journal of Molecular Sciences, 22(11), Article 11. https://doi.org/10.3390/ijms22115943 Juarez-Saldivar, A., Gómez-Escobedo, R., Corral-Ruiz, G., Chacón-Vargas, K. F., HortaMontaño, V., Sanchez-Torres, L., Vazquez-Jimenez, L. k., Nogueda-Torres, B., & Rivera, G. (2024). Repositioning FDA-Approved Drug Against Chagas Disease and Cutaneous Leishmaniosis by Structure-Based Virtual Screening. Archives of Medical Research, 55(2), 102958. https://doi.org/10.1016/j.arcmed.2024.102958 Juárez-Saldivar, A., Schroeder, M., Salentin, S., Haupt, V. J., Saavedra, E., Vázquez, C., ReyesEspinosa, F., Herrera-Mayorga, V., Villalobos-Rocha, J. C., García-Pérez, C. A., Campillo, N. E., & Rivera, G. (2020). Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. International Journal of Molecular Sciences, 21(12), Article 12. https://doi.org/10.3390/ijms21124270 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2 Kissinger, P. J., Van Gerwen, O. T., & Muzny, C. A. (2021). Trichomoniasis. En J. E. Weatherhead (Ed.), Neglected Tropical Diseases—North America (pp. 131-155). Springer International Publishing. https://doi.org/10.1007/978-3-030-63384-4_8 Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N. E. (Lucy), Strawbridge, S. A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., … Wishart, D. S. (2024). DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265-D1275. https://doi.org/10.1093/nar/gkad976 Ko, Y. (2020). Computational Drug Repositioning: Current Progress and Challenges. Applied Sciences, 10(15), Article 15. https://doi.org/10.3390/app10155076 Kocer, S., & Mutlu, O. (2021). Identification of potential inhibitors of Trichomonas vaginalis iron-containing superoxide dismutase by computer-aided drug design approach. Structural Chemistry, 32(5), 1873-1882. https://doi.org/10.1007/s11224-021-01766-2 Langella, E., Esposito, D., Monti, S. M., Supuran, C. T., De Simone, G., & Alterio, V. (2023). A Combined in Silico and Structural Study Opens New Perspectives on Aliphatic Sulfonamides, a Still Poorly Investigated Class of CA Inhibitors. Biology, 12(2), Article 2. https://doi.org/10.3390/biology12020281 Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486. https://doi.org/10.1007/BF00228148 Llanos, M. A., Sbaraglini, M. L., Villalba, M. L., Ruiz, M. D., Carrillo, C., Alba Soto, C., Talevi, A., Angeli, A., Parkkila, S., Supuran, C. T., & Gavernet, L. (2020). A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 21-30. https://doi.org/10.1080/14756366.2019.1677638 López, P. L. (2004). POBLACIÓN MUESTRA Y MUESTREO. Punto Cero, 09(08), 69-74 Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., & Wang, J. (2021). Biomedical data and computational models for drug repositioning: A comprehensive review. Briefings in Bioinformatics, 22(2), 1604-1619. https://doi.org/10.1093/bib/bbz176 Madusanka, R. K., Silva, H., & Karunaweera, N. D. (2022). Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious Diseases and Therapy, 11(2), 695-711. https://doi.org/10.1007/s40121-022-00602-2 Mahapatra, M. K., & Karuppasamy, M. (2022). Fundamental considerations in drug design. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, 17-55. https://doi.org/10.1016/B978-0-323-90608-1.00005-8 Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 8(2), 121-132. https://doi.org/10.1007/s40475-021- 00232-7 McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J., & Koes, D. R. (2021). GNINA 1.0: Molecular docking with deep learning. Journal of Cheminformatics, 13(1), 43. https://doi.org/10.1186/s13321-021-00522-2 Middha, S. K., David, A., Haldar, S., Boro, H., Panda, P., Bajare, N., Milesh, L., Devaraj, V. R., & Usha, T. (2022). Chapter 14—Databases, DrugBank, and virtual screening platforms for therapeutic development. En A. Parihar, R. Khan, A. Kumar, A. K. Kaushik, & H. Gohel (Eds.), Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection (pp. 291-334). Academic Press. https://doi.org/10.1016/B978-0-323-91172-6.00021-2 Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. (2010). Journal of Molecular Structure: THEOCHEM, 944(1-3), 34-42. https://doi.org/10.1016/j.theochem.2009.12.017 Momčilović, S., Cantacessi, C., Arsić-Arsenijević, V., Otranto, D., & Tasić-Otašević, S. (2019). Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clinical Microbiology and Infection, 25(3), 290-309. https://doi.org/10.1016/j.cmi.2018.04.028 Munnangi, S. R., Youssef, A. A. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharmaceutical Research, 40(6), 1519-1540. https://doi.org/10.1007/s11095-023- 03517-w Nagaraja, S., & Ankri, S. (2019). Target identification and intervention strategies against amebiasis. Drug Resistance Updates, 44, 1-14. https://doi.org/10.1016/j.drup.2019.04.003 Nasrallah, J., Akhoundi, M., Haouchine, D., Marteau, A., Mantelet, S., Wind, P., Benamouzig, R., Bouchaud, O., Dhote, R., & Izri, A. (2022). Updates on the worldwide burden of amoebiasis: A case series and literature review. Journal of Infection and Public Health, 15(10), 1134-1141. https://doi.org/10.1016/j.jiph.2022.08.013 Ochoa, R., Watowich, S. J., Flórez, A., Mesa, C. V., Robledo, S. M., & Muskus, C. (2016). Drug search for leishmaniasis: A virtual screening approach by grid computing. Journal of Computer-Aided Molecular Design, 30(7), 541-552. https://doi.org/10.1007/s10822-016- 9921-4 Olalla Herbosa, R., & Tercero Gutiérrez, M. J. (2011). Parasitosis comunes internas y externas. Consejos desde la oficina de farmacia. Offarm, 30(4), 33-39. Ortiz-Perez, E., Vazquez-Jimenez, L. K., Paz-Gonzalez, A. D., Delgado-Maldonado, T., González, A. G., Gaona-Lopez, C., Moreno-Herrera, A., Vazquez, K., & Rivera, G. (2023). Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Current Medicinal Chemistry. https://doi.org/10.2174/0109298673249553231018070920 Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical Reviews, 13(2), 259-272. https://doi.org/10.1007/s12551-021-00795-9 Pharmai/plip. (2024). [Python]. PharmAI GmbH. https://github.com/pharmai/plip (Obra original publicada en 2014) Project Jupyter. (2014). Recuperado 8 de abril de 2024, de https://jupyter.org PyMOL | pymol.org. (2024). Recuperado 9 de abril de 2024, de https://pymol.org/ Pymol-open-source/LICENCIA en master · schrodinger/pymol-open-source · GitHub. (2024). Recuperado 9 de abril de 2024, de https://github.com/schrodinger/pymol-opensource/blob/master/LICENSE Rai, P., Arya, H., Saha, S., Kumar, D., & Bhatt, T. K. (2022). Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10812-10820. https://doi.org/10.1080/07391102.2021.1950574 Reigada, C., Sayé, M., Phanstiel, O. I., Valera-Vera, E., Miranda, M. R., & Pereira, C. A. (2019). Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00256 Rigo, G. V., Frank, L. A., Galego, G. B., Santos, A. L. S. dos, & Tasca, T. (2022). Novel Treatment Approaches to Combat Trichomoniasis, a Neglected and Sexually Transmitted Infection Caused by Trichomonas vaginalis: Translational Perspectives. Venereology, 1(1), Article 1. https://doi.org/10.3390/venereology1010005 Sağlık, B. N., Çevik, U. A., Osmaniye, D., Levent, S., Çavuşoğlu, B. K., Demir, Y., Ilgın, S., Özkay, Y., Koparal, A. S., Beydemir, Ş., & Kaplancıklı, Z. A. (2019). Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chemistry, 91, 103153. https://doi.org/10.1016/j.bioorg.2019.103153 Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443- W447. https://doi.org/10.1093/nar/gkv315 Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588j Scarpini, S., Dondi, A., Totaro, C., Biagi, C., Melchionda, F., Zama, D., Pierantoni, L., Gennari, M., Campagna, C., Prete, A., & Lanari, M. (2022). Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms, 10(10), Article 10. https://doi.org/10.3390/microorganisms10101887 Sheikh, S. Y., Ansari, W. A., Hassan, F., Faruqui, T., Khan, M. F., Akhter, Y., Khan, A. R., Siddiqui, M. A., Al-Khedhairy, A. A., & Nasibullah, M. (2023). Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. Journal of Molecular Recognition, 36(7), e3021. https://doi.org/10.1002/jmr.3021 Shirley, D.-A. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infectious Diseases, 5(7), ofy161. https://doi.org/10.1093/ofid/ofy161 Sosa-Bibiano, E. I., Sánchez -Martínez, L. A., López-Ávila, K. B., Chablé-Santos, J. B., TorresCastro, J. R., Fernández-Figueroa, E. A., Rangel-Escareño, C., & Loría-Cervera, E. N. (2022). Leishmania (Leishmania) mexicana Infection in Wild Rodents from an Emergent Focus of Cutaneous Leishmaniasis in Yucatan, Mexico. Journal of Tropical Medicine, 2022, e8392005. https://doi.org/10.1155/2022/8392005 Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Chapter Four—Use of molecular docking computational tools in drug discovery. En D. R. Witty & B. Cox (Eds.), Progress in Medicinal Chemistry (Vol. 60, pp. 273-343). Elsevier. https://doi.org/10.1016/bs.pmch.2021.01.004 Structure and catalytic mechanism of the β-carbonic anhydrases. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(2), 362-373. https://doi.org/10.1016/j.bbapap.2009.08.002 Sunseri, J., & Koes, D. R. (2021). Virtual Screening with Gnina 1.0. Molecules, 26(23), Article 23. https://doi.org/10.3390/molecules26237369 Supuran, C. T. (2016). Structure and function of carbonic anhydrases. Biochemical Journal, 473(14), 2023-2032. https://doi.org/10.1042/BCJ20160115 Supuran, C. T., & Capasso, C. (2017). Protozoan Carbonic Anhydrases. En C. T. Supuran & C. Capasso (Eds.), Zinc Enzyme Inhibitors: Enzymes from Microorganisms (pp. 111-133). Springer International Publishing. https://doi.org/10.1007/7355_2016_11 Syrjänen, L., Vermelho, A. B., de Almeida Rodrigues, I., Corte-Real, S., Salonen, T., Pan, P., Vullo, D., Parkkila, S., Capasso, C., & Supuran, C. T. (2013). Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Leishmania donovani chagasi, the Protozoan Parasite Responsible for Leishmaniasis. Journal of Medicinal Chemistry, 56(18), 7372-7381. https://doi.org/10.1021/jm400939k Términos de uso | MODELO SUIZO. (2011). Recuperado 9 de abril de 2024, de https://swissmodel.expasy.org/docs/terms_of_use Testa, B., Crivori, P., Reist, M., & Carrupt, P.-A. (2000). The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design, 19(1), 179-211. https://doi.org/10.1023/A:1008741731244 Urbański, L. J., Angeli, A., Hytönen, V. P., Di Fiore, A., De Simone, G., Parkkila, S., & Supuran, C. T. (2021). Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 330-335. https://doi.org/10.1080/14756366.2020.1863958 Urbanski, L. J., Bua, S., Angeli, A., Kuuslahti, M., Hytönen, Vesa. P., Supuran, C. T., & Parkkila, S. (2020). Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1834-1839. https://doi.org/10.1080/14756366.2020.1826942 Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, F1000 Faculty Rev-1666. https://doi.org/10.12688/f1000research.19972.1 Vázquez-Jiménez, L. K., Juárez-Saldivar, A., Chan-Bacab, M. J., Delgado-Maldonado, T., González-Morales, L. D., Palos, I., Ortiz-Pérez, E., Lara-Ramírez, E. E., Ramírez-Moreno, E., & Rivera, G. (2023). Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals, 16(3), Article 3. https://doi.org/10.3390/ph16030390 Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n Vermelho, A. B., Capaci, G. R., Rodrigues, I. A., Cardoso, V. S., Mazotto, A. M., & Supuran, C. T. (2017). Anhidrasas carbónicas de Trypanosoma y Leishmania como dianas farmacológicas antiprotozoarias. Bioorganic & Medicinal Chemistry, 25(5), 1543-1555. https://doi.org/10.1016/j.bmc.2017.01.034 Volpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W.-W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1), 1-14. https://doi.org/10.1038/s41541-022- 00449-1 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISSMODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427 Wiser, M. F. (2021). NutritionNutrition and Protozoan PathogensPathogens of Humans: A Primer. En D. L. Humphries, M. E. Scott, & S. H. Vermund (Eds.), Nutrition and Infectious Diseases: Shifting the Clinical Paradigm (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-56913-6_6 Zolfaghari Emameh, R., Barker, H., Tolvanen, M. E. E., Ortutay, C., & Parkkila, S. (2014). Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites & Vectors, 7(1), 38. https://doi.org/10.1186/1756-3305-7-38 |
| dc.rights.spa.fl_str_mv |
Derechos Reservados Universidad Francisco de Paula Santander |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Derechos Reservados Universidad Francisco de Paula Santander https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
176 páginas ilustraciones, (Trabajo completo) 3.812 KB |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Francisco de Paula Santander |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Agrarias y del Ambiente |
| dc.publisher.place.none.fl_str_mv |
San José de Cúcuta |
| dc.publisher.program.none.fl_str_mv |
Ingeniería Biotecnológica |
| publisher.none.fl_str_mv |
Universidad Francisco de Paula Santander |
| dc.source.none.fl_str_mv |
https://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=9ebef27a5cd0e0b84ebcc4144dd7417f |
| institution |
Universidad Francisco de Paula Santander |
| bitstream.url.fl_str_mv |
https://repositorio.ufps.edu.co/bitstreams/fa9d4748-0e97-4d2e-8c11-0388205df3a2/download https://repositorio.ufps.edu.co/bitstreams/bd9d184a-c06c-4eb1-b258-58a69c2d6113/download https://repositorio.ufps.edu.co/bitstreams/a8d4d1f3-568a-4362-ae6b-04d80a2820d9/download https://repositorio.ufps.edu.co/bitstreams/5c24c9c8-f783-4adf-8a97-1fa5e4a010fc/download |
| bitstream.checksum.fl_str_mv |
ed3b52dc447cd4d91c831d6c5eb7f773 b76e7a76e24cf2f94b3ce0ae5ed275d0 faee140a7f60fc27842313cc9e8346f8 59c865755effa18929aecb935e7e28bf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad Francisco de Paula Santander |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059621246009344 |
| spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Derechos Reservados Universidad Francisco de Paula Santanderhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortíz Pérez, Eyra LilianaRivera Sánchez, GiraldoVelasco Estévez, Anyela MilenaVega Contreras, Nelson Alfonsovirtual::86-1Jurgensen Rangel, MónicaDurán Jaramillo, Andrés2025-10-27T15:55:35Z2024https://repositorio.ufps.edu.co/handle/ufps/10406TIB V00119/2024Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhidrasa carbónica (β-AC) de los protozoarios causantes de estas enfermedades, Entamoeba histolytica, Leishmania mexicana y Trichomona vaginalis. Se utilizó técnicas bioinformáticas o in silico como el cribado virtual y el acoplamiento molecular identificando compuestos con buena energía de unión como el venetoclax, zafirlukast, ciclopentiazida, pazopanib, benzotiazida, tenoxicam, ciclotiazida, triclormetiazida y lornoxicam que mostraron interacciones clave con las enzimas. Las evaluaciones in vitro no revelaron efectos antiprotozoarios, posiblemente debido a factores como la solubilidad, tamaño molecular, estabilidad del complejo y características del sitio activo.PregradoIngeniero(a) Biotecnológico(a)176 páginas ilustraciones, (Trabajo completo) 3.812 KBapplication/pdfspaUniversidad Francisco de Paula SantanderFacultad de Ciencias Agrarias y del AmbienteSan José de CúcutaIngeniería Biotecnológicahttps://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=9ebef27a5cd0e0b84ebcc4144dd7417fReposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_46echttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionAdasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294Adelusi, T. I., Oyedele, A.-Q., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O., Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., Xiaoxing, Y., & AbdulHammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29, 100880. https://doi.org/10.1016/j.imu.2022.100880Alberca, L. N., Sbaraglini, M. L., Balcazar, D., Fraccaroli, L., Carrillo, C., Medeiros, A., Benitez, D., Comini, M., & Talevi, A. (2016). Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. Journal of Computer-Aided Molecular Design, 30(4), 305-321. https://doi.org/10.1007/s10822-016-9903-6Alves, M. S. D., Sena-Lopes, Â., das Neves, R. N., Casaril, A. M., Domingues, M., Birmann, P. T., da Silva, E. T., de Souza, M. V. N., Savegnago, L., & Borsuk, S. (2022). In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitology Research, 121(9), 2697-2711. https://doi.org/10.1007/s00436-022-07598-1Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., & Carvalho, D. T. (2020). From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides [Text]. Bentham Science Publishers. https://doi.org/10.2174/1389557520666200905125738Azim, M., Khan, S. A., Ullah, S., Ullah, S., & Anjum, S. I. (2021). Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLOS Neglected Tropical Diseases, 15(3), e0009099. https://doi.org/10.1371/journal.pntd.0009099Baek, M., & Baker, D. (2022). Deep learning and protein structure modeling. Nature Methods, 19(1), 13-14. https://doi.org/10.1038/s41592-021-01360-8Ballón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: Criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Con-Ciencia, 7(2), 55-72Barril, X., & Fradera, X. (2006). Incorporating protein flexibility into docking and structurebased drug design. Expert opinion on drug discovery, 1, 335-349. https://doi.org/10.1517/17460441.1.4.335Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2021). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 39(5), 1838-1852. https://doi.org/10.1080/07391102.2020.1739557Bouchemal, K., Bories, C., & Loiseau, P. M. (2017). Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clinical Microbiology Reviews, 30(3), 811-825. https://doi.org/10.1128/cmr.00109-16Bua, S., Haapanen, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. International Journal of Molecular Sciences, 19(12), Article 12. https://doi.org/10.3390/ijms19123946Cabaleiro-Lago, C., & Lundqvist, M. (2020). The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules, 25(19), Article 19. https://doi.org/10.3390/molecules25194405Canché-Pool, E. B., Canto-Hau, D. M., Vargas-Meléndez, M. A., Tello-Martín, R., ReyesNovelo, E., Escobedo-Ortegón, F. J., Ruiz-Piña, H. A., Cambranes-Puc, L. H., TorresCastro, J. R., Palacio-Vargas, J. A., Durán-Caamal, C., Cerón-Espinosa, J., Carpio-Pedroza, J. C., & Rivera-Hernández, O. C. (2022). Report of autochthonous cases of localized cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana in vulnerable, susceptible areas of Southeastern Mexico. Do Instituto de Medicina Tropical de São Paulo, 64, e35. https://doi.org/10.1590/S1678-9946202264035Carrero, J. C., Reyes-López, M., Serrano-Luna, J., Shibayama, M., Unzueta, J., León-Sicairos, N., & de la Garza, M. (2020). Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. International Journal of Medical Microbiology, 310(1), 151358. https://doi.org/10.1016/j.ijmm.2019.151358Carta, F., Supuran, C. T., & Scozzafava, A. (2014). Sulfonamides and Their Isosters As Carbonic Anhydrase Inhibitors. Future Medicinal Chemistry, 6(10), 1149-1165. https://doi.org/10.4155/fmc.14.68Christianson, D. W. (1991). Structural biology of zinc. Advances in Protein Chemistry, 42, 281- 355. https://doi.org/10.1016/s0065-3233(08)60538-0Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511-1519. https://doi.org/10.1002/pro.5560020916Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machinelearning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151- 164. https://doi.org/10.1016/j.drudis.2021.09.007D’Ambrosio, K., Smaine, F.-Z., Carta, F., De Simone, G., Winum, J.-Y., & Supuran, C. T. (2012). Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 55(15), 6776-6783. https://doi.org/10.1021/jm300818kDavid, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold Database of Protein Structures: A Biologist’s Guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336Delgado-Maldonado, T., Moreno-Rodríguez, A., González-Morales, L. D., Flores-Villegas, A. L., Rodríguez-González, J., Rodríguez-Páez, L., Aguirre-Alvarado, C., Sánchez-Palestino, L. M., Ortiz-Pérez, E., & Rivera, G. (2024). Design, Synthesis, and In Vitro and In Silico Evaluation of 1,3,4-Oxadiazoles as Anti-Trypanosoma cruzi and Anti-Leishmania mexicana Agents. ChemMedChem, n/a(n/a), e202400241. https://doi.org/10.1002/cmdc.202400241Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Estructura cristalina de la isoforma 3 de O-acetilserina sulfhidralasa (OASS) de Entamoeba histolytica: Detección virtual basada en farmacóforos y validación de nuevos inhibidores. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), Article 7. https://doi.org/10.3390/molecules200713384González-González, A., Méndez-Álvarez, D., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Ortiz-Pérez, E., Paz-González, A. D., Bandyopadhyay, D., & Rivera, G. (2023). Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica. Journal of Molecular Modeling, 29(6), 180. https://doi.org/10.1007/s00894-023-05579-4González-González, A., Sánchez-Sánchez, O., Yépez-Mulia, L., Delgado-Maldonado, T., Vázquez-Jiménez, L. K., López-Velázquez, G., de la Mora-de la Mora, J. I., PachecoGutierrez, S., Chino-Ríos, L., Arias, D., Moreno-Rodríguez, A., Paz-González, A., OrtízPérez, E., & Rivera, G. (2024). Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 39(1), 2413018. https://doi.org/10.1080/14756366.2024.2413018Gouy, M., Tannier, E., Comte, N., & Parsons, D. P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods in Molecular Biology (Clifton, N.J.), 2231, 241-260. https://doi.org/10.1007/978-1-0716-1036-7_15Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75-87. https://doi.org/10.1007/s12551-013-0130-2Güzel-Akdemir, Ö., Akdemir, A., Pan, P., Vermelho, A. B., Parkkila, S., Scozzafava, A., Capasso, C., & Supuran, C. T. (2013). A Class of Sulfonamides with Strong Inhibitory Action against the α-Carbonic Anhydrase from Trypanosoma cruzi. Journal of Medicinal Chemistry, 56(14), 5773-5781. https://doi.org/10.1021/jm400418pHaapanen, S., Bua, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules, 23(12), Article 12. https://doi.org/10.3390/molecules23123112Haapanen, S., & Parkkila, S. (2022). Management of Entamoeba histolytica Infection: Treatment Strategies and Possible New Drug Targets. En A. B. Vermelho & C. T. Supuran (Eds.), Antiprotozoal Drug Development and Delivery (pp. 259-269). Springer International Publishing. https://doi.org/10.1007/7355_2021_127Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. McGraw Hill España. https://dialnet.unirioja.es/servlet/libro?codigo=775008Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. 1(3-4), 271-283. https://doi.org/10.1515/bmc.2010.022Impressum / Datenschutzerklärung. (2024). [Document]. TU Dresden. Recuperado 9 de abril de 2024, de https://tu-dresden.de/impressum/impressum?set_language=deImtaiyaz Hassan, Md., Shajee, B., Waheed, A., Ahmad, F., & Sly, W. S. (2013). Structure, function and applications of carbonic anhydrase isozymes. Bioorganic & Medicinal Chemistry, 21(6), 1570-1582. https://doi.org/10.1016/j.bmc.2012.04.044Instituto Politecnico Nacional. (2024). Portal del Instituto Politecnico Nacional. Recuperado 9 de abril de 2024, de https://www.ipn.mx/Ioannides, C. (2002). Xenobiotic Metabolism: An Overview. 1–32. https://doi.org/10.1002/0470846305.ch1Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 46. https://doi.org/10.1186/s13321-020-00450-7Juárez-Saldivar, A., Barbosa-Cabrera, E., Lara-Ramírez, E. E., Paz-González, A. D., MartínezVázquez, A. V., Bocanegra-García, V., Palos, I., Campillo, N. E., & Rivera, G. (2021). Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. International Journal of Molecular Sciences, 22(11), Article 11. https://doi.org/10.3390/ijms22115943Juarez-Saldivar, A., Gómez-Escobedo, R., Corral-Ruiz, G., Chacón-Vargas, K. F., HortaMontaño, V., Sanchez-Torres, L., Vazquez-Jimenez, L. k., Nogueda-Torres, B., & Rivera, G. (2024). Repositioning FDA-Approved Drug Against Chagas Disease and Cutaneous Leishmaniosis by Structure-Based Virtual Screening. Archives of Medical Research, 55(2), 102958. https://doi.org/10.1016/j.arcmed.2024.102958Juárez-Saldivar, A., Schroeder, M., Salentin, S., Haupt, V. J., Saavedra, E., Vázquez, C., ReyesEspinosa, F., Herrera-Mayorga, V., Villalobos-Rocha, J. C., García-Pérez, C. A., Campillo, N. E., & Rivera, G. (2020). Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. International Journal of Molecular Sciences, 21(12), Article 12. https://doi.org/10.3390/ijms21124270Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2Kissinger, P. J., Van Gerwen, O. T., & Muzny, C. A. (2021). Trichomoniasis. En J. E. Weatherhead (Ed.), Neglected Tropical Diseases—North America (pp. 131-155). Springer International Publishing. https://doi.org/10.1007/978-3-030-63384-4_8Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N. E. (Lucy), Strawbridge, S. A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., … Wishart, D. S. (2024). DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265-D1275. https://doi.org/10.1093/nar/gkad976Ko, Y. (2020). Computational Drug Repositioning: Current Progress and Challenges. Applied Sciences, 10(15), Article 15. https://doi.org/10.3390/app10155076Kocer, S., & Mutlu, O. (2021). Identification of potential inhibitors of Trichomonas vaginalis iron-containing superoxide dismutase by computer-aided drug design approach. Structural Chemistry, 32(5), 1873-1882. https://doi.org/10.1007/s11224-021-01766-2Langella, E., Esposito, D., Monti, S. M., Supuran, C. T., De Simone, G., & Alterio, V. (2023). A Combined in Silico and Structural Study Opens New Perspectives on Aliphatic Sulfonamides, a Still Poorly Investigated Class of CA Inhibitors. Biology, 12(2), Article 2. https://doi.org/10.3390/biology12020281Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486. https://doi.org/10.1007/BF00228148Llanos, M. A., Sbaraglini, M. L., Villalba, M. L., Ruiz, M. D., Carrillo, C., Alba Soto, C., Talevi, A., Angeli, A., Parkkila, S., Supuran, C. T., & Gavernet, L. (2020). A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 21-30. https://doi.org/10.1080/14756366.2019.1677638López, P. L. (2004). POBLACIÓN MUESTRA Y MUESTREO. Punto Cero, 09(08), 69-74Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., & Wang, J. (2021). Biomedical data and computational models for drug repositioning: A comprehensive review. Briefings in Bioinformatics, 22(2), 1604-1619. https://doi.org/10.1093/bib/bbz176Madusanka, R. K., Silva, H., & Karunaweera, N. D. (2022). Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious Diseases and Therapy, 11(2), 695-711. https://doi.org/10.1007/s40121-022-00602-2Mahapatra, M. K., & Karuppasamy, M. (2022). Fundamental considerations in drug design. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, 17-55. https://doi.org/10.1016/B978-0-323-90608-1.00005-8Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 8(2), 121-132. https://doi.org/10.1007/s40475-021- 00232-7McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J., & Koes, D. R. (2021). GNINA 1.0: Molecular docking with deep learning. Journal of Cheminformatics, 13(1), 43. https://doi.org/10.1186/s13321-021-00522-2Middha, S. K., David, A., Haldar, S., Boro, H., Panda, P., Bajare, N., Milesh, L., Devaraj, V. R., & Usha, T. (2022). Chapter 14—Databases, DrugBank, and virtual screening platforms for therapeutic development. En A. Parihar, R. Khan, A. Kumar, A. K. Kaushik, & H. Gohel (Eds.), Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection (pp. 291-334). Academic Press. https://doi.org/10.1016/B978-0-323-91172-6.00021-2Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. (2010). Journal of Molecular Structure: THEOCHEM, 944(1-3), 34-42. https://doi.org/10.1016/j.theochem.2009.12.017Momčilović, S., Cantacessi, C., Arsić-Arsenijević, V., Otranto, D., & Tasić-Otašević, S. (2019). Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clinical Microbiology and Infection, 25(3), 290-309. https://doi.org/10.1016/j.cmi.2018.04.028Munnangi, S. R., Youssef, A. A. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharmaceutical Research, 40(6), 1519-1540. https://doi.org/10.1007/s11095-023- 03517-wNagaraja, S., & Ankri, S. (2019). Target identification and intervention strategies against amebiasis. Drug Resistance Updates, 44, 1-14. https://doi.org/10.1016/j.drup.2019.04.003Nasrallah, J., Akhoundi, M., Haouchine, D., Marteau, A., Mantelet, S., Wind, P., Benamouzig, R., Bouchaud, O., Dhote, R., & Izri, A. (2022). Updates on the worldwide burden of amoebiasis: A case series and literature review. Journal of Infection and Public Health, 15(10), 1134-1141. https://doi.org/10.1016/j.jiph.2022.08.013Ochoa, R., Watowich, S. J., Flórez, A., Mesa, C. V., Robledo, S. M., & Muskus, C. (2016). Drug search for leishmaniasis: A virtual screening approach by grid computing. Journal of Computer-Aided Molecular Design, 30(7), 541-552. https://doi.org/10.1007/s10822-016- 9921-4Olalla Herbosa, R., & Tercero Gutiérrez, M. J. (2011). Parasitosis comunes internas y externas. Consejos desde la oficina de farmacia. Offarm, 30(4), 33-39.Ortiz-Perez, E., Vazquez-Jimenez, L. K., Paz-Gonzalez, A. D., Delgado-Maldonado, T., González, A. G., Gaona-Lopez, C., Moreno-Herrera, A., Vazquez, K., & Rivera, G. (2023). Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Current Medicinal Chemistry. https://doi.org/10.2174/0109298673249553231018070920Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical Reviews, 13(2), 259-272. https://doi.org/10.1007/s12551-021-00795-9Pharmai/plip. (2024). [Python]. PharmAI GmbH. https://github.com/pharmai/plip (Obra original publicada en 2014)Project Jupyter. (2014). Recuperado 8 de abril de 2024, de https://jupyter.orgPyMOL | pymol.org. (2024). Recuperado 9 de abril de 2024, de https://pymol.org/Pymol-open-source/LICENCIA en master · schrodinger/pymol-open-source · GitHub. (2024). Recuperado 9 de abril de 2024, de https://github.com/schrodinger/pymol-opensource/blob/master/LICENSERai, P., Arya, H., Saha, S., Kumar, D., & Bhatt, T. K. (2022). Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10812-10820. https://doi.org/10.1080/07391102.2021.1950574Reigada, C., Sayé, M., Phanstiel, O. I., Valera-Vera, E., Miranda, M. R., & Pereira, C. A. (2019). Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00256Rigo, G. V., Frank, L. A., Galego, G. B., Santos, A. L. S. dos, & Tasca, T. (2022). Novel Treatment Approaches to Combat Trichomoniasis, a Neglected and Sexually Transmitted Infection Caused by Trichomonas vaginalis: Translational Perspectives. Venereology, 1(1), Article 1. https://doi.org/10.3390/venereology1010005Sağlık, B. N., Çevik, U. A., Osmaniye, D., Levent, S., Çavuşoğlu, B. K., Demir, Y., Ilgın, S., Özkay, Y., Koparal, A. S., Beydemir, Ş., & Kaplancıklı, Z. A. (2019). Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chemistry, 91, 103153. https://doi.org/10.1016/j.bioorg.2019.103153Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443- W447. https://doi.org/10.1093/nar/gkv315Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588jScarpini, S., Dondi, A., Totaro, C., Biagi, C., Melchionda, F., Zama, D., Pierantoni, L., Gennari, M., Campagna, C., Prete, A., & Lanari, M. (2022). Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms, 10(10), Article 10. https://doi.org/10.3390/microorganisms10101887Sheikh, S. Y., Ansari, W. A., Hassan, F., Faruqui, T., Khan, M. F., Akhter, Y., Khan, A. R., Siddiqui, M. A., Al-Khedhairy, A. A., & Nasibullah, M. (2023). Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. Journal of Molecular Recognition, 36(7), e3021. https://doi.org/10.1002/jmr.3021Shirley, D.-A. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infectious Diseases, 5(7), ofy161. https://doi.org/10.1093/ofid/ofy161Sosa-Bibiano, E. I., Sánchez -Martínez, L. A., López-Ávila, K. B., Chablé-Santos, J. B., TorresCastro, J. R., Fernández-Figueroa, E. A., Rangel-Escareño, C., & Loría-Cervera, E. N. (2022). Leishmania (Leishmania) mexicana Infection in Wild Rodents from an Emergent Focus of Cutaneous Leishmaniasis in Yucatan, Mexico. Journal of Tropical Medicine, 2022, e8392005. https://doi.org/10.1155/2022/8392005Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Chapter Four—Use of molecular docking computational tools in drug discovery. En D. R. Witty & B. Cox (Eds.), Progress in Medicinal Chemistry (Vol. 60, pp. 273-343). Elsevier. https://doi.org/10.1016/bs.pmch.2021.01.004Structure and catalytic mechanism of the β-carbonic anhydrases. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(2), 362-373. https://doi.org/10.1016/j.bbapap.2009.08.002Sunseri, J., & Koes, D. R. (2021). Virtual Screening with Gnina 1.0. Molecules, 26(23), Article 23. https://doi.org/10.3390/molecules26237369Supuran, C. T. (2016). Structure and function of carbonic anhydrases. Biochemical Journal, 473(14), 2023-2032. https://doi.org/10.1042/BCJ20160115Supuran, C. T., & Capasso, C. (2017). Protozoan Carbonic Anhydrases. En C. T. Supuran & C. Capasso (Eds.), Zinc Enzyme Inhibitors: Enzymes from Microorganisms (pp. 111-133). Springer International Publishing. https://doi.org/10.1007/7355_2016_11Syrjänen, L., Vermelho, A. B., de Almeida Rodrigues, I., Corte-Real, S., Salonen, T., Pan, P., Vullo, D., Parkkila, S., Capasso, C., & Supuran, C. T. (2013). Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Leishmania donovani chagasi, the Protozoan Parasite Responsible for Leishmaniasis. Journal of Medicinal Chemistry, 56(18), 7372-7381. https://doi.org/10.1021/jm400939kTérminos de uso | MODELO SUIZO. (2011). Recuperado 9 de abril de 2024, de https://swissmodel.expasy.org/docs/terms_of_useTesta, B., Crivori, P., Reist, M., & Carrupt, P.-A. (2000). The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design, 19(1), 179-211. https://doi.org/10.1023/A:1008741731244Urbański, L. J., Angeli, A., Hytönen, V. P., Di Fiore, A., De Simone, G., Parkkila, S., & Supuran, C. T. (2021). Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 330-335. https://doi.org/10.1080/14756366.2020.1863958Urbanski, L. J., Bua, S., Angeli, A., Kuuslahti, M., Hytönen, Vesa. P., Supuran, C. T., & Parkkila, S. (2020). Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1834-1839. https://doi.org/10.1080/14756366.2020.1826942Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, F1000 Faculty Rev-1666. https://doi.org/10.12688/f1000research.19972.1Vázquez-Jiménez, L. K., Juárez-Saldivar, A., Chan-Bacab, M. J., Delgado-Maldonado, T., González-Morales, L. D., Palos, I., Ortiz-Pérez, E., Lara-Ramírez, E. E., Ramírez-Moreno, E., & Rivera, G. (2023). Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals, 16(3), Article 3. https://doi.org/10.3390/ph16030390Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017nVermelho, A. B., Capaci, G. R., Rodrigues, I. A., Cardoso, V. S., Mazotto, A. M., & Supuran, C. T. (2017). Anhidrasas carbónicas de Trypanosoma y Leishmania como dianas farmacológicas antiprotozoarias. Bioorganic & Medicinal Chemistry, 25(5), 1543-1555. https://doi.org/10.1016/j.bmc.2017.01.034Volpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W.-W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1), 1-14. https://doi.org/10.1038/s41541-022- 00449-1Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISSMODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427Wiser, M. F. (2021). NutritionNutrition and Protozoan PathogensPathogens of Humans: A Primer. En D. L. Humphries, M. E. Scott, & S. H. Vermund (Eds.), Nutrition and Infectious Diseases: Shifting the Clinical Paradigm (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-56913-6_6Zolfaghari Emameh, R., Barker, H., Tolvanen, M. E. E., Ortutay, C., & Parkkila, S. (2014). Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites & Vectors, 7(1), 38. https://doi.org/10.1186/1756-3305-7-38Anhidrasa carbónicaFármacosSulfonamidasPublication817d0651-445c-45ea-b539-6d23ba579ae7virtual::86-1817d0651-445c-45ea-b539-6d23ba579ae7virtual::86-1ORIGINALTG1611670.pdfTG1611670.pdfDocumento de proyecto de pregradoapplication/pdf3903483https://repositorio.ufps.edu.co/bitstreams/fa9d4748-0e97-4d2e-8c11-0388205df3a2/downloaded3b52dc447cd4d91c831d6c5eb7f773MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.ufps.edu.co/bitstreams/bd9d184a-c06c-4eb1-b258-58a69c2d6113/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADTEXTTG1611670.pdf.txtTG1611670.pdf.txtExtracted texttext/plain101775https://repositorio.ufps.edu.co/bitstreams/a8d4d1f3-568a-4362-ae6b-04d80a2820d9/downloadfaee140a7f60fc27842313cc9e8346f8MD53falseAnonymousREADTHUMBNAILTG1611670.pdf.jpgTG1611670.pdf.jpgGenerated Thumbnailimage/jpeg15237https://repositorio.ufps.edu.co/bitstreams/5c24c9c8-f783-4adf-8a97-1fa5e4a010fc/download59c865755effa18929aecb935e7e28bfMD54falseAnonymousREADufps/10406oai:repositorio.ufps.edu.co:ufps/104062025-10-28 04:01:28.573https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad Francisco de Paula Santanderopen.accesshttps://repositorio.ufps.edu.coRepositorio Universidad Francisco de Paula Santanderbdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
