Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.

Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhid...

Full description

Autores:
Velasco Estévez, Anyela Milena
Tipo de recurso:
Tesis
Fecha de publicación:
2024
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
spa
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/10406
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/10406
Palabra clave:
Anhidrasa carbónica
Fármacos
Sulfonamidas
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RUFPS2_8b152060321cea9926653e3c88a99f1f
oai_identifier_str oai:repositorio.ufps.edu.co:ufps/10406
network_acronym_str RUFPS2
network_name_str Repositorio Digital UFPS
repository_id_str
dc.title.spa.fl_str_mv Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
title Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
spellingShingle Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
Anhidrasa carbónica
Fármacos
Sulfonamidas
title_short Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
title_full Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
title_fullStr Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
title_full_unstemmed Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
title_sort Reposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.
dc.creator.fl_str_mv Velasco Estévez, Anyela Milena
dc.contributor.advisor.none.fl_str_mv Ortíz Pérez, Eyra Liliana
Rivera Sánchez, Giraldo
dc.contributor.author.none.fl_str_mv Velasco Estévez, Anyela Milena
dc.contributor.jury.none.fl_str_mv Vega Contreras, Nelson Alfonso
Jurgensen Rangel, Mónica
Durán Jaramillo, Andrés
dc.subject.lemb.none.fl_str_mv Anhidrasa carbónica
Fármacos
Sulfonamidas
topic Anhidrasa carbónica
Fármacos
Sulfonamidas
description Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhidrasa carbónica (β-AC) de los protozoarios causantes de estas enfermedades, Entamoeba histolytica, Leishmania mexicana y Trichomona vaginalis. Se utilizó técnicas bioinformáticas o in silico como el cribado virtual y el acoplamiento molecular identificando compuestos con buena energía de unión como el venetoclax, zafirlukast, ciclopentiazida, pazopanib, benzotiazida, tenoxicam, ciclotiazida, triclormetiazida y lornoxicam que mostraron interacciones clave con las enzimas. Las evaluaciones in vitro no revelaron efectos antiprotozoarios, posiblemente debido a factores como la solubilidad, tamaño molecular, estabilidad del complejo y características del sitio activo.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-10-27T15:55:35Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_46ec
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.ufps.edu.co/handle/ufps/10406
dc.identifier.local.none.fl_str_mv TIB V00119/2024
url https://repositorio.ufps.edu.co/handle/ufps/10406
identifier_str_mv TIB V00119/2024
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294
Adelusi, T. I., Oyedele, A.-Q., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O., Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., Xiaoxing, Y., & AbdulHammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29, 100880. https://doi.org/10.1016/j.imu.2022.100880
Alberca, L. N., Sbaraglini, M. L., Balcazar, D., Fraccaroli, L., Carrillo, C., Medeiros, A., Benitez, D., Comini, M., & Talevi, A. (2016). Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. Journal of Computer-Aided Molecular Design, 30(4), 305-321. https://doi.org/10.1007/s10822-016-9903-6
Alves, M. S. D., Sena-Lopes, Â., das Neves, R. N., Casaril, A. M., Domingues, M., Birmann, P. T., da Silva, E. T., de Souza, M. V. N., Savegnago, L., & Borsuk, S. (2022). In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitology Research, 121(9), 2697-2711. https://doi.org/10.1007/s00436-022-07598-1
Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., & Carvalho, D. T. (2020). From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides [Text]. Bentham Science Publishers. https://doi.org/10.2174/1389557520666200905125738
Azim, M., Khan, S. A., Ullah, S., Ullah, S., & Anjum, S. I. (2021). Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLOS Neglected Tropical Diseases, 15(3), e0009099. https://doi.org/10.1371/journal.pntd.0009099
Baek, M., & Baker, D. (2022). Deep learning and protein structure modeling. Nature Methods, 19(1), 13-14. https://doi.org/10.1038/s41592-021-01360-8
Ballón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: Criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Con-Ciencia, 7(2), 55-72
Barril, X., & Fradera, X. (2006). Incorporating protein flexibility into docking and structurebased drug design. Expert opinion on drug discovery, 1, 335-349. https://doi.org/10.1517/17460441.1.4.335
Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2021). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 39(5), 1838-1852. https://doi.org/10.1080/07391102.2020.1739557
Bouchemal, K., Bories, C., & Loiseau, P. M. (2017). Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clinical Microbiology Reviews, 30(3), 811-825. https://doi.org/10.1128/cmr.00109-16
Bua, S., Haapanen, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. International Journal of Molecular Sciences, 19(12), Article 12. https://doi.org/10.3390/ijms19123946
Cabaleiro-Lago, C., & Lundqvist, M. (2020). The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules, 25(19), Article 19. https://doi.org/10.3390/molecules25194405
Canché-Pool, E. B., Canto-Hau, D. M., Vargas-Meléndez, M. A., Tello-Martín, R., ReyesNovelo, E., Escobedo-Ortegón, F. J., Ruiz-Piña, H. A., Cambranes-Puc, L. H., TorresCastro, J. R., Palacio-Vargas, J. A., Durán-Caamal, C., Cerón-Espinosa, J., Carpio-Pedroza, J. C., & Rivera-Hernández, O. C. (2022). Report of autochthonous cases of localized cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana in vulnerable, susceptible areas of Southeastern Mexico. Do Instituto de Medicina Tropical de São Paulo, 64, e35. https://doi.org/10.1590/S1678-9946202264035
Carrero, J. C., Reyes-López, M., Serrano-Luna, J., Shibayama, M., Unzueta, J., León-Sicairos, N., & de la Garza, M. (2020). Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. International Journal of Medical Microbiology, 310(1), 151358. https://doi.org/10.1016/j.ijmm.2019.151358
Carta, F., Supuran, C. T., & Scozzafava, A. (2014). Sulfonamides and Their Isosters As Carbonic Anhydrase Inhibitors. Future Medicinal Chemistry, 6(10), 1149-1165. https://doi.org/10.4155/fmc.14.68
Christianson, D. W. (1991). Structural biology of zinc. Advances in Protein Chemistry, 42, 281- 355. https://doi.org/10.1016/s0065-3233(08)60538-0
Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511-1519. https://doi.org/10.1002/pro.5560020916
Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machinelearning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151- 164. https://doi.org/10.1016/j.drudis.2021.09.007
D’Ambrosio, K., Smaine, F.-Z., Carta, F., De Simone, G., Winum, J.-Y., & Supuran, C. T. (2012). Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 55(15), 6776-6783. https://doi.org/10.1021/jm300818k
David, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold Database of Protein Structures: A Biologist’s Guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336
Delgado-Maldonado, T., Moreno-Rodríguez, A., González-Morales, L. D., Flores-Villegas, A. L., Rodríguez-González, J., Rodríguez-Páez, L., Aguirre-Alvarado, C., Sánchez-Palestino, L. M., Ortiz-Pérez, E., & Rivera, G. (2024). Design, Synthesis, and In Vitro and In Silico Evaluation of 1,3,4-Oxadiazoles as Anti-Trypanosoma cruzi and Anti-Leishmania mexicana Agents. ChemMedChem, n/a(n/a), e202400241. https://doi.org/10.1002/cmdc.202400241
Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Estructura cristalina de la isoforma 3 de O-acetilserina sulfhidralasa (OASS) de Entamoeba histolytica: Detección virtual basada en farmacóforos y validación de nuevos inhibidores. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), Article 7. https://doi.org/10.3390/molecules200713384
González-González, A., Méndez-Álvarez, D., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Ortiz-Pérez, E., Paz-González, A. D., Bandyopadhyay, D., & Rivera, G. (2023). Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica. Journal of Molecular Modeling, 29(6), 180. https://doi.org/10.1007/s00894-023-05579-4
González-González, A., Sánchez-Sánchez, O., Yépez-Mulia, L., Delgado-Maldonado, T., Vázquez-Jiménez, L. K., López-Velázquez, G., de la Mora-de la Mora, J. I., PachecoGutierrez, S., Chino-Ríos, L., Arias, D., Moreno-Rodríguez, A., Paz-González, A., OrtízPérez, E., & Rivera, G. (2024). Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 39(1), 2413018. https://doi.org/10.1080/14756366.2024.2413018
Gouy, M., Tannier, E., Comte, N., & Parsons, D. P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods in Molecular Biology (Clifton, N.J.), 2231, 241-260. https://doi.org/10.1007/978-1-0716-1036-7_15
Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75-87. https://doi.org/10.1007/s12551-013-0130-2
Güzel-Akdemir, Ö., Akdemir, A., Pan, P., Vermelho, A. B., Parkkila, S., Scozzafava, A., Capasso, C., & Supuran, C. T. (2013). A Class of Sulfonamides with Strong Inhibitory Action against the α-Carbonic Anhydrase from Trypanosoma cruzi. Journal of Medicinal Chemistry, 56(14), 5773-5781. https://doi.org/10.1021/jm400418p
Haapanen, S., Bua, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules, 23(12), Article 12. https://doi.org/10.3390/molecules23123112
Haapanen, S., & Parkkila, S. (2022). Management of Entamoeba histolytica Infection: Treatment Strategies and Possible New Drug Targets. En A. B. Vermelho & C. T. Supuran (Eds.), Antiprotozoal Drug Development and Delivery (pp. 259-269). Springer International Publishing. https://doi.org/10.1007/7355_2021_127
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. McGraw Hill España. https://dialnet.unirioja.es/servlet/libro?codigo=775008
Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. 1(3-4), 271-283. https://doi.org/10.1515/bmc.2010.022
Impressum / Datenschutzerklärung. (2024). [Document]. TU Dresden. Recuperado 9 de abril de 2024, de https://tu-dresden.de/impressum/impressum?set_language=de
Imtaiyaz Hassan, Md., Shajee, B., Waheed, A., Ahmad, F., & Sly, W. S. (2013). Structure, function and applications of carbonic anhydrase isozymes. Bioorganic & Medicinal Chemistry, 21(6), 1570-1582. https://doi.org/10.1016/j.bmc.2012.04.044
Instituto Politecnico Nacional. (2024). Portal del Instituto Politecnico Nacional. Recuperado 9 de abril de 2024, de https://www.ipn.mx/
Ioannides, C. (2002). Xenobiotic Metabolism: An Overview. 1–32. https://doi.org/10.1002/0470846305.ch1
Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 46. https://doi.org/10.1186/s13321-020-00450-7
Juárez-Saldivar, A., Barbosa-Cabrera, E., Lara-Ramírez, E. E., Paz-González, A. D., MartínezVázquez, A. V., Bocanegra-García, V., Palos, I., Campillo, N. E., & Rivera, G. (2021). Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. International Journal of Molecular Sciences, 22(11), Article 11. https://doi.org/10.3390/ijms22115943
Juarez-Saldivar, A., Gómez-Escobedo, R., Corral-Ruiz, G., Chacón-Vargas, K. F., HortaMontaño, V., Sanchez-Torres, L., Vazquez-Jimenez, L. k., Nogueda-Torres, B., & Rivera, G. (2024). Repositioning FDA-Approved Drug Against Chagas Disease and Cutaneous Leishmaniosis by Structure-Based Virtual Screening. Archives of Medical Research, 55(2), 102958. https://doi.org/10.1016/j.arcmed.2024.102958
Juárez-Saldivar, A., Schroeder, M., Salentin, S., Haupt, V. J., Saavedra, E., Vázquez, C., ReyesEspinosa, F., Herrera-Mayorga, V., Villalobos-Rocha, J. C., García-Pérez, C. A., Campillo, N. E., & Rivera, G. (2020). Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. International Journal of Molecular Sciences, 21(12), Article 12. https://doi.org/10.3390/ijms21124270
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Kissinger, P. J., Van Gerwen, O. T., & Muzny, C. A. (2021). Trichomoniasis. En J. E. Weatherhead (Ed.), Neglected Tropical Diseases—North America (pp. 131-155). Springer International Publishing. https://doi.org/10.1007/978-3-030-63384-4_8
Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N. E. (Lucy), Strawbridge, S. A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., … Wishart, D. S. (2024). DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265-D1275. https://doi.org/10.1093/nar/gkad976
Ko, Y. (2020). Computational Drug Repositioning: Current Progress and Challenges. Applied Sciences, 10(15), Article 15. https://doi.org/10.3390/app10155076
Kocer, S., & Mutlu, O. (2021). Identification of potential inhibitors of Trichomonas vaginalis iron-containing superoxide dismutase by computer-aided drug design approach. Structural Chemistry, 32(5), 1873-1882. https://doi.org/10.1007/s11224-021-01766-2
Langella, E., Esposito, D., Monti, S. M., Supuran, C. T., De Simone, G., & Alterio, V. (2023). A Combined in Silico and Structural Study Opens New Perspectives on Aliphatic Sulfonamides, a Still Poorly Investigated Class of CA Inhibitors. Biology, 12(2), Article 2. https://doi.org/10.3390/biology12020281
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486. https://doi.org/10.1007/BF00228148
Llanos, M. A., Sbaraglini, M. L., Villalba, M. L., Ruiz, M. D., Carrillo, C., Alba Soto, C., Talevi, A., Angeli, A., Parkkila, S., Supuran, C. T., & Gavernet, L. (2020). A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 21-30. https://doi.org/10.1080/14756366.2019.1677638
López, P. L. (2004). POBLACIÓN MUESTRA Y MUESTREO. Punto Cero, 09(08), 69-74
Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., & Wang, J. (2021). Biomedical data and computational models for drug repositioning: A comprehensive review. Briefings in Bioinformatics, 22(2), 1604-1619. https://doi.org/10.1093/bib/bbz176
Madusanka, R. K., Silva, H., & Karunaweera, N. D. (2022). Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious Diseases and Therapy, 11(2), 695-711. https://doi.org/10.1007/s40121-022-00602-2
Mahapatra, M. K., & Karuppasamy, M. (2022). Fundamental considerations in drug design. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, 17-55. https://doi.org/10.1016/B978-0-323-90608-1.00005-8
Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 8(2), 121-132. https://doi.org/10.1007/s40475-021- 00232-7
McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J., & Koes, D. R. (2021). GNINA 1.0: Molecular docking with deep learning. Journal of Cheminformatics, 13(1), 43. https://doi.org/10.1186/s13321-021-00522-2
Middha, S. K., David, A., Haldar, S., Boro, H., Panda, P., Bajare, N., Milesh, L., Devaraj, V. R., & Usha, T. (2022). Chapter 14—Databases, DrugBank, and virtual screening platforms for therapeutic development. En A. Parihar, R. Khan, A. Kumar, A. K. Kaushik, & H. Gohel (Eds.), Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection (pp. 291-334). Academic Press. https://doi.org/10.1016/B978-0-323-91172-6.00021-2
Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. (2010). Journal of Molecular Structure: THEOCHEM, 944(1-3), 34-42. https://doi.org/10.1016/j.theochem.2009.12.017
Momčilović, S., Cantacessi, C., Arsić-Arsenijević, V., Otranto, D., & Tasić-Otašević, S. (2019). Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clinical Microbiology and Infection, 25(3), 290-309. https://doi.org/10.1016/j.cmi.2018.04.028
Munnangi, S. R., Youssef, A. A. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharmaceutical Research, 40(6), 1519-1540. https://doi.org/10.1007/s11095-023- 03517-w
Nagaraja, S., & Ankri, S. (2019). Target identification and intervention strategies against amebiasis. Drug Resistance Updates, 44, 1-14. https://doi.org/10.1016/j.drup.2019.04.003
Nasrallah, J., Akhoundi, M., Haouchine, D., Marteau, A., Mantelet, S., Wind, P., Benamouzig, R., Bouchaud, O., Dhote, R., & Izri, A. (2022). Updates on the worldwide burden of amoebiasis: A case series and literature review. Journal of Infection and Public Health, 15(10), 1134-1141. https://doi.org/10.1016/j.jiph.2022.08.013
Ochoa, R., Watowich, S. J., Flórez, A., Mesa, C. V., Robledo, S. M., & Muskus, C. (2016). Drug search for leishmaniasis: A virtual screening approach by grid computing. Journal of Computer-Aided Molecular Design, 30(7), 541-552. https://doi.org/10.1007/s10822-016- 9921-4
Olalla Herbosa, R., & Tercero Gutiérrez, M. J. (2011). Parasitosis comunes internas y externas. Consejos desde la oficina de farmacia. Offarm, 30(4), 33-39.
Ortiz-Perez, E., Vazquez-Jimenez, L. K., Paz-Gonzalez, A. D., Delgado-Maldonado, T., González, A. G., Gaona-Lopez, C., Moreno-Herrera, A., Vazquez, K., & Rivera, G. (2023). Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Current Medicinal Chemistry. https://doi.org/10.2174/0109298673249553231018070920
Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical Reviews, 13(2), 259-272. https://doi.org/10.1007/s12551-021-00795-9
Pharmai/plip. (2024). [Python]. PharmAI GmbH. https://github.com/pharmai/plip (Obra original publicada en 2014)
Project Jupyter. (2014). Recuperado 8 de abril de 2024, de https://jupyter.org
PyMOL | pymol.org. (2024). Recuperado 9 de abril de 2024, de https://pymol.org/
Pymol-open-source/LICENCIA en master · schrodinger/pymol-open-source · GitHub. (2024). Recuperado 9 de abril de 2024, de https://github.com/schrodinger/pymol-opensource/blob/master/LICENSE
Rai, P., Arya, H., Saha, S., Kumar, D., & Bhatt, T. K. (2022). Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10812-10820. https://doi.org/10.1080/07391102.2021.1950574
Reigada, C., Sayé, M., Phanstiel, O. I., Valera-Vera, E., Miranda, M. R., & Pereira, C. A. (2019). Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00256
Rigo, G. V., Frank, L. A., Galego, G. B., Santos, A. L. S. dos, & Tasca, T. (2022). Novel Treatment Approaches to Combat Trichomoniasis, a Neglected and Sexually Transmitted Infection Caused by Trichomonas vaginalis: Translational Perspectives. Venereology, 1(1), Article 1. https://doi.org/10.3390/venereology1010005
Sağlık, B. N., Çevik, U. A., Osmaniye, D., Levent, S., Çavuşoğlu, B. K., Demir, Y., Ilgın, S., Özkay, Y., Koparal, A. S., Beydemir, Ş., & Kaplancıklı, Z. A. (2019). Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chemistry, 91, 103153. https://doi.org/10.1016/j.bioorg.2019.103153
Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443- W447. https://doi.org/10.1093/nar/gkv315
Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588j
Scarpini, S., Dondi, A., Totaro, C., Biagi, C., Melchionda, F., Zama, D., Pierantoni, L., Gennari, M., Campagna, C., Prete, A., & Lanari, M. (2022). Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms, 10(10), Article 10. https://doi.org/10.3390/microorganisms10101887
Sheikh, S. Y., Ansari, W. A., Hassan, F., Faruqui, T., Khan, M. F., Akhter, Y., Khan, A. R., Siddiqui, M. A., Al-Khedhairy, A. A., & Nasibullah, M. (2023). Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. Journal of Molecular Recognition, 36(7), e3021. https://doi.org/10.1002/jmr.3021
Shirley, D.-A. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infectious Diseases, 5(7), ofy161. https://doi.org/10.1093/ofid/ofy161
Sosa-Bibiano, E. I., Sánchez -Martínez, L. A., López-Ávila, K. B., Chablé-Santos, J. B., TorresCastro, J. R., Fernández-Figueroa, E. A., Rangel-Escareño, C., & Loría-Cervera, E. N. (2022). Leishmania (Leishmania) mexicana Infection in Wild Rodents from an Emergent Focus of Cutaneous Leishmaniasis in Yucatan, Mexico. Journal of Tropical Medicine, 2022, e8392005. https://doi.org/10.1155/2022/8392005
Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Chapter Four—Use of molecular docking computational tools in drug discovery. En D. R. Witty & B. Cox (Eds.), Progress in Medicinal Chemistry (Vol. 60, pp. 273-343). Elsevier. https://doi.org/10.1016/bs.pmch.2021.01.004
Structure and catalytic mechanism of the β-carbonic anhydrases. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(2), 362-373. https://doi.org/10.1016/j.bbapap.2009.08.002
Sunseri, J., & Koes, D. R. (2021). Virtual Screening with Gnina 1.0. Molecules, 26(23), Article 23. https://doi.org/10.3390/molecules26237369
Supuran, C. T. (2016). Structure and function of carbonic anhydrases. Biochemical Journal, 473(14), 2023-2032. https://doi.org/10.1042/BCJ20160115
Supuran, C. T., & Capasso, C. (2017). Protozoan Carbonic Anhydrases. En C. T. Supuran & C. Capasso (Eds.), Zinc Enzyme Inhibitors: Enzymes from Microorganisms (pp. 111-133). Springer International Publishing. https://doi.org/10.1007/7355_2016_11
Syrjänen, L., Vermelho, A. B., de Almeida Rodrigues, I., Corte-Real, S., Salonen, T., Pan, P., Vullo, D., Parkkila, S., Capasso, C., & Supuran, C. T. (2013). Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Leishmania donovani chagasi, the Protozoan Parasite Responsible for Leishmaniasis. Journal of Medicinal Chemistry, 56(18), 7372-7381. https://doi.org/10.1021/jm400939k
Términos de uso | MODELO SUIZO. (2011). Recuperado 9 de abril de 2024, de https://swissmodel.expasy.org/docs/terms_of_use
Testa, B., Crivori, P., Reist, M., & Carrupt, P.-A. (2000). The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design, 19(1), 179-211. https://doi.org/10.1023/A:1008741731244
Urbański, L. J., Angeli, A., Hytönen, V. P., Di Fiore, A., De Simone, G., Parkkila, S., & Supuran, C. T. (2021). Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 330-335. https://doi.org/10.1080/14756366.2020.1863958
Urbanski, L. J., Bua, S., Angeli, A., Kuuslahti, M., Hytönen, Vesa. P., Supuran, C. T., & Parkkila, S. (2020). Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1834-1839. https://doi.org/10.1080/14756366.2020.1826942
Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, F1000 Faculty Rev-1666. https://doi.org/10.12688/f1000research.19972.1
Vázquez-Jiménez, L. K., Juárez-Saldivar, A., Chan-Bacab, M. J., Delgado-Maldonado, T., González-Morales, L. D., Palos, I., Ortiz-Pérez, E., Lara-Ramírez, E. E., Ramírez-Moreno, E., & Rivera, G. (2023). Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals, 16(3), Article 3. https://doi.org/10.3390/ph16030390
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017n
Vermelho, A. B., Capaci, G. R., Rodrigues, I. A., Cardoso, V. S., Mazotto, A. M., & Supuran, C. T. (2017). Anhidrasas carbónicas de Trypanosoma y Leishmania como dianas farmacológicas antiprotozoarias. Bioorganic & Medicinal Chemistry, 25(5), 1543-1555. https://doi.org/10.1016/j.bmc.2017.01.034
Volpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W.-W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1), 1-14. https://doi.org/10.1038/s41541-022- 00449-1
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISSMODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
Wiser, M. F. (2021). NutritionNutrition and Protozoan PathogensPathogens of Humans: A Primer. En D. L. Humphries, M. E. Scott, & S. H. Vermund (Eds.), Nutrition and Infectious Diseases: Shifting the Clinical Paradigm (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-56913-6_6
Zolfaghari Emameh, R., Barker, H., Tolvanen, M. E. E., Ortutay, C., & Parkkila, S. (2014). Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites & Vectors, 7(1), 38. https://doi.org/10.1186/1756-3305-7-38
dc.rights.spa.fl_str_mv Derechos Reservados Universidad Francisco de Paula Santander
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Derechos Reservados Universidad Francisco de Paula Santander
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 176 páginas ilustraciones, (Trabajo completo) 3.812 KB
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Francisco de Paula Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Agrarias y del Ambiente
dc.publisher.place.none.fl_str_mv San José de Cúcuta
dc.publisher.program.none.fl_str_mv Ingeniería Biotecnológica
publisher.none.fl_str_mv Universidad Francisco de Paula Santander
dc.source.none.fl_str_mv https://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=9ebef27a5cd0e0b84ebcc4144dd7417f
institution Universidad Francisco de Paula Santander
bitstream.url.fl_str_mv https://repositorio.ufps.edu.co/bitstreams/fa9d4748-0e97-4d2e-8c11-0388205df3a2/download
https://repositorio.ufps.edu.co/bitstreams/bd9d184a-c06c-4eb1-b258-58a69c2d6113/download
https://repositorio.ufps.edu.co/bitstreams/a8d4d1f3-568a-4362-ae6b-04d80a2820d9/download
https://repositorio.ufps.edu.co/bitstreams/5c24c9c8-f783-4adf-8a97-1fa5e4a010fc/download
bitstream.checksum.fl_str_mv ed3b52dc447cd4d91c831d6c5eb7f773
b76e7a76e24cf2f94b3ce0ae5ed275d0
faee140a7f60fc27842313cc9e8346f8
59c865755effa18929aecb935e7e28bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Francisco de Paula Santander
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059621246009344
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Derechos Reservados Universidad Francisco de Paula Santanderhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortíz Pérez, Eyra LilianaRivera Sánchez, GiraldoVelasco Estévez, Anyela MilenaVega Contreras, Nelson Alfonsovirtual::86-1Jurgensen Rangel, MónicaDurán Jaramillo, Andrés2025-10-27T15:55:35Z2024https://repositorio.ufps.edu.co/handle/ufps/10406TIB V00119/2024Las enfermedades parasitarias como la amebiasis, leishmaniasis y tricomoniasis son prevalentes en regiones tropicales y subtropicales, causando alta morbilidad y mortalidad. Este estudio identificó fármacos derivados de sulfonamidas aprobados por la FDA como posibles inhibidores de la enzima β-anhidrasa carbónica (β-AC) de los protozoarios causantes de estas enfermedades, Entamoeba histolytica, Leishmania mexicana y Trichomona vaginalis. Se utilizó técnicas bioinformáticas o in silico como el cribado virtual y el acoplamiento molecular identificando compuestos con buena energía de unión como el venetoclax, zafirlukast, ciclopentiazida, pazopanib, benzotiazida, tenoxicam, ciclotiazida, triclormetiazida y lornoxicam que mostraron interacciones clave con las enzimas. Las evaluaciones in vitro no revelaron efectos antiprotozoarios, posiblemente debido a factores como la solubilidad, tamaño molecular, estabilidad del complejo y características del sitio activo.PregradoIngeniero(a) Biotecnológico(a)176 páginas ilustraciones, (Trabajo completo) 3.812 KBapplication/pdfspaUniversidad Francisco de Paula SantanderFacultad de Ciencias Agrarias y del AmbienteSan José de CúcutaIngeniería Biotecnológicahttps://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=9ebef27a5cd0e0b84ebcc4144dd7417fReposicionamiento de fármacos fda como inhibidores de la β- anhidrasa carbónica de los protozoarios entamoeba histolytica, leishmania mexicana y trichomona vaginalis.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_46echttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionAdasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294Adelusi, T. I., Oyedele, A.-Q., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., Idris, M. O., Olaoba, O. T., Adedotun, I. O., Kolawole, O. E., Xiaoxing, Y., & AbdulHammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29, 100880. https://doi.org/10.1016/j.imu.2022.100880Alberca, L. N., Sbaraglini, M. L., Balcazar, D., Fraccaroli, L., Carrillo, C., Medeiros, A., Benitez, D., Comini, M., & Talevi, A. (2016). Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. Journal of Computer-Aided Molecular Design, 30(4), 305-321. https://doi.org/10.1007/s10822-016-9903-6Alves, M. S. D., Sena-Lopes, Â., das Neves, R. N., Casaril, A. M., Domingues, M., Birmann, P. T., da Silva, E. T., de Souza, M. V. N., Savegnago, L., & Borsuk, S. (2022). In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitology Research, 121(9), 2697-2711. https://doi.org/10.1007/s00436-022-07598-1Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., & Carvalho, D. T. (2020). From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides [Text]. Bentham Science Publishers. https://doi.org/10.2174/1389557520666200905125738Azim, M., Khan, S. A., Ullah, S., Ullah, S., & Anjum, S. I. (2021). Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLOS Neglected Tropical Diseases, 15(3), e0009099. https://doi.org/10.1371/journal.pntd.0009099Baek, M., & Baker, D. (2022). Deep learning and protein structure modeling. Nature Methods, 19(1), 13-14. https://doi.org/10.1038/s41592-021-01360-8Ballón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: Criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Con-Ciencia, 7(2), 55-72Barril, X., & Fradera, X. (2006). Incorporating protein flexibility into docking and structurebased drug design. Expert opinion on drug discovery, 1, 335-349. https://doi.org/10.1517/17460441.1.4.335Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2021). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 39(5), 1838-1852. https://doi.org/10.1080/07391102.2020.1739557Bouchemal, K., Bories, C., & Loiseau, P. M. (2017). Strategies for Prevention and Treatment of Trichomonas vaginalis Infections. Clinical Microbiology Reviews, 30(3), 811-825. https://doi.org/10.1128/cmr.00109-16Bua, S., Haapanen, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. International Journal of Molecular Sciences, 19(12), Article 12. https://doi.org/10.3390/ijms19123946Cabaleiro-Lago, C., & Lundqvist, M. (2020). The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules, 25(19), Article 19. https://doi.org/10.3390/molecules25194405Canché-Pool, E. B., Canto-Hau, D. M., Vargas-Meléndez, M. A., Tello-Martín, R., ReyesNovelo, E., Escobedo-Ortegón, F. J., Ruiz-Piña, H. A., Cambranes-Puc, L. H., TorresCastro, J. R., Palacio-Vargas, J. A., Durán-Caamal, C., Cerón-Espinosa, J., Carpio-Pedroza, J. C., & Rivera-Hernández, O. C. (2022). Report of autochthonous cases of localized cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana in vulnerable, susceptible areas of Southeastern Mexico. Do Instituto de Medicina Tropical de São Paulo, 64, e35. https://doi.org/10.1590/S1678-9946202264035Carrero, J. C., Reyes-López, M., Serrano-Luna, J., Shibayama, M., Unzueta, J., León-Sicairos, N., & de la Garza, M. (2020). Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. International Journal of Medical Microbiology, 310(1), 151358. https://doi.org/10.1016/j.ijmm.2019.151358Carta, F., Supuran, C. T., & Scozzafava, A. (2014). Sulfonamides and Their Isosters As Carbonic Anhydrase Inhibitors. Future Medicinal Chemistry, 6(10), 1149-1165. https://doi.org/10.4155/fmc.14.68Christianson, D. W. (1991). Structural biology of zinc. Advances in Protein Chemistry, 42, 281- 355. https://doi.org/10.1016/s0065-3233(08)60538-0Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511-1519. https://doi.org/10.1002/pro.5560020916Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machinelearning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151- 164. https://doi.org/10.1016/j.drudis.2021.09.007D’Ambrosio, K., Smaine, F.-Z., Carta, F., De Simone, G., Winum, J.-Y., & Supuran, C. T. (2012). Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 55(15), 6776-6783. https://doi.org/10.1021/jm300818kDavid, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold Database of Protein Structures: A Biologist’s Guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336Delgado-Maldonado, T., Moreno-Rodríguez, A., González-Morales, L. D., Flores-Villegas, A. L., Rodríguez-González, J., Rodríguez-Páez, L., Aguirre-Alvarado, C., Sánchez-Palestino, L. M., Ortiz-Pérez, E., & Rivera, G. (2024). Design, Synthesis, and In Vitro and In Silico Evaluation of 1,3,4-Oxadiazoles as Anti-Trypanosoma cruzi and Anti-Leishmania mexicana Agents. ChemMedChem, n/a(n/a), e202400241. https://doi.org/10.1002/cmdc.202400241Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Estructura cristalina de la isoforma 3 de O-acetilserina sulfhidralasa (OASS) de Entamoeba histolytica: Detección virtual basada en farmacóforos y validación de nuevos inhibidores. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), Article 7. https://doi.org/10.3390/molecules200713384González-González, A., Méndez-Álvarez, D., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Ortiz-Pérez, E., Paz-González, A. D., Bandyopadhyay, D., & Rivera, G. (2023). Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica. Journal of Molecular Modeling, 29(6), 180. https://doi.org/10.1007/s00894-023-05579-4González-González, A., Sánchez-Sánchez, O., Yépez-Mulia, L., Delgado-Maldonado, T., Vázquez-Jiménez, L. K., López-Velázquez, G., de la Mora-de la Mora, J. I., PachecoGutierrez, S., Chino-Ríos, L., Arias, D., Moreno-Rodríguez, A., Paz-González, A., OrtízPérez, E., & Rivera, G. (2024). Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di-N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 39(1), 2413018. https://doi.org/10.1080/14756366.2024.2413018Gouy, M., Tannier, E., Comte, N., & Parsons, D. P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods in Molecular Biology (Clifton, N.J.), 2231, 241-260. https://doi.org/10.1007/978-1-0716-1036-7_15Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75-87. https://doi.org/10.1007/s12551-013-0130-2Güzel-Akdemir, Ö., Akdemir, A., Pan, P., Vermelho, A. B., Parkkila, S., Scozzafava, A., Capasso, C., & Supuran, C. T. (2013). A Class of Sulfonamides with Strong Inhibitory Action against the α-Carbonic Anhydrase from Trypanosoma cruzi. Journal of Medicinal Chemistry, 56(14), 5773-5781. https://doi.org/10.1021/jm400418pHaapanen, S., Bua, S., Kuuslahti, M., Parkkila, S., & Supuran, C. T. (2018). Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules, 23(12), Article 12. https://doi.org/10.3390/molecules23123112Haapanen, S., & Parkkila, S. (2022). Management of Entamoeba histolytica Infection: Treatment Strategies and Possible New Drug Targets. En A. B. Vermelho & C. T. Supuran (Eds.), Antiprotozoal Drug Development and Delivery (pp. 259-269). Springer International Publishing. https://doi.org/10.1007/7355_2021_127Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación. McGraw Hill España. https://dialnet.unirioja.es/servlet/libro?codigo=775008Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. 1(3-4), 271-283. https://doi.org/10.1515/bmc.2010.022Impressum / Datenschutzerklärung. (2024). [Document]. TU Dresden. Recuperado 9 de abril de 2024, de https://tu-dresden.de/impressum/impressum?set_language=deImtaiyaz Hassan, Md., Shajee, B., Waheed, A., Ahmad, F., & Sly, W. S. (2013). Structure, function and applications of carbonic anhydrase isozymes. Bioorganic & Medicinal Chemistry, 21(6), 1570-1582. https://doi.org/10.1016/j.bmc.2012.04.044Instituto Politecnico Nacional. (2024). Portal del Instituto Politecnico Nacional. Recuperado 9 de abril de 2024, de https://www.ipn.mx/Ioannides, C. (2002). Xenobiotic Metabolism: An Overview. 1–32. https://doi.org/10.1002/0470846305.ch1Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 46. https://doi.org/10.1186/s13321-020-00450-7Juárez-Saldivar, A., Barbosa-Cabrera, E., Lara-Ramírez, E. E., Paz-González, A. D., MartínezVázquez, A. V., Bocanegra-García, V., Palos, I., Campillo, N. E., & Rivera, G. (2021). Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba histolytica and Giardia lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. International Journal of Molecular Sciences, 22(11), Article 11. https://doi.org/10.3390/ijms22115943Juarez-Saldivar, A., Gómez-Escobedo, R., Corral-Ruiz, G., Chacón-Vargas, K. F., HortaMontaño, V., Sanchez-Torres, L., Vazquez-Jimenez, L. k., Nogueda-Torres, B., & Rivera, G. (2024). Repositioning FDA-Approved Drug Against Chagas Disease and Cutaneous Leishmaniosis by Structure-Based Virtual Screening. Archives of Medical Research, 55(2), 102958. https://doi.org/10.1016/j.arcmed.2024.102958Juárez-Saldivar, A., Schroeder, M., Salentin, S., Haupt, V. J., Saavedra, E., Vázquez, C., ReyesEspinosa, F., Herrera-Mayorga, V., Villalobos-Rocha, J. C., García-Pérez, C. A., Campillo, N. E., & Rivera, G. (2020). Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. International Journal of Molecular Sciences, 21(12), Article 12. https://doi.org/10.3390/ijms21124270Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2Kissinger, P. J., Van Gerwen, O. T., & Muzny, C. A. (2021). Trichomoniasis. En J. E. Weatherhead (Ed.), Neglected Tropical Diseases—North America (pp. 131-155). Springer International Publishing. https://doi.org/10.1007/978-3-030-63384-4_8Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N. E. (Lucy), Strawbridge, S. A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., … Wishart, D. S. (2024). DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265-D1275. https://doi.org/10.1093/nar/gkad976Ko, Y. (2020). Computational Drug Repositioning: Current Progress and Challenges. Applied Sciences, 10(15), Article 15. https://doi.org/10.3390/app10155076Kocer, S., & Mutlu, O. (2021). Identification of potential inhibitors of Trichomonas vaginalis iron-containing superoxide dismutase by computer-aided drug design approach. Structural Chemistry, 32(5), 1873-1882. https://doi.org/10.1007/s11224-021-01766-2Langella, E., Esposito, D., Monti, S. M., Supuran, C. T., De Simone, G., & Alterio, V. (2023). A Combined in Silico and Structural Study Opens New Perspectives on Aliphatic Sulfonamides, a Still Poorly Investigated Class of CA Inhibitors. Biology, 12(2), Article 2. https://doi.org/10.3390/biology12020281Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486. https://doi.org/10.1007/BF00228148Llanos, M. A., Sbaraglini, M. L., Villalba, M. L., Ruiz, M. D., Carrillo, C., Alba Soto, C., Talevi, A., Angeli, A., Parkkila, S., Supuran, C. T., & Gavernet, L. (2020). A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 21-30. https://doi.org/10.1080/14756366.2019.1677638López, P. L. (2004). POBLACIÓN MUESTRA Y MUESTREO. Punto Cero, 09(08), 69-74Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., & Wang, J. (2021). Biomedical data and computational models for drug repositioning: A comprehensive review. Briefings in Bioinformatics, 22(2), 1604-1619. https://doi.org/10.1093/bib/bbz176Madusanka, R. K., Silva, H., & Karunaweera, N. D. (2022). Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious Diseases and Therapy, 11(2), 695-711. https://doi.org/10.1007/s40121-022-00602-2Mahapatra, M. K., & Karuppasamy, M. (2022). Fundamental considerations in drug design. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, 17-55. https://doi.org/10.1016/B978-0-323-90608-1.00005-8Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 8(2), 121-132. https://doi.org/10.1007/s40475-021- 00232-7McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J., & Koes, D. R. (2021). GNINA 1.0: Molecular docking with deep learning. Journal of Cheminformatics, 13(1), 43. https://doi.org/10.1186/s13321-021-00522-2Middha, S. K., David, A., Haldar, S., Boro, H., Panda, P., Bajare, N., Milesh, L., Devaraj, V. R., & Usha, T. (2022). Chapter 14—Databases, DrugBank, and virtual screening platforms for therapeutic development. En A. Parihar, R. Khan, A. Kumar, A. K. Kaushik, & H. Gohel (Eds.), Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection (pp. 291-334). Academic Press. https://doi.org/10.1016/B978-0-323-91172-6.00021-2Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. (2010). Journal of Molecular Structure: THEOCHEM, 944(1-3), 34-42. https://doi.org/10.1016/j.theochem.2009.12.017Momčilović, S., Cantacessi, C., Arsić-Arsenijević, V., Otranto, D., & Tasić-Otašević, S. (2019). Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clinical Microbiology and Infection, 25(3), 290-309. https://doi.org/10.1016/j.cmi.2018.04.028Munnangi, S. R., Youssef, A. A. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharmaceutical Research, 40(6), 1519-1540. https://doi.org/10.1007/s11095-023- 03517-wNagaraja, S., & Ankri, S. (2019). Target identification and intervention strategies against amebiasis. Drug Resistance Updates, 44, 1-14. https://doi.org/10.1016/j.drup.2019.04.003Nasrallah, J., Akhoundi, M., Haouchine, D., Marteau, A., Mantelet, S., Wind, P., Benamouzig, R., Bouchaud, O., Dhote, R., & Izri, A. (2022). Updates on the worldwide burden of amoebiasis: A case series and literature review. Journal of Infection and Public Health, 15(10), 1134-1141. https://doi.org/10.1016/j.jiph.2022.08.013Ochoa, R., Watowich, S. J., Flórez, A., Mesa, C. V., Robledo, S. M., & Muskus, C. (2016). Drug search for leishmaniasis: A virtual screening approach by grid computing. Journal of Computer-Aided Molecular Design, 30(7), 541-552. https://doi.org/10.1007/s10822-016- 9921-4Olalla Herbosa, R., & Tercero Gutiérrez, M. J. (2011). Parasitosis comunes internas y externas. Consejos desde la oficina de farmacia. Offarm, 30(4), 33-39.Ortiz-Perez, E., Vazquez-Jimenez, L. K., Paz-Gonzalez, A. D., Delgado-Maldonado, T., González, A. G., Gaona-Lopez, C., Moreno-Herrera, A., Vazquez, K., & Rivera, G. (2023). Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Current Medicinal Chemistry. https://doi.org/10.2174/0109298673249553231018070920Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical Reviews, 13(2), 259-272. https://doi.org/10.1007/s12551-021-00795-9Pharmai/plip. (2024). [Python]. PharmAI GmbH. https://github.com/pharmai/plip (Obra original publicada en 2014)Project Jupyter. (2014). Recuperado 8 de abril de 2024, de https://jupyter.orgPyMOL | pymol.org. (2024). Recuperado 9 de abril de 2024, de https://pymol.org/Pymol-open-source/LICENCIA en master · schrodinger/pymol-open-source · GitHub. (2024). Recuperado 9 de abril de 2024, de https://github.com/schrodinger/pymol-opensource/blob/master/LICENSERai, P., Arya, H., Saha, S., Kumar, D., & Bhatt, T. K. (2022). Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10812-10820. https://doi.org/10.1080/07391102.2021.1950574Reigada, C., Sayé, M., Phanstiel, O. I., Valera-Vera, E., Miranda, M. R., & Pereira, C. A. (2019). Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00256Rigo, G. V., Frank, L. A., Galego, G. B., Santos, A. L. S. dos, & Tasca, T. (2022). Novel Treatment Approaches to Combat Trichomoniasis, a Neglected and Sexually Transmitted Infection Caused by Trichomonas vaginalis: Translational Perspectives. Venereology, 1(1), Article 1. https://doi.org/10.3390/venereology1010005Sağlık, B. N., Çevik, U. A., Osmaniye, D., Levent, S., Çavuşoğlu, B. K., Demir, Y., Ilgın, S., Özkay, Y., Koparal, A. S., Beydemir, Ş., & Kaplancıklı, Z. A. (2019). Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chemistry, 91, 103153. https://doi.org/10.1016/j.bioorg.2019.103153Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443- W447. https://doi.org/10.1093/nar/gkv315Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. Journal of Chemical Information and Modeling, 55(2), 460-473. https://doi.org/10.1021/ci500588jScarpini, S., Dondi, A., Totaro, C., Biagi, C., Melchionda, F., Zama, D., Pierantoni, L., Gennari, M., Campagna, C., Prete, A., & Lanari, M. (2022). Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms, 10(10), Article 10. https://doi.org/10.3390/microorganisms10101887Sheikh, S. Y., Ansari, W. A., Hassan, F., Faruqui, T., Khan, M. F., Akhter, Y., Khan, A. R., Siddiqui, M. A., Al-Khedhairy, A. A., & Nasibullah, M. (2023). Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. Journal of Molecular Recognition, 36(7), e3021. https://doi.org/10.1002/jmr.3021Shirley, D.-A. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infectious Diseases, 5(7), ofy161. https://doi.org/10.1093/ofid/ofy161Sosa-Bibiano, E. I., Sánchez -Martínez, L. A., López-Ávila, K. B., Chablé-Santos, J. B., TorresCastro, J. R., Fernández-Figueroa, E. A., Rangel-Escareño, C., & Loría-Cervera, E. N. (2022). Leishmania (Leishmania) mexicana Infection in Wild Rodents from an Emergent Focus of Cutaneous Leishmaniasis in Yucatan, Mexico. Journal of Tropical Medicine, 2022, e8392005. https://doi.org/10.1155/2022/8392005Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Chapter Four—Use of molecular docking computational tools in drug discovery. En D. R. Witty & B. Cox (Eds.), Progress in Medicinal Chemistry (Vol. 60, pp. 273-343). Elsevier. https://doi.org/10.1016/bs.pmch.2021.01.004Structure and catalytic mechanism of the β-carbonic anhydrases. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(2), 362-373. https://doi.org/10.1016/j.bbapap.2009.08.002Sunseri, J., & Koes, D. R. (2021). Virtual Screening with Gnina 1.0. Molecules, 26(23), Article 23. https://doi.org/10.3390/molecules26237369Supuran, C. T. (2016). Structure and function of carbonic anhydrases. Biochemical Journal, 473(14), 2023-2032. https://doi.org/10.1042/BCJ20160115Supuran, C. T., & Capasso, C. (2017). Protozoan Carbonic Anhydrases. En C. T. Supuran & C. Capasso (Eds.), Zinc Enzyme Inhibitors: Enzymes from Microorganisms (pp. 111-133). Springer International Publishing. https://doi.org/10.1007/7355_2016_11Syrjänen, L., Vermelho, A. B., de Almeida Rodrigues, I., Corte-Real, S., Salonen, T., Pan, P., Vullo, D., Parkkila, S., Capasso, C., & Supuran, C. T. (2013). Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Leishmania donovani chagasi, the Protozoan Parasite Responsible for Leishmaniasis. Journal of Medicinal Chemistry, 56(18), 7372-7381. https://doi.org/10.1021/jm400939kTérminos de uso | MODELO SUIZO. (2011). Recuperado 9 de abril de 2024, de https://swissmodel.expasy.org/docs/terms_of_useTesta, B., Crivori, P., Reist, M., & Carrupt, P.-A. (2000). The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design, 19(1), 179-211. https://doi.org/10.1023/A:1008741731244Urbański, L. J., Angeli, A., Hytönen, V. P., Di Fiore, A., De Simone, G., Parkkila, S., & Supuran, C. T. (2021). Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 330-335. https://doi.org/10.1080/14756366.2020.1863958Urbanski, L. J., Bua, S., Angeli, A., Kuuslahti, M., Hytönen, Vesa. P., Supuran, C. T., & Parkkila, S. (2020). Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1834-1839. https://doi.org/10.1080/14756366.2020.1826942Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, F1000 Faculty Rev-1666. https://doi.org/10.12688/f1000research.19972.1Vázquez-Jiménez, L. K., Juárez-Saldivar, A., Chan-Bacab, M. J., Delgado-Maldonado, T., González-Morales, L. D., Palos, I., Ortiz-Pérez, E., Lara-Ramírez, E. E., Ramírez-Moreno, E., & Rivera, G. (2023). Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals, 16(3), Article 3. https://doi.org/10.3390/ph16030390Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. https://doi.org/10.1021/jm020017nVermelho, A. B., Capaci, G. R., Rodrigues, I. A., Cardoso, V. S., Mazotto, A. M., & Supuran, C. T. (2017). Anhidrasas carbónicas de Trypanosoma y Leishmania como dianas farmacológicas antiprotozoarias. Bioorganic & Medicinal Chemistry, 25(5), 1543-1555. https://doi.org/10.1016/j.bmc.2017.01.034Volpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W.-W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1), 1-14. https://doi.org/10.1038/s41541-022- 00449-1Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISSMODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427Wiser, M. F. (2021). NutritionNutrition and Protozoan PathogensPathogens of Humans: A Primer. En D. L. Humphries, M. E. Scott, & S. H. Vermund (Eds.), Nutrition and Infectious Diseases: Shifting the Clinical Paradigm (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-56913-6_6Zolfaghari Emameh, R., Barker, H., Tolvanen, M. E. E., Ortutay, C., & Parkkila, S. (2014). Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites & Vectors, 7(1), 38. https://doi.org/10.1186/1756-3305-7-38Anhidrasa carbónicaFármacosSulfonamidasPublication817d0651-445c-45ea-b539-6d23ba579ae7virtual::86-1817d0651-445c-45ea-b539-6d23ba579ae7virtual::86-1ORIGINALTG1611670.pdfTG1611670.pdfDocumento de proyecto de pregradoapplication/pdf3903483https://repositorio.ufps.edu.co/bitstreams/fa9d4748-0e97-4d2e-8c11-0388205df3a2/downloaded3b52dc447cd4d91c831d6c5eb7f773MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.ufps.edu.co/bitstreams/bd9d184a-c06c-4eb1-b258-58a69c2d6113/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADTEXTTG1611670.pdf.txtTG1611670.pdf.txtExtracted texttext/plain101775https://repositorio.ufps.edu.co/bitstreams/a8d4d1f3-568a-4362-ae6b-04d80a2820d9/downloadfaee140a7f60fc27842313cc9e8346f8MD53falseAnonymousREADTHUMBNAILTG1611670.pdf.jpgTG1611670.pdf.jpgGenerated Thumbnailimage/jpeg15237https://repositorio.ufps.edu.co/bitstreams/5c24c9c8-f783-4adf-8a97-1fa5e4a010fc/download59c865755effa18929aecb935e7e28bfMD54falseAnonymousREADufps/10406oai:repositorio.ufps.edu.co:ufps/104062025-10-28 04:01:28.573https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad Francisco de Paula Santanderopen.accesshttps://repositorio.ufps.edu.coRepositorio Universidad Francisco de Paula Santanderbdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=