Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias

Autores:
Tovar Cardozo, Ginna
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Universidad de Cundinamarca
Repositorio:
Repositorio UdeC
Idioma:
OAI Identifier:
oai:repositorio.cun.edu.co:cun/10881
Acceso en línea:
https://repositorio.cun.edu.co/handle/cun/10881
https://doi.org/10.52143/2346139X.1073
Palabra clave:
Sesgos algorítmicos
IA ética
fairness
regulación de IA
accountability
Algorithmic biases
ethical AI
fairness
AI regulation
accountability
Rights
openAccess
License
#ashtag - 2025
id RUCUN2_4932fdc1b78c35d47f17d6b62849f9fb
oai_identifier_str oai:repositorio.cun.edu.co:cun/10881
network_acronym_str RUCUN2
network_name_str Repositorio UdeC
repository_id_str
dc.title.spa.fl_str_mv Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
title Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
spellingShingle Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
Sesgos algorítmicos
IA ética
fairness
regulación de IA
accountability
Algorithmic biases
ethical AI
fairness
AI regulation
accountability
title_short Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
title_full Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
title_fullStr Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
title_full_unstemmed Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
title_sort Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
dc.creator.fl_str_mv Tovar Cardozo, Ginna
dc.contributor.author.spa.fl_str_mv Tovar Cardozo, Ginna
dc.subject.none.fl_str_mv Sesgos algorítmicos
IA ética
fairness
regulación de IA
accountability
Algorithmic biases
ethical AI
fairness
AI regulation
accountability
topic Sesgos algorítmicos
IA ética
fairness
regulación de IA
accountability
Algorithmic biases
ethical AI
fairness
AI regulation
accountability
publishDate 2025
dc.date.issued.none.fl_str_mv %0-%12-%30
dc.date.accessioned.none.fl_str_mv 2024-12-30 00:00:00
2025-11-05T14:59:41Z
dc.date.available.none.fl_str_mv 2024-12-30 00:00:00
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.cun.edu.co/handle/cun/10881
dc.identifier.doi.none.fl_str_mv 10.52143/2346139X.1073
dc.identifier.eissn.none.fl_str_mv 2346-139X
dc.identifier.url.none.fl_str_mv https://doi.org/10.52143/2346139X.1073
url https://repositorio.cun.edu.co/handle/cun/10881
https://doi.org/10.52143/2346139X.1073
identifier_str_mv 10.52143/2346139X.1073
2346-139X
dc.language.iso.none.fl_str_mv
language_invalid_str_mv
dc.relation.bitstream.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/download/1073/777
dc.relation.citationedition.spa.fl_str_mv Núm. 25 , Año 2024 : Revista Hashtag 2024B
dc.relation.citationendpage.none.fl_str_mv 39
dc.relation.citationissue.spa.fl_str_mv 25
dc.relation.citationstartpage.none.fl_str_mv 28
dc.relation.citationvolume.spa.fl_str_mv 2
dc.relation.ispartofjournal.spa.fl_str_mv #ashtag
dc.relation.references.none.fl_str_mv Addey, C. (2021). Passports to the Global South, UN flags, favourite experts: understanding the interplay between UNESCO and the OECD within the SDG4 context. Globalisation, Societies and Education, 19, 593 - 604. https://doi.org/10.1080/14767724.2020.1862643 Akintola, B., Jagboro, G., Ojo, G., & Odediran, S. (2020). Effectiveness of Mechanisms for Enforcement of Ethical Standards in the Construction Industry. Journal of Construction Business and Management, 4(1), 1–12. https://doi.org/10.15641/JCBM.4.1.530 Auld, E., Rappleye, J., & Morris, P. (2018). PISA for Development: how the OECD and World Bank shaped education governance post-2015. Comparative Education, 55, 197 - 219. https://doi.org/10.1080/03050068.2018.1538635 Balabin, A. (2019). The Implementation of Corporate Governance Standards in Large Russian Companies. Proceedings of the International Scientific Conference "Far East Con" (ISCFEC 2018). https://doi.org/10.2991/iscfec-18.2019.24 Baros, J., Sotola, V., Bilik, P., Martínek, R., Jaros, R., Danys, L., & Simoník, P. (2022). Review of Fundamental Active Current Extraction Techniques for SAPF. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22207985 Baykurt, B. (2022). Algorithmic accountability in U. S. cities: Transparency, impact, and political economy. Big Data & Society, 9. https://doi.org/10.1177/20539517221115426 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Busuioc, M. (2020). Accountable Artificial Intelligence: Holding Algorithms to Account. Public Administration Review, 81, 825 - 836. https://doi.org/10.1111/puar.13293 Carter, E., Onyeador, I., & Lewis, N. (2020). Developing & delivering effective anti-bias training: Challenges & recommendations. Behavioral Science & Policy, 6, 57 - 70. https://doi.org/10.1177/237946152000600106 Chalmers, P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83, 696 - 732. https://doi.org/10.1007/s11336-018-9626-9 Cruz, I., Troffaes, M., Lindström, J., & Sahlin, U. (2022). A robust Bayesian bias‐adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis. Statistics in Medicine, 41, 3365 - 3379. https://doi.org/10.1002/sim.9422 Czarnowska, P., Vyas, Y., & Shah, K. (2021). Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics. Transactions of the Association for Computational Linguistics, 9, 1249-1267. https://doi.org/10.1162/tacl_a_00425 De Paolis Kaluza, M., Jain, S., & Radivojac, P. (2022). An Approach to Identifying and Quantifying Bias in Biomedical Data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 28, 311 - 322. https://doi.org/10.1142/9789811270611_0029 Delobelle, P., Tokpo, E., Calders, T., & Berendt, B. (2022). Measuring Fairness with Biased Rulers: A Comparative Study on Bias Metrics for Pre-trained Language Models. , 1693-1706. https://doi.org/10.18653/v1/2022.naacl-main.122 Dobler, C. C., Morrow, A. S., & Kamath, C. C. (2019). Clinicians' cognitive biases: a potential barrier to implementation of evidence-based clinical practice. BMJ evidence-based medicine, 24(4), 137–140. https://doi.org/10.1136/bmjebm-2018-111074Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S., Onghena, P., & Van Den Noortgate, W. (2019). Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study. The Journal of Experimental Education, 89, 125 - 144. https://doi.org/10.1080/00220973.2019.1582470 Floridi, L. (2019). Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1, 261-262. https://doi.org/10.1038/S42256-019-0055-Y Goldfarb-Tarrant, S., Marchant, R., Sánchez, R., Pandya, M., & Lopez, A. (2020). Intrinsic Bias Metrics Do Not Correlate with Application Bias. ArXiv, abs/2012.15859. https://doi.org/10.18653/v1/2021.acl-long.150 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gray, C. (2022). Overcoming Political Fragmentation: The Potential of Meso-Level Mechanisms. International Journal of Health Policy and Management, 12. https://doi.org/10.34172/ijhpm.2022.7075 Guzmán, D. L., Gómez-Cano, C. y Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Han, X., Baldwin, T., & Cohn, T. (2022). Towards Equal Opportunity Fairness through Adversarial Learning. ArXiv, abs/2203.06317. https://doi.org/10.48550/arXiv.2203.06317 Heiden, B., Tonino-Heiden, B., Obermüller, T., Loipold, C., & Wissounig, W. (2020). Rising from systemic to industrial artificial intelligence applications (AIA) for predictive decision making (PDM): Four examples. En Y. Bi, R. Bhatia & S. Kapoor (Eds.), Intelligent systems and applications. IntelliSys 2019 (Advances in Intelligent Systems and Computing, 1038, pp. 1222–1233). Springer. https://doi.org/10.1007/978-3-030-29513-4_94Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1426-2 Kimura, A., Antón-Oldenburg, M., & Pinderhughes, E. (2021). Developing and Teaching an Anti-Bias Curriculum in a Public Elementary School: Leadership, K-1 Teachers’, and Young Children’s Experiences. Journal of Research in Childhood Education, 36, 183 - 202. https://doi.org/10.1080/02568543.2021.1912222 Kinavey, H., & Cool, C. (2019). The Broken Lens: How Anti-Fat Bias in Psychotherapy is Harming Our Clients and What To Do About It. Women & Therapy, 42, 116 - 130. https://doi.org/10.1080/02703149.2018.1524070 Langenkamp, M., Costa, A., & Cheung, C. (2020). Hiring Fairly in the Age of Algorithms. ArXiv, abs/2004.07132. https://doi.org/10.2139/ssrn.3723046 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Lin, L., & Chu, H. (2018). Quantifying publication bias in meta‐analysis. Biometrics, 74. https://doi.org/10.1111/biom.12817 Lyu, Y., Lu, H., Lee, M., Schmitt, G., & Lim, B. (2022). IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality. IEEE Transactions on Visualization and Computer Graphics, 30, 3749-3766. https://doi.org/10.1109/TVCG.2023.3239909 Madaio, M., Egede, L., Subramonyam, H., Vaughan, J., & Wallach, H. (2021). Assessing the Fairness of AI Systems: AI Practitioners' Processes, Challenges, and Needs for Support. Proceedings of the ACM on Human-Computer Interaction, 6, 1 - 26. https://doi.org/10.1145/3512899 Mazen, J., & Tong, X. (2020). Bias Correction for Replacement Samples in Longitudinal Research. Multivariate Behavioral Research, 56, 805 - 827. https://doi.org/10.1080/00273171.2020.1794774 McGregor, L., Murray, D., & Ng, V. (2019). International human rights law as a framework for algorithmic accountability. International and Comparative Law Quarterly, 68, 309 - 343. https://doi.org/10.1017/S0020589319000046 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR), 54, 1 - 35. https://doi.org/10.1145/3457607 Miroshnikov, A., Kotsiopoulos, K., Franks, R., & Kannan, A. (2020). Wasserstein-based fairness interpretability framework for machine learning models. Machine Learning, 111, 3307 - 3357. https://doi.org/10.1007/s10994-022-06213-9 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Mökander, J., Juneja, P., Watson, D., & Floridi, L. (2022). The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: what can they learn from each other?. Minds and Machines, 32, 751 - 758. https://doi.org/10.1007/s11023-022-09612-y Morgan, A., Chaiyachati, K., Weissman, G., & Liao, J. (2018). Eliminating Gender-Based Bias in Academic Medicine: More Than Naming the “Elephant in the Room”. Journal of General Internal Medicine, 33, 966-968. https://doi.org/10.1007/s11606-018-4411-0 Ngxande, M., Tapamo, J., & Burke, M. (2019). Bias Remediation in Driver Drowsiness Detection Systems Using Generative Adversarial Networks. IEEE Access, 8, 55592-55601. https://doi.org/10.1109/ACCESS.2020.2981912 Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10. https://doi.org/10.1002/widm.1356 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Pérez Gamboa, A. J., García Acevedo, Y. y García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Peters, U. (2022). Algorithmic Political Bias in Artificial Intelligence Systems. Philosophy & Technology, 35. https://doi.org/10.1007/s13347-022-00512-8 Petersen, J., Ranker, L., Barnard-Mayers, R., Maclehose, R., & Fox, M. (2021). A systematic review of quantitative bias analysis applied to epidemiological research. International journal of epidemiology. https://doi.org/10.1093/ije/dyab061 Petrenko, A. (2020). OECD acts as instruments of soft international law. Law Review of Kyiv University of Law. https://doi.org/10.36695/2219-5521.3.2020.74 Pospisil, D., & Bair, W. (2022). Accounting for Bias in the Estimation of r2 between Two Sets of Noisy Neural Responses. The Journal of Neuroscience, 42, 9343 - 9355. https://doi.org/10.1523/JNEUROSCI.0198-22.2022 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Ringe, W., & Ruof, C. (2020). Regulating Fintech in the EU: the Case for a Guided Sandbox. European Journal of Risk Regulation, 11, 604 - 629. https://doi.org/10.1017/err.2020.8 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Royal, K. (2019). Survey research methods: A guide for creating post-stratification weights to correct for sample bias. Education in the Health Professions, 2, 48 - 50. https://doi.org/10.4103/EHP.EHP_8_19 Rus, C., Luppes, J., Oosterhuis, H., & Schoenmacker, G. (2022). Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation. ArXiv, abs/2209.09592. https://doi.org/10.48550/arXiv.2209.09592 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shen, A., Han, X., Cohn, T., Baldwin, T., & Frermann, L. (2022). Does Representational Fairness Imply Empirical Fairness? 81-95. https://doi.org/10.18653/v1/2022.findings-aacl.8 Sherman, L., Cantor, A., Milman, A., & Kiparsky, M. (2020). Examining the complex relationship between innovation and regulation through a survey of wastewater utility managers. Journal of environmental management, 260, 110025. https://doi.org/10.1016/j.jenvman.2019.110025 Simpson, A., & Dervin, F. (2019). Global and intercultural competences for whom? By whom? For what purpose?: an example from the Asia Society and the OECD. Compare: A Journal of Comparative and International Education, 49, 672 - 677. https://doi.org/10.1080/03057925.2019.1586194 Thompson, J. (2021). Mental Models and Interpretability in AI Fairness Tools and Code Environments. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. HCII 2021. Lecture Notes in Computer Science, vol 13095. Springer, Cham. https://doi.org/10.1007/978-3-030-90963-5_43 Vaccari, V., & Gardinier, M. (2019). Toward one world or many? A comparative analysis of OECD and UNESCO global education policy documents. International Journal of Development Education and Global Learning. https://doi.org/10.18546/IJDEGL.11.1.05 Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions on Visualization and Computer Graphics, 26, 56-65. https://doi.org/10.1109/TVCG.2019.2934619 Yam, J., & Skorburg, J. (2021). From human resources to human rights: Impact assessments for hiring algorithms. Ethics and Information Technology, 23, 611 - 623. https://doi.org/10.1007/s10676-021-09599-7 Yarborough, M. (2021). Moving towards less biased research. BMJ Open Science, 5. https://doi.org/10.1136/bmjos-2020-100116 Zahid, A., Khan, M., Khan, A., Kamiran, F., & Nasir, B. (2020). Modeling, Quantifying and Visualizing Media Bias on Twitter. IEEE Access, 8, 81812-81821. https://doi.org/10.1109/ACCESS.2020.2990800 Zapp, M. (2020). The authority of science and the legitimacy of international organisations: OECD, UNESCO and World Bank in global education governance. Compare: A Journal of Comparative and International Education, 51, 1022 - 1041. https://doi.org/10.1080/03057925.2019.1702503
dc.rights.none.fl_str_mv #ashtag - 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv #ashtag - 2025
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial CUN
dc.source.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/view/1073
institution Universidad de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.cun.edu.co/bitstreams/a4cb6803-24a5-44a9-8ace-3a1777e7d54f/download
bitstream.checksum.fl_str_mv 97b519988b41fcf0ccb7d1ea46fdf7b4
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Corporación Unificada Nacional de Educación Superior
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849967353445482496
spelling Tovar Cardozo, Ginna2024-12-30 00:00:002025-11-05T14:59:41Z2024-12-30 00:00:00%0-%12-%30https://repositorio.cun.edu.co/handle/cun/1088110.52143/2346139X.10732346-139Xhttps://doi.org/10.52143/2346139X.1073application/pdfFondo Editorial CUN#ashtag - 2025https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/1073Sesgos algorítmicosIA éticafairnessregulación de IAaccountabilityAlgorithmic biasesethical AIfairnessAI regulationaccountabilityÉtica y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatoriasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/1073/777Núm. 25 , Año 2024 : Revista Hashtag 2024B3925282#ashtagAddey, C. (2021). Passports to the Global South, UN flags, favourite experts: understanding the interplay between UNESCO and the OECD within the SDG4 context. Globalisation, Societies and Education, 19, 593 - 604. https://doi.org/10.1080/14767724.2020.1862643 Akintola, B., Jagboro, G., Ojo, G., & Odediran, S. (2020). Effectiveness of Mechanisms for Enforcement of Ethical Standards in the Construction Industry. Journal of Construction Business and Management, 4(1), 1–12. https://doi.org/10.15641/JCBM.4.1.530 Auld, E., Rappleye, J., & Morris, P. (2018). PISA for Development: how the OECD and World Bank shaped education governance post-2015. Comparative Education, 55, 197 - 219. https://doi.org/10.1080/03050068.2018.1538635 Balabin, A. (2019). The Implementation of Corporate Governance Standards in Large Russian Companies. Proceedings of the International Scientific Conference "Far East Con" (ISCFEC 2018). https://doi.org/10.2991/iscfec-18.2019.24 Baros, J., Sotola, V., Bilik, P., Martínek, R., Jaros, R., Danys, L., & Simoník, P. (2022). Review of Fundamental Active Current Extraction Techniques for SAPF. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22207985 Baykurt, B. (2022). Algorithmic accountability in U. S. cities: Transparency, impact, and political economy. Big Data & Society, 9. https://doi.org/10.1177/20539517221115426 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Busuioc, M. (2020). Accountable Artificial Intelligence: Holding Algorithms to Account. Public Administration Review, 81, 825 - 836. https://doi.org/10.1111/puar.13293 Carter, E., Onyeador, I., & Lewis, N. (2020). Developing & delivering effective anti-bias training: Challenges & recommendations. Behavioral Science & Policy, 6, 57 - 70. https://doi.org/10.1177/237946152000600106 Chalmers, P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83, 696 - 732. https://doi.org/10.1007/s11336-018-9626-9 Cruz, I., Troffaes, M., Lindström, J., & Sahlin, U. (2022). A robust Bayesian bias‐adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis. Statistics in Medicine, 41, 3365 - 3379. https://doi.org/10.1002/sim.9422 Czarnowska, P., Vyas, Y., & Shah, K. (2021). Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics. Transactions of the Association for Computational Linguistics, 9, 1249-1267. https://doi.org/10.1162/tacl_a_00425 De Paolis Kaluza, M., Jain, S., & Radivojac, P. (2022). An Approach to Identifying and Quantifying Bias in Biomedical Data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 28, 311 - 322. https://doi.org/10.1142/9789811270611_0029 Delobelle, P., Tokpo, E., Calders, T., & Berendt, B. (2022). Measuring Fairness with Biased Rulers: A Comparative Study on Bias Metrics for Pre-trained Language Models. , 1693-1706. https://doi.org/10.18653/v1/2022.naacl-main.122 Dobler, C. C., Morrow, A. S., & Kamath, C. C. (2019). Clinicians' cognitive biases: a potential barrier to implementation of evidence-based clinical practice. BMJ evidence-based medicine, 24(4), 137–140. https://doi.org/10.1136/bmjebm-2018-111074Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S., Onghena, P., & Van Den Noortgate, W. (2019). Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study. The Journal of Experimental Education, 89, 125 - 144. https://doi.org/10.1080/00220973.2019.1582470 Floridi, L. (2019). Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1, 261-262. https://doi.org/10.1038/S42256-019-0055-Y Goldfarb-Tarrant, S., Marchant, R., Sánchez, R., Pandya, M., & Lopez, A. (2020). Intrinsic Bias Metrics Do Not Correlate with Application Bias. ArXiv, abs/2012.15859. https://doi.org/10.18653/v1/2021.acl-long.150 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gray, C. (2022). Overcoming Political Fragmentation: The Potential of Meso-Level Mechanisms. International Journal of Health Policy and Management, 12. https://doi.org/10.34172/ijhpm.2022.7075 Guzmán, D. L., Gómez-Cano, C. y Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Han, X., Baldwin, T., & Cohn, T. (2022). Towards Equal Opportunity Fairness through Adversarial Learning. ArXiv, abs/2203.06317. https://doi.org/10.48550/arXiv.2203.06317 Heiden, B., Tonino-Heiden, B., Obermüller, T., Loipold, C., & Wissounig, W. (2020). Rising from systemic to industrial artificial intelligence applications (AIA) for predictive decision making (PDM): Four examples. En Y. Bi, R. Bhatia & S. Kapoor (Eds.), Intelligent systems and applications. IntelliSys 2019 (Advances in Intelligent Systems and Computing, 1038, pp. 1222–1233). Springer. https://doi.org/10.1007/978-3-030-29513-4_94Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1426-2 Kimura, A., Antón-Oldenburg, M., & Pinderhughes, E. (2021). Developing and Teaching an Anti-Bias Curriculum in a Public Elementary School: Leadership, K-1 Teachers’, and Young Children’s Experiences. Journal of Research in Childhood Education, 36, 183 - 202. https://doi.org/10.1080/02568543.2021.1912222 Kinavey, H., & Cool, C. (2019). The Broken Lens: How Anti-Fat Bias in Psychotherapy is Harming Our Clients and What To Do About It. Women & Therapy, 42, 116 - 130. https://doi.org/10.1080/02703149.2018.1524070 Langenkamp, M., Costa, A., & Cheung, C. (2020). Hiring Fairly in the Age of Algorithms. ArXiv, abs/2004.07132. https://doi.org/10.2139/ssrn.3723046 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Lin, L., & Chu, H. (2018). Quantifying publication bias in meta‐analysis. Biometrics, 74. https://doi.org/10.1111/biom.12817 Lyu, Y., Lu, H., Lee, M., Schmitt, G., & Lim, B. (2022). IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality. IEEE Transactions on Visualization and Computer Graphics, 30, 3749-3766. https://doi.org/10.1109/TVCG.2023.3239909 Madaio, M., Egede, L., Subramonyam, H., Vaughan, J., & Wallach, H. (2021). Assessing the Fairness of AI Systems: AI Practitioners' Processes, Challenges, and Needs for Support. Proceedings of the ACM on Human-Computer Interaction, 6, 1 - 26. https://doi.org/10.1145/3512899 Mazen, J., & Tong, X. (2020). Bias Correction for Replacement Samples in Longitudinal Research. Multivariate Behavioral Research, 56, 805 - 827. https://doi.org/10.1080/00273171.2020.1794774 McGregor, L., Murray, D., & Ng, V. (2019). International human rights law as a framework for algorithmic accountability. International and Comparative Law Quarterly, 68, 309 - 343. https://doi.org/10.1017/S0020589319000046 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR), 54, 1 - 35. https://doi.org/10.1145/3457607 Miroshnikov, A., Kotsiopoulos, K., Franks, R., & Kannan, A. (2020). Wasserstein-based fairness interpretability framework for machine learning models. Machine Learning, 111, 3307 - 3357. https://doi.org/10.1007/s10994-022-06213-9 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Mökander, J., Juneja, P., Watson, D., & Floridi, L. (2022). The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: what can they learn from each other?. Minds and Machines, 32, 751 - 758. https://doi.org/10.1007/s11023-022-09612-y Morgan, A., Chaiyachati, K., Weissman, G., & Liao, J. (2018). Eliminating Gender-Based Bias in Academic Medicine: More Than Naming the “Elephant in the Room”. Journal of General Internal Medicine, 33, 966-968. https://doi.org/10.1007/s11606-018-4411-0 Ngxande, M., Tapamo, J., & Burke, M. (2019). Bias Remediation in Driver Drowsiness Detection Systems Using Generative Adversarial Networks. IEEE Access, 8, 55592-55601. https://doi.org/10.1109/ACCESS.2020.2981912 Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10. https://doi.org/10.1002/widm.1356 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Pérez Gamboa, A. J., García Acevedo, Y. y García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Peters, U. (2022). Algorithmic Political Bias in Artificial Intelligence Systems. Philosophy & Technology, 35. https://doi.org/10.1007/s13347-022-00512-8 Petersen, J., Ranker, L., Barnard-Mayers, R., Maclehose, R., & Fox, M. (2021). A systematic review of quantitative bias analysis applied to epidemiological research. International journal of epidemiology. https://doi.org/10.1093/ije/dyab061 Petrenko, A. (2020). OECD acts as instruments of soft international law. Law Review of Kyiv University of Law. https://doi.org/10.36695/2219-5521.3.2020.74 Pospisil, D., & Bair, W. (2022). Accounting for Bias in the Estimation of r2 between Two Sets of Noisy Neural Responses. The Journal of Neuroscience, 42, 9343 - 9355. https://doi.org/10.1523/JNEUROSCI.0198-22.2022 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Ringe, W., & Ruof, C. (2020). Regulating Fintech in the EU: the Case for a Guided Sandbox. European Journal of Risk Regulation, 11, 604 - 629. https://doi.org/10.1017/err.2020.8 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Royal, K. (2019). Survey research methods: A guide for creating post-stratification weights to correct for sample bias. Education in the Health Professions, 2, 48 - 50. https://doi.org/10.4103/EHP.EHP_8_19 Rus, C., Luppes, J., Oosterhuis, H., & Schoenmacker, G. (2022). Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation. ArXiv, abs/2209.09592. https://doi.org/10.48550/arXiv.2209.09592 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shen, A., Han, X., Cohn, T., Baldwin, T., & Frermann, L. (2022). Does Representational Fairness Imply Empirical Fairness? 81-95. https://doi.org/10.18653/v1/2022.findings-aacl.8 Sherman, L., Cantor, A., Milman, A., & Kiparsky, M. (2020). Examining the complex relationship between innovation and regulation through a survey of wastewater utility managers. Journal of environmental management, 260, 110025. https://doi.org/10.1016/j.jenvman.2019.110025 Simpson, A., & Dervin, F. (2019). Global and intercultural competences for whom? By whom? For what purpose?: an example from the Asia Society and the OECD. Compare: A Journal of Comparative and International Education, 49, 672 - 677. https://doi.org/10.1080/03057925.2019.1586194 Thompson, J. (2021). Mental Models and Interpretability in AI Fairness Tools and Code Environments. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. HCII 2021. Lecture Notes in Computer Science, vol 13095. Springer, Cham. https://doi.org/10.1007/978-3-030-90963-5_43 Vaccari, V., & Gardinier, M. (2019). Toward one world or many? A comparative analysis of OECD and UNESCO global education policy documents. International Journal of Development Education and Global Learning. https://doi.org/10.18546/IJDEGL.11.1.05 Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions on Visualization and Computer Graphics, 26, 56-65. https://doi.org/10.1109/TVCG.2019.2934619 Yam, J., & Skorburg, J. (2021). From human resources to human rights: Impact assessments for hiring algorithms. Ethics and Information Technology, 23, 611 - 623. https://doi.org/10.1007/s10676-021-09599-7 Yarborough, M. (2021). Moving towards less biased research. BMJ Open Science, 5. https://doi.org/10.1136/bmjos-2020-100116 Zahid, A., Khan, M., Khan, A., Kamiran, F., & Nasir, B. (2020). Modeling, Quantifying and Visualizing Media Bias on Twitter. IEEE Access, 8, 81812-81821. https://doi.org/10.1109/ACCESS.2020.2990800 Zapp, M. (2020). The authority of science and the legitimacy of international organisations: OECD, UNESCO and World Bank in global education governance. Compare: A Journal of Comparative and International Education, 51, 1022 - 1041. https://doi.org/10.1080/03057925.2019.1702503PublicationOREORE.xmltext/xml2500https://repositorio.cun.edu.co/bitstreams/a4cb6803-24a5-44a9-8ace-3a1777e7d54f/download97b519988b41fcf0ccb7d1ea46fdf7b4MD51falseAnonymousREADcun/10881oai:repositorio.cun.edu.co:cun/108812025-11-05 09:59:42.069https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2025metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com