La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones
- Autores:
-
Gómez Cano, Carlos Alberto
Pacheco Sánchez, Carlos Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Cundinamarca
- Repositorio:
- Repositorio UdeC
- Idioma:
- OAI Identifier:
- oai:repositorio.cun.edu.co:cun/10883
- Acceso en línea:
- https://repositorio.cun.edu.co/handle/cun/10883
https://doi.org/10.52143/2346139X.1075
- Palabra clave:
- Modelos Transformadores
Procesamiento de Lenguaje Natural
BERT
GPT
Ética
Transformers models
Natural Language Processing
BERT
GPT
Ethics
- Rights
- openAccess
- License
- #ashtag - 2025
| id |
RUCUN2_efebca8d1975cc1a349cac3814ae63d3 |
|---|---|
| oai_identifier_str |
oai:repositorio.cun.edu.co:cun/10883 |
| network_acronym_str |
RUCUN2 |
| network_name_str |
Repositorio UdeC |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| title |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| spellingShingle |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones Modelos Transformadores Procesamiento de Lenguaje Natural BERT GPT Ética Transformers models Natural Language Processing BERT GPT Ethics |
| title_short |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| title_full |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| title_fullStr |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| title_full_unstemmed |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| title_sort |
La revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicaciones |
| dc.creator.fl_str_mv |
Gómez Cano, Carlos Alberto Pacheco Sánchez, Carlos Alberto |
| dc.contributor.author.spa.fl_str_mv |
Gómez Cano, Carlos Alberto Pacheco Sánchez, Carlos Alberto |
| dc.subject.none.fl_str_mv |
Modelos Transformadores Procesamiento de Lenguaje Natural BERT GPT Ética Transformers models Natural Language Processing BERT GPT Ethics |
| topic |
Modelos Transformadores Procesamiento de Lenguaje Natural BERT GPT Ética Transformers models Natural Language Processing BERT GPT Ethics |
| publishDate |
2025 |
| dc.date.issued.none.fl_str_mv |
%0-%12-%30 |
| dc.date.accessioned.none.fl_str_mv |
2024-12-30 00:00:00 2025-11-05T14:59:44Z |
| dc.date.available.none.fl_str_mv |
2024-12-30 00:00:00 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.cun.edu.co/handle/cun/10883 |
| dc.identifier.doi.none.fl_str_mv |
10.52143/2346139X.1075 |
| dc.identifier.eissn.none.fl_str_mv |
2346-139X |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.52143/2346139X.1075 |
| url |
https://repositorio.cun.edu.co/handle/cun/10883 https://doi.org/10.52143/2346139X.1075 |
| identifier_str_mv |
10.52143/2346139X.1075 2346-139X |
| dc.language.iso.none.fl_str_mv |
|
| language_invalid_str_mv |
|
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/download/1075/778 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 25 , Año 2024 : Revista Hashtag 2024B |
| dc.relation.citationendpage.none.fl_str_mv |
27 |
| dc.relation.citationissue.spa.fl_str_mv |
25 |
| dc.relation.citationstartpage.none.fl_str_mv |
17 |
| dc.relation.citationvolume.spa.fl_str_mv |
2 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
#ashtag |
| dc.relation.references.none.fl_str_mv |
Amjad, F., Abbas, W., Zia-Ur-Rehman, M., Baig, S., Hashim, M., Khan, A., & Rehman, H. (2021). Effect of green human resource management practices on organizational sustainability: the mediating role of environmental and employee performance. Environmental Science and Pollution Research, 28, 28191 - 28206. https://doi.org/10.1007/s11356-020-11307-9 Amrutha, K., & Prabu, P. (2022). Effortless and beneficial processing of natural languages using modelos transformadoress. Journal of Discrete Mathematical Sciences and Cryptography, 25, 1987 - 2005. https://doi.org/10.1080/09720529.2022.2133239 Aytan, B., & Sakar, C. (2022). Comparison of Modelos transformadores-Based Models Trained in Turkish and Different Languages on Turkish Natural Language Processing Problems. 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. https://doi.org/10.1109/SIU55565.2022.9864818 Bahmei, B., Birmingham, E., & Arzanpour, S. (2022). CNN-RNN and Data Augmentation Using Deep Convolutional Generative Adversarial Network for Environmental Sound Classification. IEEE Signal Processing Letters, 29, 682-686. https://doi.org/10.1109/lsp.2022.3150258 Birou, L., Green, K., & Inman, R. (2019). Sustainability knowledge and training: outcomes and firm performance. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-05-2018-0148 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363, 246-260. https://doi.org/10.1016/J.NEUCOM.2019.07.034 Chaudhary, K., & Bali, R. (2022). Easter2.0: Improving convolutional models for handwritten text recognition. ArXiv, abs/2205.14879. https://doi.org/10.48550/arXiv.2205.14879 De Giacomo, M., & Bleischwitz, R. (2020). Business models for environmental sustainability: Contemporary shortcomings and some perspectives. Business Strategy and the Environment. https://doi.org/10.1002/bse.2576 Delgado-Santos, P., Tolosana, R., Guest, R., Deravi, F., & Vera-Rodríguez, R. (2022). Exploring Modelos transformadoress for Behavioural Biometrics: A Case Study in Gait Recognition. ArXiv, abs/2206.01441. https://doi.org/10.48550/arXiv.2206.01441 Dong, Z., Zhang, R., & Shao, X. (2019). A CNN-RNN Hybrid Model with 2D Wavelet Transform Layer for Image Classification. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 1050-1056. https://doi.org/10.1109/ICTAI.2019.00147 Dutta, K., Krishnan, P., Mathew, M., Jawahar, C., Dutta, K., Krishnan, P., & Mathew, M. (2018). Improving CNN-RNN Hybrid Networks for Handwriting Recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), 80-85. https://doi.org/10.1109/ICFHR-2018.2018.00023 Gandhi, D., Shah, V., & Chawan, P. (2022). A Vision Modelos transformadores Approach for Classification an A Small-Sized Medical Image Dataset. 2022 5th International Conference on Advances in Science and Technology (ICAST), 519-524. https://doi.org/10.1109/ICAST55766.2022.10039593 Ganesh, P., Chen, Y., Lou, X., Khan, M., Yang, Y., Chen, D., Winslett, M., Sajjad, H., & Nakov, P. (2020). Compressing Large-Scale Modelos transformadores-Based Models: A Case Study on BERT. Transactions of the Association for Computational Linguistics, 9, 1061-1080. https://doi.org/10.1162/tacl_a_00413 Gillioz, A., Casas, J., Mugellini, E., & Khaled, O. (2020). Overview of the Modelos transformadores-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183. https://doi.org/10.15439/2020F20 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gulati, A., Qin, J., Chiu, C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y., & Pang, R. (2020). Conformer: Convolution-augmented Modelos transformadores for Speech Recognition. ArXiv, abs/2005.08100. https://doi.org/10.21437/interspeech.2020-3015 Guler, B., & Yener, A. (2021). A Framework for Sustainable Federated Learning. 2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 1-8. https://doi.org/10.23919/WiOpt52861.2021.9589930 Guo, Y., Liu, Y., Bakker, E., Guo, Y., & Lew, M. (2017). CNN-RNN: a large-scale hierarchical image classification framework. Multimedia Tools and Applications, 77, 10251 - 10271. https://doi.org/10.1007/s11042-017-5443-x Gupta, M., & Agrawal, P. (2020). Compression of Deep Learning Models for Text: A Survey. ACM Trans. Knowl. Discov. Data, 16, 61:1-61:55. https://doi.org/10.1145/3487045 Guzmán, D. L., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M., & Geng, W. (2018). A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0206049 Kalyan, K., Rajasekharan, A., & Sangeetha, S. (2021). AMMU: A survey of modelos transformadores-based biomedical pretrained language models. Journal of biomedical informatics, 103982 . https://doi.org/10.1016/j.jbi.2021.103982 Keddous, F., Nguyen, H., & Nakib, A. (2021). Characters Recognition based on CNN-RNN architecture and Metaheuristic. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 500-507. https://doi.org/10.1109/IPDPSW52791.2021.00082 Kızıltepe, R., Gan, J., & Escobar, J. (2021). A novel keyframe extraction method for video classification using deep neural networks. Neural Computing and Applications, 35, 24513-24524. https://doi.org/10.1007/s00521-021-06322-x Leamons, R., Cheng, H., & Shami, A. (2022). Vision Modelos transformadoress for Medical Images Classifications. 319-325. https://doi.org/10.1007/978-3-031-16075-2_22 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Li, Y., Wehbe, R., Ahmad, F., Wang, H., & Luo, Y. (2022). A Comparative Study of Pretrained Language Models for Long Clinical Text. Journal of the American Medical Informatics Association : JAMIA. https://doi.org/10.1093/jamia/ocac225 Liu, Y., Zhang, Y., Wang, Y., Hou, F., Yuan, J., Tian, J., Zhang, Y., Shi, Z., Fan, J., & He, Z. (2021). A Survey of Visual Modelos transformadoress. IEEE Transactions on Neural Networks and Learning Systems, 35, 7478-7498. https://doi.org/10.1109/TNNLS.2022.3227717 Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105 Mittal, S., & Umesh, S. (2020). A survey On hardware accelerators and optimization techniques for RNNs. J. Syst. Archit., 112, 101839. https://doi.org/10.1016/j.sysarc.2020.101839 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106, 889 - 892. https://doi.org/10.1136/bjophthalmol-2022-321141 Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. J. King Saud Univ. Comput. Inf. Sci., 34, 2098-2117. https://doi.org/10.1016/j.jksuci.2022.02.025 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from modelos transformadoress (BERT): an empirical case study for Turkish. Automatika, 62, 226 - 238. https://doi.org/10.1080/00051144.2021.1922150 Paillé, P., Valeau, P., & Renwick, D. (2020). Leveraging green human resource practices to achieve environmental sustainability. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121137 Pathak, A. (2021). Comparative Analysis of Modelos transformadores based Language Models. Computer Science & Information Technology (CS & IT). https://doi.org/10.5121/CSIT.2021.110111 Pérez Gamboa, A. J., García Acevedo, Y., & García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Radfar, M., Barnwal, R., Swaminathan, R., Chang, F., Strimel, G., Susanj, N., & Mouchtaris, A. (2022). ConvRNN-T: Convolutional Augmented Recurrent Neural Network Transducers for Streaming Speech Recognition. ArXiv, abs/2209.14868. https://doi.org/10.21437/interspeech.2022-10844 Ramprasath, M., Dhanasekaran, K., Karthick, T., Velumani, R., & Sudhakaran, P. (2022). An Extensive Study on Pretrained Models for Natural Language Processing Based on Modelos transformadoress. 2022 International Conference on Electronics and Renewable Systems (ICEARS), 382-389. https://doi.org/10.1109/ICEARS53579.2022.9752241 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Ronaghi, M. (2022). The effect of virtual reality technology and education on sustainable behavior: a comparative quasi-experimental study. Interact. Technol. Smart Educ., 20, 475-492. https://doi.org/10.1108/itse-02-2022-0025 Roshanzamir, A., Aghajan, H., & Baghshah, M. (2021). Modelos transformadores-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01456-3 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shao, R., & Bi, X. (2022). Modelos transformadoress Meet Small Datasets. IEEE Access, 10, 118454-118464. https://doi.org/10.1109/ACCESS.2022.3221138 Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for Modelos transformadores Based Deep Learning Architectures. IEEE Access, 9, 68675-68702. https://doi.org/10.1109/ACCESS.2021.3077350 Singh, S., Chen, J., Giudice, M., & El-Kassar, A. (2019). Environmental ethics, environmental performance, and competitive advantage: Role of environmental training. Technological Forecasting and Social Change. https://doi.org/10.1016/J.TECHFORE.2019.05.032 Tang, G., Müller, M., Gonzales, A., & Sennrich, R. (2018). Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. ArXiv, abs/1808.08946. https://doi.org/10.18653/v1/D18-1458 Täuscher, K., & Abdelkafi, N. (2018). Scalability and robustness of business models for sustainability: A simulation experiment. Journal of Cleaner Production, 170, 654-664. https://doi.org/10.1016/J.JCLEPRO.2017.09.023 Trummer, I. (2021). Database Tuning using Natural Language Processing. ACM SIGMOD Record, 50, 27 - 28. https://doi.org/10.1145/3503780.3503788 Usama, M., Ahmad, B., Song, E., Hossain, M., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis using convolutional and recurrent neural network. Future Gener. Comput. Syst., 113, 571-578. https://doi.org/10.1016/j.future.2020.07.022 Wang, S., Yao, R., Tsiftsis, T., Miridakis, N., & Qi, N. (2020). Signal Detection in Uplink Time-Varying OFDM Systems Using RNN With Bidirectional LSTM. IEEE Wireless Communications Letters, 9, 1947-1951. https://doi.org/10.1109/LWC.2020.3009170 Xu, Y., Li, L., Xu, H., Huang, S., Huang, F., & Cai, J. (2022). Image Captioning In the Modelos transformadores Age. ArXiv, abs/2204.07374. https://doi.org/10.48550/arXiv.2204.07374 Yang, F., Wang, X., , H., & Li, J. (2021). Modelos transformadoress-sklearn: a toolkit for medical language understanding with modelos transformadores-based models. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01459-0 Yang, H., Gonçalves, T., Quaresma, P., Vieira, R., Veladas, R., Pinto, C., Oliveira, J., Ferreira, M., Morais, J., Pereira, A., Fernandes, N., & Gonçalves, C. (2022). Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet, 14, 130. https://doi.org/10.3390/fi14050130 Ye, Z., Gilman, A., Peng, Q., Levick, K., Cosman, P., & Milstein, L. (2019). Comparison of Neural Network Architectures for Spectrum Sensing. 2019 IEEE Globecom Workshops (GC Wkshps), 1-6. https://doi.org/10.1109/GCWkshps45667.2019.9024482 Zhao, B., Li, X., Lu, X., & Wang, Z. (2018). A CNN-RNN architecture for multi-label weather recognition. ArXiv, abs/1904.10709. https://doi.org/10.1016/J.NEUCOM.2018.09.048 Zhu, S., Guendel, R., Yarovoy, A., & Fioranelli, F. (2022). Continuous Human Activity Recognition With Distributed Radar Sensor Networks and CNN–RNN Architectures. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15. https://doi.org/10.1109/tgrs.2022.3189746 |
| dc.rights.none.fl_str_mv |
#ashtag - 2025 |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
#ashtag - 2025 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Fondo Editorial CUN |
| dc.source.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/view/1075 |
| institution |
Universidad de Cundinamarca |
| bitstream.url.fl_str_mv |
https://repositorio.cun.edu.co/bitstreams/4b04190c-8059-4da0-8472-ce8429b65a54/download |
| bitstream.checksum.fl_str_mv |
fb43aee230cc9c5e58e0d98aa5c017b8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Corporación Unificada Nacional de Educación Superior |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1849967423812272128 |
| spelling |
Gómez Cano, Carlos AlbertoPacheco Sánchez, Carlos Alberto2024-12-30 00:00:002025-11-05T14:59:44Z2024-12-30 00:00:00%0-%12-%30https://repositorio.cun.edu.co/handle/cun/1088310.52143/2346139X.10752346-139Xhttps://doi.org/10.52143/2346139X.1075application/pdfFondo Editorial CUN#ashtag - 2025https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/1075Modelos TransformadoresProcesamiento de Lenguaje NaturalBERTGPTÉticaTransformers modelsNatural Language ProcessingBERTGPTEthicsLa revolución de los modelos transformadores en procesamiento de lenguaje natural: Un análisis comparativo de arquitecturas y aplicacionesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/1075/778Núm. 25 , Año 2024 : Revista Hashtag 2024B2725172#ashtagAmjad, F., Abbas, W., Zia-Ur-Rehman, M., Baig, S., Hashim, M., Khan, A., & Rehman, H. (2021). Effect of green human resource management practices on organizational sustainability: the mediating role of environmental and employee performance. Environmental Science and Pollution Research, 28, 28191 - 28206. https://doi.org/10.1007/s11356-020-11307-9 Amrutha, K., & Prabu, P. (2022). Effortless and beneficial processing of natural languages using modelos transformadoress. Journal of Discrete Mathematical Sciences and Cryptography, 25, 1987 - 2005. https://doi.org/10.1080/09720529.2022.2133239 Aytan, B., & Sakar, C. (2022). Comparison of Modelos transformadores-Based Models Trained in Turkish and Different Languages on Turkish Natural Language Processing Problems. 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. https://doi.org/10.1109/SIU55565.2022.9864818 Bahmei, B., Birmingham, E., & Arzanpour, S. (2022). CNN-RNN and Data Augmentation Using Deep Convolutional Generative Adversarial Network for Environmental Sound Classification. IEEE Signal Processing Letters, 29, 682-686. https://doi.org/10.1109/lsp.2022.3150258 Birou, L., Green, K., & Inman, R. (2019). Sustainability knowledge and training: outcomes and firm performance. Journal of Manufacturing Technology Management. https://doi.org/10.1108/JMTM-05-2018-0148 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363, 246-260. https://doi.org/10.1016/J.NEUCOM.2019.07.034 Chaudhary, K., & Bali, R. (2022). Easter2.0: Improving convolutional models for handwritten text recognition. ArXiv, abs/2205.14879. https://doi.org/10.48550/arXiv.2205.14879 De Giacomo, M., & Bleischwitz, R. (2020). Business models for environmental sustainability: Contemporary shortcomings and some perspectives. Business Strategy and the Environment. https://doi.org/10.1002/bse.2576 Delgado-Santos, P., Tolosana, R., Guest, R., Deravi, F., & Vera-Rodríguez, R. (2022). Exploring Modelos transformadoress for Behavioural Biometrics: A Case Study in Gait Recognition. ArXiv, abs/2206.01441. https://doi.org/10.48550/arXiv.2206.01441 Dong, Z., Zhang, R., & Shao, X. (2019). A CNN-RNN Hybrid Model with 2D Wavelet Transform Layer for Image Classification. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 1050-1056. https://doi.org/10.1109/ICTAI.2019.00147 Dutta, K., Krishnan, P., Mathew, M., Jawahar, C., Dutta, K., Krishnan, P., & Mathew, M. (2018). Improving CNN-RNN Hybrid Networks for Handwriting Recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), 80-85. https://doi.org/10.1109/ICFHR-2018.2018.00023 Gandhi, D., Shah, V., & Chawan, P. (2022). A Vision Modelos transformadores Approach for Classification an A Small-Sized Medical Image Dataset. 2022 5th International Conference on Advances in Science and Technology (ICAST), 519-524. https://doi.org/10.1109/ICAST55766.2022.10039593 Ganesh, P., Chen, Y., Lou, X., Khan, M., Yang, Y., Chen, D., Winslett, M., Sajjad, H., & Nakov, P. (2020). Compressing Large-Scale Modelos transformadores-Based Models: A Case Study on BERT. Transactions of the Association for Computational Linguistics, 9, 1061-1080. https://doi.org/10.1162/tacl_a_00413 Gillioz, A., Casas, J., Mugellini, E., & Khaled, O. (2020). Overview of the Modelos transformadores-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183. https://doi.org/10.15439/2020F20 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gulati, A., Qin, J., Chiu, C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y., & Pang, R. (2020). Conformer: Convolution-augmented Modelos transformadores for Speech Recognition. ArXiv, abs/2005.08100. https://doi.org/10.21437/interspeech.2020-3015 Guler, B., & Yener, A. (2021). A Framework for Sustainable Federated Learning. 2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 1-8. https://doi.org/10.23919/WiOpt52861.2021.9589930 Guo, Y., Liu, Y., Bakker, E., Guo, Y., & Lew, M. (2017). CNN-RNN: a large-scale hierarchical image classification framework. Multimedia Tools and Applications, 77, 10251 - 10271. https://doi.org/10.1007/s11042-017-5443-x Gupta, M., & Agrawal, P. (2020). Compression of Deep Learning Models for Text: A Survey. ACM Trans. Knowl. Discov. Data, 16, 61:1-61:55. https://doi.org/10.1145/3487045 Guzmán, D. L., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M., & Geng, W. (2018). A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0206049 Kalyan, K., Rajasekharan, A., & Sangeetha, S. (2021). AMMU: A survey of modelos transformadores-based biomedical pretrained language models. Journal of biomedical informatics, 103982 . https://doi.org/10.1016/j.jbi.2021.103982 Keddous, F., Nguyen, H., & Nakib, A. (2021). Characters Recognition based on CNN-RNN architecture and Metaheuristic. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 500-507. https://doi.org/10.1109/IPDPSW52791.2021.00082 Kızıltepe, R., Gan, J., & Escobar, J. (2021). A novel keyframe extraction method for video classification using deep neural networks. Neural Computing and Applications, 35, 24513-24524. https://doi.org/10.1007/s00521-021-06322-x Leamons, R., Cheng, H., & Shami, A. (2022). Vision Modelos transformadoress for Medical Images Classifications. 319-325. https://doi.org/10.1007/978-3-031-16075-2_22 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Li, Y., Wehbe, R., Ahmad, F., Wang, H., & Luo, Y. (2022). A Comparative Study of Pretrained Language Models for Long Clinical Text. Journal of the American Medical Informatics Association : JAMIA. https://doi.org/10.1093/jamia/ocac225 Liu, Y., Zhang, Y., Wang, Y., Hou, F., Yuan, J., Tian, J., Zhang, Y., Shi, Z., Fan, J., & He, Z. (2021). A Survey of Visual Modelos transformadoress. IEEE Transactions on Neural Networks and Learning Systems, 35, 7478-7498. https://doi.org/10.1109/TNNLS.2022.3227717 Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105 Mittal, S., & Umesh, S. (2020). A survey On hardware accelerators and optimization techniques for RNNs. J. Syst. Archit., 112, 101839. https://doi.org/10.1016/j.sysarc.2020.101839 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106, 889 - 892. https://doi.org/10.1136/bjophthalmol-2022-321141 Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. J. King Saud Univ. Comput. Inf. Sci., 34, 2098-2117. https://doi.org/10.1016/j.jksuci.2022.02.025 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from modelos transformadoress (BERT): an empirical case study for Turkish. Automatika, 62, 226 - 238. https://doi.org/10.1080/00051144.2021.1922150 Paillé, P., Valeau, P., & Renwick, D. (2020). Leveraging green human resource practices to achieve environmental sustainability. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121137 Pathak, A. (2021). Comparative Analysis of Modelos transformadores based Language Models. Computer Science & Information Technology (CS & IT). https://doi.org/10.5121/CSIT.2021.110111 Pérez Gamboa, A. J., García Acevedo, Y., & García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Radfar, M., Barnwal, R., Swaminathan, R., Chang, F., Strimel, G., Susanj, N., & Mouchtaris, A. (2022). ConvRNN-T: Convolutional Augmented Recurrent Neural Network Transducers for Streaming Speech Recognition. ArXiv, abs/2209.14868. https://doi.org/10.21437/interspeech.2022-10844 Ramprasath, M., Dhanasekaran, K., Karthick, T., Velumani, R., & Sudhakaran, P. (2022). An Extensive Study on Pretrained Models for Natural Language Processing Based on Modelos transformadoress. 2022 International Conference on Electronics and Renewable Systems (ICEARS), 382-389. https://doi.org/10.1109/ICEARS53579.2022.9752241 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Ronaghi, M. (2022). The effect of virtual reality technology and education on sustainable behavior: a comparative quasi-experimental study. Interact. Technol. Smart Educ., 20, 475-492. https://doi.org/10.1108/itse-02-2022-0025 Roshanzamir, A., Aghajan, H., & Baghshah, M. (2021). Modelos transformadores-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01456-3 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shao, R., & Bi, X. (2022). Modelos transformadoress Meet Small Datasets. IEEE Access, 10, 118454-118464. https://doi.org/10.1109/ACCESS.2022.3221138 Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for Modelos transformadores Based Deep Learning Architectures. IEEE Access, 9, 68675-68702. https://doi.org/10.1109/ACCESS.2021.3077350 Singh, S., Chen, J., Giudice, M., & El-Kassar, A. (2019). Environmental ethics, environmental performance, and competitive advantage: Role of environmental training. Technological Forecasting and Social Change. https://doi.org/10.1016/J.TECHFORE.2019.05.032 Tang, G., Müller, M., Gonzales, A., & Sennrich, R. (2018). Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. ArXiv, abs/1808.08946. https://doi.org/10.18653/v1/D18-1458 Täuscher, K., & Abdelkafi, N. (2018). Scalability and robustness of business models for sustainability: A simulation experiment. Journal of Cleaner Production, 170, 654-664. https://doi.org/10.1016/J.JCLEPRO.2017.09.023 Trummer, I. (2021). Database Tuning using Natural Language Processing. ACM SIGMOD Record, 50, 27 - 28. https://doi.org/10.1145/3503780.3503788 Usama, M., Ahmad, B., Song, E., Hossain, M., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis using convolutional and recurrent neural network. Future Gener. Comput. Syst., 113, 571-578. https://doi.org/10.1016/j.future.2020.07.022 Wang, S., Yao, R., Tsiftsis, T., Miridakis, N., & Qi, N. (2020). Signal Detection in Uplink Time-Varying OFDM Systems Using RNN With Bidirectional LSTM. IEEE Wireless Communications Letters, 9, 1947-1951. https://doi.org/10.1109/LWC.2020.3009170 Xu, Y., Li, L., Xu, H., Huang, S., Huang, F., & Cai, J. (2022). Image Captioning In the Modelos transformadores Age. ArXiv, abs/2204.07374. https://doi.org/10.48550/arXiv.2204.07374 Yang, F., Wang, X., , H., & Li, J. (2021). Modelos transformadoress-sklearn: a toolkit for medical language understanding with modelos transformadores-based models. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01459-0 Yang, H., Gonçalves, T., Quaresma, P., Vieira, R., Veladas, R., Pinto, C., Oliveira, J., Ferreira, M., Morais, J., Pereira, A., Fernandes, N., & Gonçalves, C. (2022). Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet, 14, 130. https://doi.org/10.3390/fi14050130 Ye, Z., Gilman, A., Peng, Q., Levick, K., Cosman, P., & Milstein, L. (2019). Comparison of Neural Network Architectures for Spectrum Sensing. 2019 IEEE Globecom Workshops (GC Wkshps), 1-6. https://doi.org/10.1109/GCWkshps45667.2019.9024482 Zhao, B., Li, X., Lu, X., & Wang, Z. (2018). A CNN-RNN architecture for multi-label weather recognition. ArXiv, abs/1904.10709. https://doi.org/10.1016/J.NEUCOM.2018.09.048 Zhu, S., Guendel, R., Yarovoy, A., & Fioranelli, F. (2022). Continuous Human Activity Recognition With Distributed Radar Sensor Networks and CNN–RNN Architectures. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15. https://doi.org/10.1109/tgrs.2022.3189746PublicationOREORE.xmltext/xml2681https://repositorio.cun.edu.co/bitstreams/4b04190c-8059-4da0-8472-ce8429b65a54/downloadfb43aee230cc9c5e58e0d98aa5c017b8MD51falseAnonymousREADcun/10883oai:repositorio.cun.edu.co:cun/108832025-11-05 09:59:44.85https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2025metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com |
