La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones

Autores:
Gómez Cano, Carlos Alberto
Pacheco Sánchez, Carlos Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Universidad de Cundinamarca
Repositorio:
Repositorio UdeC
Idioma:
OAI Identifier:
oai:repositorio.cun.edu.co:cun/10883
Acceso en línea:
https://repositorio.cun.edu.co/handle/cun/10883
https://doi.org/10.52143/2346139X.1075
Palabra clave:
Modelos Transformadores
Procesamiento de Lenguaje Natural
BERT
GPT
Ética
Transformers models
Natural Language Processing
BERT
GPT
Ethics
Rights
openAccess
License
#ashtag - 2025
id RUCUN2_efebca8d1975cc1a349cac3814ae63d3
oai_identifier_str oai:repositorio.cun.edu.co:cun/10883
network_acronym_str RUCUN2
network_name_str Repositorio UdeC
repository_id_str
dc.title.spa.fl_str_mv La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
title La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
spellingShingle La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
Modelos Transformadores
Procesamiento de Lenguaje Natural
BERT
GPT
Ética
Transformers models
Natural Language Processing
BERT
GPT
Ethics
title_short La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
title_full La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
title_fullStr La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
title_full_unstemmed La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
title_sort La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
dc.creator.fl_str_mv Gómez Cano, Carlos Alberto
Pacheco Sánchez, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Gómez Cano, Carlos Alberto
Pacheco Sánchez, Carlos Alberto
dc.subject.none.fl_str_mv Modelos Transformadores
Procesamiento de Lenguaje Natural
BERT
GPT
Ética
Transformers models
Natural Language Processing
BERT
GPT
Ethics
topic Modelos Transformadores
Procesamiento de Lenguaje Natural
BERT
GPT
Ética
Transformers models
Natural Language Processing
BERT
GPT
Ethics
publishDate 2025
dc.date.issued.none.fl_str_mv %0-%12-%30
dc.date.accessioned.none.fl_str_mv 2024-12-30 00:00:00
2025-11-05T14:59:44Z
dc.date.available.none.fl_str_mv 2024-12-30 00:00:00
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.cun.edu.co/handle/cun/10883
dc.identifier.doi.none.fl_str_mv 10.52143/2346139X.1075
dc.identifier.eissn.none.fl_str_mv 2346-139X
dc.identifier.url.none.fl_str_mv https://doi.org/10.52143/2346139X.1075
url https://repositorio.cun.edu.co/handle/cun/10883
https://doi.org/10.52143/2346139X.1075
identifier_str_mv 10.52143/2346139X.1075
2346-139X
dc.language.iso.none.fl_str_mv
language_invalid_str_mv
dc.relation.bitstream.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/download/1075/778
dc.relation.citationedition.spa.fl_str_mv Núm. 25 , Año 2024 : Revista Hashtag 2024B
dc.relation.citationendpage.none.fl_str_mv 27
dc.relation.citationissue.spa.fl_str_mv 25
dc.relation.citationstartpage.none.fl_str_mv 17
dc.relation.citationvolume.spa.fl_str_mv 2
dc.relation.ispartofjournal.spa.fl_str_mv #ashtag
dc.relation.references.none.fl_str_mv Amjad, F., Abbas, W., Zia-Ur-Rehman, M., Baig, S., Hashim, M., Khan, A., & Rehman, H. (2021). Effect of green human resource management practices on organizational sustainability: the mediating role of environmental and employee performance. Environmental Science and Pollution Research, 28, 28191 - 28206. https://doi.org/10.1007/s11356-020-11307-9 Amrutha, K., & Prabu, P. (2022). Effortless and beneficial processing of natural languages using modelos transformadoress. Journal of Discrete Mathematical Sciences and Cryptography, 25, 1987 - 2005. https://doi.org/10.1080/09720529.2022.2133239 Aytan, B., & Sakar, C. (2022). Comparison of Modelos transformadores-Based Models Trained in Turkish and Different Languages on Turkish Natural Language Processing Problems. 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. https://doi.org/10.1109/SIU55565.2022.9864818 Bahmei, B., Birmingham, E., & Arzanpour, S. (2022). CNN-RNN and Data Augmentation Using Deep Convolutional Generative Adversarial Network for Environmental Sound Classification. IEEE Signal Processing Letters, 29, 682-686. https://doi.org/10.1109/lsp.2022.3150258 Birou, L., Green, K., & Inman, R. (2019). Sustainability knowledge and training: outcomes and firm performance. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-05-2018-0148 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363, 246-260. https://doi.org/10.1016/J.NEUCOM.2019.07.034 Chaudhary, K., & Bali, R. (2022). Easter2.0: Improving convolutional models for handwritten text recognition. ArXiv, abs/2205.14879. https://doi.org/10.48550/arXiv.2205.14879 De Giacomo, M., & Bleischwitz, R. (2020). Business models for environmental sustainability: Contemporary shortcomings and some perspectives. Business Strategy and the Environment. https://doi.org/10.1002/bse.2576 Delgado-Santos, P., Tolosana, R., Guest, R., Deravi, F., & Vera-Rodríguez, R. (2022). Exploring Modelos transformadoress for Behavioural Biometrics: A Case Study in Gait Recognition. ArXiv, abs/2206.01441. https://doi.org/10.48550/arXiv.2206.01441 Dong, Z., Zhang, R., & Shao, X. (2019). A CNN-RNN Hybrid Model with 2D Wavelet Transform Layer for Image Classification. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 1050-1056. https://doi.org/10.1109/ICTAI.2019.00147 Dutta, K., Krishnan, P., Mathew, M., Jawahar, C., Dutta, K., Krishnan, P., & Mathew, M. (2018). Improving CNN-RNN Hybrid Networks for Handwriting Recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), 80-85. https://doi.org/10.1109/ICFHR-2018.2018.00023 Gandhi, D., Shah, V., & Chawan, P. (2022). A Vision Modelos transformadores Approach for Classification an A Small-Sized Medical Image Dataset. 2022 5th International Conference on Advances in Science and Technology (ICAST), 519-524. https://doi.org/10.1109/ICAST55766.2022.10039593 Ganesh, P., Chen, Y., Lou, X., Khan, M., Yang, Y., Chen, D., Winslett, M., Sajjad, H., & Nakov, P. (2020). Compressing Large-Scale Modelos transformadores-Based Models: A Case Study on BERT. Transactions of the Association for Computational Linguistics, 9, 1061-1080. https://doi.org/10.1162/tacl_a_00413 Gillioz, A., Casas, J., Mugellini, E., & Khaled, O. (2020). Overview of the Modelos transformadores-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183. https://doi.org/10.15439/2020F20 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gulati, A., Qin, J., Chiu, C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y., & Pang, R. (2020). Conformer: Convolution-augmented Modelos transformadores for Speech Recognition. ArXiv, abs/2005.08100. https://doi.org/10.21437/interspeech.2020-3015 Guler, B., & Yener, A. (2021). A Framework for Sustainable Federated Learning. 2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 1-8. https://doi.org/10.23919/WiOpt52861.2021.9589930 Guo, Y., Liu, Y., Bakker, E., Guo, Y., & Lew, M. (2017). CNN-RNN: a large-scale hierarchical image classification framework. Multimedia Tools and Applications, 77, 10251 - 10271. https://doi.org/10.1007/s11042-017-5443-x Gupta, M., & Agrawal, P. (2020). Compression of Deep Learning Models for Text: A Survey. ACM Trans. Knowl. Discov. Data, 16, 61:1-61:55. https://doi.org/10.1145/3487045 Guzmán, D. L., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M., & Geng, W. (2018). A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0206049 Kalyan, K., Rajasekharan, A., & Sangeetha, S. (2021). AMMU: A survey of modelos transformadores-based biomedical pretrained language models. Journal of biomedical informatics, 103982 . https://doi.org/10.1016/j.jbi.2021.103982 Keddous, F., Nguyen, H., & Nakib, A. (2021). Characters Recognition based on CNN-RNN architecture and Metaheuristic. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 500-507. https://doi.org/10.1109/IPDPSW52791.2021.00082 Kızıltepe, R., Gan, J., & Escobar, J. (2021). A novel keyframe extraction method for video classification using deep neural networks. Neural Computing and Applications, 35, 24513-24524. https://doi.org/10.1007/s00521-021-06322-x Leamons, R., Cheng, H., & Shami, A. (2022). Vision Modelos transformadoress for Medical Images Classifications. 319-325. https://doi.org/10.1007/978-3-031-16075-2_22 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Li, Y., Wehbe, R., Ahmad, F., Wang, H., & Luo, Y. (2022). A Comparative Study of Pretrained Language Models for Long Clinical Text. Journal of the American Medical Informatics Association : JAMIA. https://doi.org/10.1093/jamia/ocac225 Liu, Y., Zhang, Y., Wang, Y., Hou, F., Yuan, J., Tian, J., Zhang, Y., Shi, Z., Fan, J., & He, Z. (2021). A Survey of Visual Modelos transformadoress. IEEE Transactions on Neural Networks and Learning Systems, 35, 7478-7498. https://doi.org/10.1109/TNNLS.2022.3227717 Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105 Mittal, S., & Umesh, S. (2020). A survey On hardware accelerators and optimization techniques for RNNs. J. Syst. Archit., 112, 101839. https://doi.org/10.1016/j.sysarc.2020.101839 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106, 889 - 892. https://doi.org/10.1136/bjophthalmol-2022-321141 Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. J. King Saud Univ. Comput. Inf. Sci., 34, 2098-2117. https://doi.org/10.1016/j.jksuci.2022.02.025 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from modelos transformadoress (BERT): an empirical case study for Turkish. Automatika, 62, 226 - 238. https://doi.org/10.1080/00051144.2021.1922150 Paillé, P., Valeau, P., & Renwick, D. (2020). Leveraging green human resource practices to achieve environmental sustainability. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121137 Pathak, A. (2021). Comparative Analysis of Modelos transformadores based Language Models. Computer Science & Information Technology (CS & IT). https://doi.org/10.5121/CSIT.2021.110111 Pérez Gamboa, A. J., García Acevedo, Y., & García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Radfar, M., Barnwal, R., Swaminathan, R., Chang, F., Strimel, G., Susanj, N., & Mouchtaris, A. (2022). ConvRNN-T: Convolutional Augmented Recurrent Neural Network Transducers for Streaming Speech Recognition. ArXiv, abs/2209.14868. https://doi.org/10.21437/interspeech.2022-10844 Ramprasath, M., Dhanasekaran, K., Karthick, T., Velumani, R., & Sudhakaran, P. (2022). An Extensive Study on Pretrained Models for Natural Language Processing Based on Modelos transformadoress. 2022 International Conference on Electronics and Renewable Systems (ICEARS), 382-389. https://doi.org/10.1109/ICEARS53579.2022.9752241 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Ronaghi, M. (2022). The effect of virtual reality technology and education on sustainable behavior: a comparative quasi-experimental study. Interact. Technol. Smart Educ., 20, 475-492. https://doi.org/10.1108/itse-02-2022-0025 Roshanzamir, A., Aghajan, H., & Baghshah, M. (2021). Modelos transformadores-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01456-3 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shao, R., & Bi, X. (2022). Modelos transformadoress Meet Small Datasets. IEEE Access, 10, 118454-118464. https://doi.org/10.1109/ACCESS.2022.3221138 Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for Modelos transformadores Based Deep Learning Architectures. IEEE Access, 9, 68675-68702. https://doi.org/10.1109/ACCESS.2021.3077350 Singh, S., Chen, J., Giudice, M., & El-Kassar, A. (2019). Environmental ethics, environmental performance, and competitive advantage: Role of environmental training. Technological Forecasting and Social Change. https://doi.org/10.1016/J.TECHFORE.2019.05.032 Tang, G., Müller, M., Gonzales, A., & Sennrich, R. (2018). Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. ArXiv, abs/1808.08946. https://doi.org/10.18653/v1/D18-1458 Täuscher, K., & Abdelkafi, N. (2018). Scalability and robustness of business models for sustainability: A simulation experiment. Journal of Cleaner Production, 170, 654-664. https://doi.org/10.1016/J.JCLEPRO.2017.09.023 Trummer, I. (2021). Database Tuning using Natural Language Processing. ACM SIGMOD Record, 50, 27 - 28. https://doi.org/10.1145/3503780.3503788 Usama, M., Ahmad, B., Song, E., Hossain, M., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis using convolutional and recurrent neural network. Future Gener. Comput. Syst., 113, 571-578. https://doi.org/10.1016/j.future.2020.07.022 Wang, S., Yao, R., Tsiftsis, T., Miridakis, N., & Qi, N. (2020). Signal Detection in Uplink Time-Varying OFDM Systems Using RNN With Bidirectional LSTM. IEEE Wireless Communications Letters, 9, 1947-1951. https://doi.org/10.1109/LWC.2020.3009170 Xu, Y., Li, L., Xu, H., Huang, S., Huang, F., & Cai, J. (2022). Image Captioning In the Modelos transformadores Age. ArXiv, abs/2204.07374. https://doi.org/10.48550/arXiv.2204.07374 Yang, F., Wang, X., , H., & Li, J. (2021). Modelos transformadoress-sklearn: a toolkit for medical language understanding with modelos transformadores-based models. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01459-0 Yang, H., Gonçalves, T., Quaresma, P., Vieira, R., Veladas, R., Pinto, C., Oliveira, J., Ferreira, M., Morais, J., Pereira, A., Fernandes, N., & Gonçalves, C. (2022). Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet, 14, 130. https://doi.org/10.3390/fi14050130 Ye, Z., Gilman, A., Peng, Q., Levick, K., Cosman, P., & Milstein, L. (2019). Comparison of Neural Network Architectures for Spectrum Sensing. 2019 IEEE Globecom Workshops (GC Wkshps), 1-6. https://doi.org/10.1109/GCWkshps45667.2019.9024482 Zhao, B., Li, X., Lu, X., & Wang, Z. (2018). A CNN-RNN architecture for multi-label weather recognition. ArXiv, abs/1904.10709. https://doi.org/10.1016/J.NEUCOM.2018.09.048 Zhu, S., Guendel, R., Yarovoy, A., & Fioranelli, F. (2022). Continuous Human Activity Recognition With Distributed Radar Sensor Networks and CNN–RNN Architectures. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15. https://doi.org/10.1109/tgrs.2022.3189746
dc.rights.none.fl_str_mv #ashtag - 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv #ashtag - 2025
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial CUN
dc.source.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/view/1075
institution Universidad de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.cun.edu.co/bitstreams/4b04190c-8059-4da0-8472-ce8429b65a54/download
bitstream.checksum.fl_str_mv fb43aee230cc9c5e58e0d98aa5c017b8
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Corporación Unificada Nacional de Educación Superior
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849967423812272128
spelling Gómez Cano, Carlos AlbertoPacheco Sánchez, Carlos Alberto2024-12-30 00:00:002025-11-05T14:59:44Z2024-12-30 00:00:00%0-%12-%30https://repositorio.cun.edu.co/handle/cun/1088310.52143/2346139X.10752346-139Xhttps://doi.org/10.52143/2346139X.1075application/pdfFondo Editorial CUN#ashtag - 2025https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/1075Modelos TransformadoresProcesamiento de Lenguaje NaturalBERTGPTÉticaTransformers modelsNatural Language ProcessingBERTGPTEthicsLa revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicacionesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/1075/778Núm. 25 , Año 2024 : Revista Hashtag 2024B2725172#ashtagAmjad, F., Abbas, W., Zia-Ur-Rehman, M., Baig, S., Hashim, M., Khan, A., & Rehman, H. (2021). Effect of green human resource management practices on organizational sustainability: the mediating role of environmental and employee performance. Environmental Science and Pollution Research, 28, 28191 - 28206. https://doi.org/10.1007/s11356-020-11307-9 Amrutha, K., & Prabu, P. (2022). Effortless and beneficial processing of natural languages using modelos transformadoress. Journal of Discrete Mathematical Sciences and Cryptography, 25, 1987 - 2005. https://doi.org/10.1080/09720529.2022.2133239 Aytan, B., & Sakar, C. (2022). Comparison of Modelos transformadores-Based Models Trained in Turkish and Different Languages on Turkish Natural Language Processing Problems. 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. https://doi.org/10.1109/SIU55565.2022.9864818 Bahmei, B., Birmingham, E., & Arzanpour, S. (2022). CNN-RNN and Data Augmentation Using Deep Convolutional Generative Adversarial Network for Environmental Sound Classification. IEEE Signal Processing Letters, 29, 682-686. https://doi.org/10.1109/lsp.2022.3150258 Birou, L., Green, K., & Inman, R. (2019). Sustainability knowledge and training: outcomes and firm performance. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-05-2018-0148 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363, 246-260. https://doi.org/10.1016/J.NEUCOM.2019.07.034 Chaudhary, K., & Bali, R. (2022). Easter2.0: Improving convolutional models for handwritten text recognition. ArXiv, abs/2205.14879. https://doi.org/10.48550/arXiv.2205.14879 De Giacomo, M., & Bleischwitz, R. (2020). Business models for environmental sustainability: Contemporary shortcomings and some perspectives. Business Strategy and the Environment. https://doi.org/10.1002/bse.2576 Delgado-Santos, P., Tolosana, R., Guest, R., Deravi, F., & Vera-Rodríguez, R. (2022). Exploring Modelos transformadoress for Behavioural Biometrics: A Case Study in Gait Recognition. ArXiv, abs/2206.01441. https://doi.org/10.48550/arXiv.2206.01441 Dong, Z., Zhang, R., & Shao, X. (2019). A CNN-RNN Hybrid Model with 2D Wavelet Transform Layer for Image Classification. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 1050-1056. https://doi.org/10.1109/ICTAI.2019.00147 Dutta, K., Krishnan, P., Mathew, M., Jawahar, C., Dutta, K., Krishnan, P., & Mathew, M. (2018). Improving CNN-RNN Hybrid Networks for Handwriting Recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), 80-85. https://doi.org/10.1109/ICFHR-2018.2018.00023 Gandhi, D., Shah, V., & Chawan, P. (2022). A Vision Modelos transformadores Approach for Classification an A Small-Sized Medical Image Dataset. 2022 5th International Conference on Advances in Science and Technology (ICAST), 519-524. https://doi.org/10.1109/ICAST55766.2022.10039593 Ganesh, P., Chen, Y., Lou, X., Khan, M., Yang, Y., Chen, D., Winslett, M., Sajjad, H., & Nakov, P. (2020). Compressing Large-Scale Modelos transformadores-Based Models: A Case Study on BERT. Transactions of the Association for Computational Linguistics, 9, 1061-1080. https://doi.org/10.1162/tacl_a_00413 Gillioz, A., Casas, J., Mugellini, E., & Khaled, O. (2020). Overview of the Modelos transformadores-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183. https://doi.org/10.15439/2020F20 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gulati, A., Qin, J., Chiu, C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y., & Pang, R. (2020). Conformer: Convolution-augmented Modelos transformadores for Speech Recognition. ArXiv, abs/2005.08100. https://doi.org/10.21437/interspeech.2020-3015 Guler, B., & Yener, A. (2021). A Framework for Sustainable Federated Learning. 2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 1-8. https://doi.org/10.23919/WiOpt52861.2021.9589930 Guo, Y., Liu, Y., Bakker, E., Guo, Y., & Lew, M. (2017). CNN-RNN: a large-scale hierarchical image classification framework. Multimedia Tools and Applications, 77, 10251 - 10271. https://doi.org/10.1007/s11042-017-5443-x Gupta, M., & Agrawal, P. (2020). Compression of Deep Learning Models for Text: A Survey. ACM Trans. Knowl. Discov. Data, 16, 61:1-61:55. https://doi.org/10.1145/3487045 Guzmán, D. L., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M., & Geng, W. (2018). A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0206049 Kalyan, K., Rajasekharan, A., & Sangeetha, S. (2021). AMMU: A survey of modelos transformadores-based biomedical pretrained language models. Journal of biomedical informatics, 103982 . https://doi.org/10.1016/j.jbi.2021.103982 Keddous, F., Nguyen, H., & Nakib, A. (2021). Characters Recognition based on CNN-RNN architecture and Metaheuristic. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 500-507. https://doi.org/10.1109/IPDPSW52791.2021.00082 Kızıltepe, R., Gan, J., & Escobar, J. (2021). A novel keyframe extraction method for video classification using deep neural networks. Neural Computing and Applications, 35, 24513-24524. https://doi.org/10.1007/s00521-021-06322-x Leamons, R., Cheng, H., & Shami, A. (2022). Vision Modelos transformadoress for Medical Images Classifications. 319-325. https://doi.org/10.1007/978-3-031-16075-2_22 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Li, Y., Wehbe, R., Ahmad, F., Wang, H., & Luo, Y. (2022). A Comparative Study of Pretrained Language Models for Long Clinical Text. Journal of the American Medical Informatics Association : JAMIA. https://doi.org/10.1093/jamia/ocac225 Liu, Y., Zhang, Y., Wang, Y., Hou, F., Yuan, J., Tian, J., Zhang, Y., Shi, Z., Fan, J., & He, Z. (2021). A Survey of Visual Modelos transformadoress. IEEE Transactions on Neural Networks and Learning Systems, 35, 7478-7498. https://doi.org/10.1109/TNNLS.2022.3227717 Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105 Mittal, S., & Umesh, S. (2020). A survey On hardware accelerators and optimization techniques for RNNs. J. Syst. Archit., 112, 101839. https://doi.org/10.1016/j.sysarc.2020.101839 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106, 889 - 892. https://doi.org/10.1136/bjophthalmol-2022-321141 Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. J. King Saud Univ. Comput. Inf. Sci., 34, 2098-2117. https://doi.org/10.1016/j.jksuci.2022.02.025 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from modelos transformadoress (BERT): an empirical case study for Turkish. Automatika, 62, 226 - 238. https://doi.org/10.1080/00051144.2021.1922150 Paillé, P., Valeau, P., & Renwick, D. (2020). Leveraging green human resource practices to achieve environmental sustainability. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121137 Pathak, A. (2021). Comparative Analysis of Modelos transformadores based Language Models. Computer Science & Information Technology (CS & IT). https://doi.org/10.5121/CSIT.2021.110111 Pérez Gamboa, A. J., García Acevedo, Y., & García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Radfar, M., Barnwal, R., Swaminathan, R., Chang, F., Strimel, G., Susanj, N., & Mouchtaris, A. (2022). ConvRNN-T: Convolutional Augmented Recurrent Neural Network Transducers for Streaming Speech Recognition. ArXiv, abs/2209.14868. https://doi.org/10.21437/interspeech.2022-10844 Ramprasath, M., Dhanasekaran, K., Karthick, T., Velumani, R., & Sudhakaran, P. (2022). An Extensive Study on Pretrained Models for Natural Language Processing Based on Modelos transformadoress. 2022 International Conference on Electronics and Renewable Systems (ICEARS), 382-389. https://doi.org/10.1109/ICEARS53579.2022.9752241 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Ronaghi, M. (2022). The effect of virtual reality technology and education on sustainable behavior: a comparative quasi-experimental study. Interact. Technol. Smart Educ., 20, 475-492. https://doi.org/10.1108/itse-02-2022-0025 Roshanzamir, A., Aghajan, H., & Baghshah, M. (2021). Modelos transformadores-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01456-3 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shao, R., & Bi, X. (2022). Modelos transformadoress Meet Small Datasets. IEEE Access, 10, 118454-118464. https://doi.org/10.1109/ACCESS.2022.3221138 Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for Modelos transformadores Based Deep Learning Architectures. IEEE Access, 9, 68675-68702. https://doi.org/10.1109/ACCESS.2021.3077350 Singh, S., Chen, J., Giudice, M., & El-Kassar, A. (2019). Environmental ethics, environmental performance, and competitive advantage: Role of environmental training. Technological Forecasting and Social Change. https://doi.org/10.1016/J.TECHFORE.2019.05.032 Tang, G., Müller, M., Gonzales, A., & Sennrich, R. (2018). Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. ArXiv, abs/1808.08946. https://doi.org/10.18653/v1/D18-1458 Täuscher, K., & Abdelkafi, N. (2018). Scalability and robustness of business models for sustainability: A simulation experiment. Journal of Cleaner Production, 170, 654-664. https://doi.org/10.1016/J.JCLEPRO.2017.09.023 Trummer, I. (2021). Database Tuning using Natural Language Processing. ACM SIGMOD Record, 50, 27 - 28. https://doi.org/10.1145/3503780.3503788 Usama, M., Ahmad, B., Song, E., Hossain, M., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis using convolutional and recurrent neural network. Future Gener. Comput. Syst., 113, 571-578. https://doi.org/10.1016/j.future.2020.07.022 Wang, S., Yao, R., Tsiftsis, T., Miridakis, N., & Qi, N. (2020). Signal Detection in Uplink Time-Varying OFDM Systems Using RNN With Bidirectional LSTM. IEEE Wireless Communications Letters, 9, 1947-1951. https://doi.org/10.1109/LWC.2020.3009170 Xu, Y., Li, L., Xu, H., Huang, S., Huang, F., & Cai, J. (2022). Image Captioning In the Modelos transformadores Age. ArXiv, abs/2204.07374. https://doi.org/10.48550/arXiv.2204.07374 Yang, F., Wang, X., , H., & Li, J. (2021). Modelos transformadoress-sklearn: a toolkit for medical language understanding with modelos transformadores-based models. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01459-0 Yang, H., Gonçalves, T., Quaresma, P., Vieira, R., Veladas, R., Pinto, C., Oliveira, J., Ferreira, M., Morais, J., Pereira, A., Fernandes, N., & Gonçalves, C. (2022). Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet, 14, 130. https://doi.org/10.3390/fi14050130 Ye, Z., Gilman, A., Peng, Q., Levick, K., Cosman, P., & Milstein, L. (2019). Comparison of Neural Network Architectures for Spectrum Sensing. 2019 IEEE Globecom Workshops (GC Wkshps), 1-6. https://doi.org/10.1109/GCWkshps45667.2019.9024482 Zhao, B., Li, X., Lu, X., & Wang, Z. (2018). A CNN-RNN architecture for multi-label weather recognition. ArXiv, abs/1904.10709. https://doi.org/10.1016/J.NEUCOM.2018.09.048 Zhu, S., Guendel, R., Yarovoy, A., & Fioranelli, F. (2022). Continuous Human Activity Recognition With Distributed Radar Sensor Networks and CNN–RNN Architectures. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15. https://doi.org/10.1109/tgrs.2022.3189746PublicationOREORE.xmltext/xml2681https://repositorio.cun.edu.co/bitstreams/4b04190c-8059-4da0-8472-ce8429b65a54/downloadfb43aee230cc9c5e58e0d98aa5c017b8MD51falseAnonymousREADcun/10883oai:repositorio.cun.edu.co:cun/108832025-11-05 09:59:44.85https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2025metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com