Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias
- Autores:
-
Tovar Cardozo, Ginna
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Cundinamarca
- Repositorio:
- Repositorio UdeC
- Idioma:
- OAI Identifier:
- oai:repositorio.cun.edu.co:cun/10881
- Acceso en línea:
- https://repositorio.cun.edu.co/handle/cun/10881
https://doi.org/10.52143/2346139X.1073
- Palabra clave:
- Sesgos algorítmicos
IA ética
fairness
regulación de IA
accountability
Algorithmic biases
ethical AI
fairness
AI regulation
accountability
- Rights
- openAccess
- License
- #ashtag - 2025
| id |
RUCUN2_4932fdc1b78c35d47f17d6b62849f9fb |
|---|---|
| oai_identifier_str |
oai:repositorio.cun.edu.co:cun/10881 |
| network_acronym_str |
RUCUN2 |
| network_name_str |
Repositorio UdeC |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| title |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| spellingShingle |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias Sesgos algorítmicos IA ética fairness regulación de IA accountability Algorithmic biases ethical AI fairness AI regulation accountability |
| title_short |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| title_full |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| title_fullStr |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| title_full_unstemmed |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| title_sort |
Ética y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatorias |
| dc.creator.fl_str_mv |
Tovar Cardozo, Ginna |
| dc.contributor.author.spa.fl_str_mv |
Tovar Cardozo, Ginna |
| dc.subject.none.fl_str_mv |
Sesgos algorítmicos IA ética fairness regulación de IA accountability Algorithmic biases ethical AI fairness AI regulation accountability |
| topic |
Sesgos algorítmicos IA ética fairness regulación de IA accountability Algorithmic biases ethical AI fairness AI regulation accountability |
| publishDate |
2025 |
| dc.date.issued.none.fl_str_mv |
%0-%12-%30 |
| dc.date.accessioned.none.fl_str_mv |
2024-12-30 00:00:00 2025-11-05T14:59:41Z |
| dc.date.available.none.fl_str_mv |
2024-12-30 00:00:00 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.cun.edu.co/handle/cun/10881 |
| dc.identifier.doi.none.fl_str_mv |
10.52143/2346139X.1073 |
| dc.identifier.eissn.none.fl_str_mv |
2346-139X |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.52143/2346139X.1073 |
| url |
https://repositorio.cun.edu.co/handle/cun/10881 https://doi.org/10.52143/2346139X.1073 |
| identifier_str_mv |
10.52143/2346139X.1073 2346-139X |
| dc.language.iso.none.fl_str_mv |
|
| language_invalid_str_mv |
|
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/download/1073/777 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 25 , Año 2024 : Revista Hashtag 2024B |
| dc.relation.citationendpage.none.fl_str_mv |
39 |
| dc.relation.citationissue.spa.fl_str_mv |
25 |
| dc.relation.citationstartpage.none.fl_str_mv |
28 |
| dc.relation.citationvolume.spa.fl_str_mv |
2 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
#ashtag |
| dc.relation.references.none.fl_str_mv |
Addey, C. (2021). Passports to the Global South, UN flags, favourite experts: understanding the interplay between UNESCO and the OECD within the SDG4 context. Globalisation, Societies and Education, 19, 593 - 604. https://doi.org/10.1080/14767724.2020.1862643 Akintola, B., Jagboro, G., Ojo, G., & Odediran, S. (2020). Effectiveness of Mechanisms for Enforcement of Ethical Standards in the Construction Industry. Journal of Construction Business and Management, 4(1), 1–12. https://doi.org/10.15641/JCBM.4.1.530 Auld, E., Rappleye, J., & Morris, P. (2018). PISA for Development: how the OECD and World Bank shaped education governance post-2015. Comparative Education, 55, 197 - 219. https://doi.org/10.1080/03050068.2018.1538635 Balabin, A. (2019). The Implementation of Corporate Governance Standards in Large Russian Companies. Proceedings of the International Scientific Conference "Far East Con" (ISCFEC 2018). https://doi.org/10.2991/iscfec-18.2019.24 Baros, J., Sotola, V., Bilik, P., Martínek, R., Jaros, R., Danys, L., & Simoník, P. (2022). Review of Fundamental Active Current Extraction Techniques for SAPF. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22207985 Baykurt, B. (2022). Algorithmic accountability in U. S. cities: Transparency, impact, and political economy. Big Data & Society, 9. https://doi.org/10.1177/20539517221115426 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Busuioc, M. (2020). Accountable Artificial Intelligence: Holding Algorithms to Account. Public Administration Review, 81, 825 - 836. https://doi.org/10.1111/puar.13293 Carter, E., Onyeador, I., & Lewis, N. (2020). Developing & delivering effective anti-bias training: Challenges & recommendations. Behavioral Science & Policy, 6, 57 - 70. https://doi.org/10.1177/237946152000600106 Chalmers, P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83, 696 - 732. https://doi.org/10.1007/s11336-018-9626-9 Cruz, I., Troffaes, M., Lindström, J., & Sahlin, U. (2022). A robust Bayesian bias‐adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis. Statistics in Medicine, 41, 3365 - 3379. https://doi.org/10.1002/sim.9422 Czarnowska, P., Vyas, Y., & Shah, K. (2021). Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics. Transactions of the Association for Computational Linguistics, 9, 1249-1267. https://doi.org/10.1162/tacl_a_00425 De Paolis Kaluza, M., Jain, S., & Radivojac, P. (2022). An Approach to Identifying and Quantifying Bias in Biomedical Data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 28, 311 - 322. https://doi.org/10.1142/9789811270611_0029 Delobelle, P., Tokpo, E., Calders, T., & Berendt, B. (2022). Measuring Fairness with Biased Rulers: A Comparative Study on Bias Metrics for Pre-trained Language Models. , 1693-1706. https://doi.org/10.18653/v1/2022.naacl-main.122 Dobler, C. C., Morrow, A. S., & Kamath, C. C. (2019). Clinicians' cognitive biases: a potential barrier to implementation of evidence-based clinical practice. BMJ evidence-based medicine, 24(4), 137–140. https://doi.org/10.1136/bmjebm-2018-111074Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S., Onghena, P., & Van Den Noortgate, W. (2019). Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study. The Journal of Experimental Education, 89, 125 - 144. https://doi.org/10.1080/00220973.2019.1582470 Floridi, L. (2019). Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1, 261-262. https://doi.org/10.1038/S42256-019-0055-Y Goldfarb-Tarrant, S., Marchant, R., Sánchez, R., Pandya, M., & Lopez, A. (2020). Intrinsic Bias Metrics Do Not Correlate with Application Bias. ArXiv, abs/2012.15859. https://doi.org/10.18653/v1/2021.acl-long.150 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gray, C. (2022). Overcoming Political Fragmentation: The Potential of Meso-Level Mechanisms. International Journal of Health Policy and Management, 12. https://doi.org/10.34172/ijhpm.2022.7075 Guzmán, D. L., Gómez-Cano, C. y Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Han, X., Baldwin, T., & Cohn, T. (2022). Towards Equal Opportunity Fairness through Adversarial Learning. ArXiv, abs/2203.06317. https://doi.org/10.48550/arXiv.2203.06317 Heiden, B., Tonino-Heiden, B., Obermüller, T., Loipold, C., & Wissounig, W. (2020). Rising from systemic to industrial artificial intelligence applications (AIA) for predictive decision making (PDM): Four examples. En Y. Bi, R. Bhatia & S. Kapoor (Eds.), Intelligent systems and applications. IntelliSys 2019 (Advances in Intelligent Systems and Computing, 1038, pp. 1222–1233). Springer. https://doi.org/10.1007/978-3-030-29513-4_94Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1426-2 Kimura, A., Antón-Oldenburg, M., & Pinderhughes, E. (2021). Developing and Teaching an Anti-Bias Curriculum in a Public Elementary School: Leadership, K-1 Teachers’, and Young Children’s Experiences. Journal of Research in Childhood Education, 36, 183 - 202. https://doi.org/10.1080/02568543.2021.1912222 Kinavey, H., & Cool, C. (2019). The Broken Lens: How Anti-Fat Bias in Psychotherapy is Harming Our Clients and What To Do About It. Women & Therapy, 42, 116 - 130. https://doi.org/10.1080/02703149.2018.1524070 Langenkamp, M., Costa, A., & Cheung, C. (2020). Hiring Fairly in the Age of Algorithms. ArXiv, abs/2004.07132. https://doi.org/10.2139/ssrn.3723046 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Lin, L., & Chu, H. (2018). Quantifying publication bias in meta‐analysis. Biometrics, 74. https://doi.org/10.1111/biom.12817 Lyu, Y., Lu, H., Lee, M., Schmitt, G., & Lim, B. (2022). IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality. IEEE Transactions on Visualization and Computer Graphics, 30, 3749-3766. https://doi.org/10.1109/TVCG.2023.3239909 Madaio, M., Egede, L., Subramonyam, H., Vaughan, J., & Wallach, H. (2021). Assessing the Fairness of AI Systems: AI Practitioners' Processes, Challenges, and Needs for Support. Proceedings of the ACM on Human-Computer Interaction, 6, 1 - 26. https://doi.org/10.1145/3512899 Mazen, J., & Tong, X. (2020). Bias Correction for Replacement Samples in Longitudinal Research. Multivariate Behavioral Research, 56, 805 - 827. https://doi.org/10.1080/00273171.2020.1794774 McGregor, L., Murray, D., & Ng, V. (2019). International human rights law as a framework for algorithmic accountability. International and Comparative Law Quarterly, 68, 309 - 343. https://doi.org/10.1017/S0020589319000046 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR), 54, 1 - 35. https://doi.org/10.1145/3457607 Miroshnikov, A., Kotsiopoulos, K., Franks, R., & Kannan, A. (2020). Wasserstein-based fairness interpretability framework for machine learning models. Machine Learning, 111, 3307 - 3357. https://doi.org/10.1007/s10994-022-06213-9 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Mökander, J., Juneja, P., Watson, D., & Floridi, L. (2022). The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: what can they learn from each other?. Minds and Machines, 32, 751 - 758. https://doi.org/10.1007/s11023-022-09612-y Morgan, A., Chaiyachati, K., Weissman, G., & Liao, J. (2018). Eliminating Gender-Based Bias in Academic Medicine: More Than Naming the “Elephant in the Room”. Journal of General Internal Medicine, 33, 966-968. https://doi.org/10.1007/s11606-018-4411-0 Ngxande, M., Tapamo, J., & Burke, M. (2019). Bias Remediation in Driver Drowsiness Detection Systems Using Generative Adversarial Networks. IEEE Access, 8, 55592-55601. https://doi.org/10.1109/ACCESS.2020.2981912 Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10. https://doi.org/10.1002/widm.1356 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Pérez Gamboa, A. J., García Acevedo, Y. y García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Peters, U. (2022). Algorithmic Political Bias in Artificial Intelligence Systems. Philosophy & Technology, 35. https://doi.org/10.1007/s13347-022-00512-8 Petersen, J., Ranker, L., Barnard-Mayers, R., Maclehose, R., & Fox, M. (2021). A systematic review of quantitative bias analysis applied to epidemiological research. International journal of epidemiology. https://doi.org/10.1093/ije/dyab061 Petrenko, A. (2020). OECD acts as instruments of soft international law. Law Review of Kyiv University of Law. https://doi.org/10.36695/2219-5521.3.2020.74 Pospisil, D., & Bair, W. (2022). Accounting for Bias in the Estimation of r2 between Two Sets of Noisy Neural Responses. The Journal of Neuroscience, 42, 9343 - 9355. https://doi.org/10.1523/JNEUROSCI.0198-22.2022 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Ringe, W., & Ruof, C. (2020). Regulating Fintech in the EU: the Case for a Guided Sandbox. European Journal of Risk Regulation, 11, 604 - 629. https://doi.org/10.1017/err.2020.8 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Royal, K. (2019). Survey research methods: A guide for creating post-stratification weights to correct for sample bias. Education in the Health Professions, 2, 48 - 50. https://doi.org/10.4103/EHP.EHP_8_19 Rus, C., Luppes, J., Oosterhuis, H., & Schoenmacker, G. (2022). Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation. ArXiv, abs/2209.09592. https://doi.org/10.48550/arXiv.2209.09592 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shen, A., Han, X., Cohn, T., Baldwin, T., & Frermann, L. (2022). Does Representational Fairness Imply Empirical Fairness? 81-95. https://doi.org/10.18653/v1/2022.findings-aacl.8 Sherman, L., Cantor, A., Milman, A., & Kiparsky, M. (2020). Examining the complex relationship between innovation and regulation through a survey of wastewater utility managers. Journal of environmental management, 260, 110025. https://doi.org/10.1016/j.jenvman.2019.110025 Simpson, A., & Dervin, F. (2019). Global and intercultural competences for whom? By whom? For what purpose?: an example from the Asia Society and the OECD. Compare: A Journal of Comparative and International Education, 49, 672 - 677. https://doi.org/10.1080/03057925.2019.1586194 Thompson, J. (2021). Mental Models and Interpretability in AI Fairness Tools and Code Environments. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. HCII 2021. Lecture Notes in Computer Science, vol 13095. Springer, Cham. https://doi.org/10.1007/978-3-030-90963-5_43 Vaccari, V., & Gardinier, M. (2019). Toward one world or many? A comparative analysis of OECD and UNESCO global education policy documents. International Journal of Development Education and Global Learning. https://doi.org/10.18546/IJDEGL.11.1.05 Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions on Visualization and Computer Graphics, 26, 56-65. https://doi.org/10.1109/TVCG.2019.2934619 Yam, J., & Skorburg, J. (2021). From human resources to human rights: Impact assessments for hiring algorithms. Ethics and Information Technology, 23, 611 - 623. https://doi.org/10.1007/s10676-021-09599-7 Yarborough, M. (2021). Moving towards less biased research. BMJ Open Science, 5. https://doi.org/10.1136/bmjos-2020-100116 Zahid, A., Khan, M., Khan, A., Kamiran, F., & Nasir, B. (2020). Modeling, Quantifying and Visualizing Media Bias on Twitter. IEEE Access, 8, 81812-81821. https://doi.org/10.1109/ACCESS.2020.2990800 Zapp, M. (2020). The authority of science and the legitimacy of international organisations: OECD, UNESCO and World Bank in global education governance. Compare: A Journal of Comparative and International Education, 51, 1022 - 1041. https://doi.org/10.1080/03057925.2019.1702503 |
| dc.rights.none.fl_str_mv |
#ashtag - 2025 |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
#ashtag - 2025 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Fondo Editorial CUN |
| dc.source.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/view/1073 |
| institution |
Universidad de Cundinamarca |
| bitstream.url.fl_str_mv |
https://repositorio.cun.edu.co/bitstreams/a4cb6803-24a5-44a9-8ace-3a1777e7d54f/download |
| bitstream.checksum.fl_str_mv |
97b519988b41fcf0ccb7d1ea46fdf7b4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Corporación Unificada Nacional de Educación Superior |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1849967353445482496 |
| spelling |
Tovar Cardozo, Ginna2024-12-30 00:00:002025-11-05T14:59:41Z2024-12-30 00:00:00%0-%12-%30https://repositorio.cun.edu.co/handle/cun/1088110.52143/2346139X.10732346-139Xhttps://doi.org/10.52143/2346139X.1073application/pdfFondo Editorial CUN#ashtag - 2025https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/1073Sesgos algorítmicosIA éticafairnessregulación de IAaccountabilityAlgorithmic biasesethical AIfairnessAI regulationaccountabilityÉtica y mitigación de sesgos en sistemas de IA: Tendencias técnicas y regulatoriasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/1073/777Núm. 25 , Año 2024 : Revista Hashtag 2024B3925282#ashtagAddey, C. (2021). Passports to the Global South, UN flags, favourite experts: understanding the interplay between UNESCO and the OECD within the SDG4 context. Globalisation, Societies and Education, 19, 593 - 604. https://doi.org/10.1080/14767724.2020.1862643 Akintola, B., Jagboro, G., Ojo, G., & Odediran, S. (2020). Effectiveness of Mechanisms for Enforcement of Ethical Standards in the Construction Industry. Journal of Construction Business and Management, 4(1), 1–12. https://doi.org/10.15641/JCBM.4.1.530 Auld, E., Rappleye, J., & Morris, P. (2018). PISA for Development: how the OECD and World Bank shaped education governance post-2015. Comparative Education, 55, 197 - 219. https://doi.org/10.1080/03050068.2018.1538635 Balabin, A. (2019). The Implementation of Corporate Governance Standards in Large Russian Companies. Proceedings of the International Scientific Conference "Far East Con" (ISCFEC 2018). https://doi.org/10.2991/iscfec-18.2019.24 Baros, J., Sotola, V., Bilik, P., Martínek, R., Jaros, R., Danys, L., & Simoník, P. (2022). Review of Fundamental Active Current Extraction Techniques for SAPF. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22207985 Baykurt, B. (2022). Algorithmic accountability in U. S. cities: Transparency, impact, and political economy. Big Data & Society, 9. https://doi.org/10.1177/20539517221115426 Borges Machín, A. Y. y González Bravo, Y. L. (2022). Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica, 1(1), 202212. https://doi.org/10.58763/rc202213 Busuioc, M. (2020). Accountable Artificial Intelligence: Holding Algorithms to Account. Public Administration Review, 81, 825 - 836. https://doi.org/10.1111/puar.13293 Carter, E., Onyeador, I., & Lewis, N. (2020). Developing & delivering effective anti-bias training: Challenges & recommendations. Behavioral Science & Policy, 6, 57 - 70. https://doi.org/10.1177/237946152000600106 Chalmers, P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83, 696 - 732. https://doi.org/10.1007/s11336-018-9626-9 Cruz, I., Troffaes, M., Lindström, J., & Sahlin, U. (2022). A robust Bayesian bias‐adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis. Statistics in Medicine, 41, 3365 - 3379. https://doi.org/10.1002/sim.9422 Czarnowska, P., Vyas, Y., & Shah, K. (2021). Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics. Transactions of the Association for Computational Linguistics, 9, 1249-1267. https://doi.org/10.1162/tacl_a_00425 De Paolis Kaluza, M., Jain, S., & Radivojac, P. (2022). An Approach to Identifying and Quantifying Bias in Biomedical Data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 28, 311 - 322. https://doi.org/10.1142/9789811270611_0029 Delobelle, P., Tokpo, E., Calders, T., & Berendt, B. (2022). Measuring Fairness with Biased Rulers: A Comparative Study on Bias Metrics for Pre-trained Language Models. , 1693-1706. https://doi.org/10.18653/v1/2022.naacl-main.122 Dobler, C. C., Morrow, A. S., & Kamath, C. C. (2019). Clinicians' cognitive biases: a potential barrier to implementation of evidence-based clinical practice. BMJ evidence-based medicine, 24(4), 137–140. https://doi.org/10.1136/bmjebm-2018-111074Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S., Onghena, P., & Van Den Noortgate, W. (2019). Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study. The Journal of Experimental Education, 89, 125 - 144. https://doi.org/10.1080/00220973.2019.1582470 Floridi, L. (2019). Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1, 261-262. https://doi.org/10.1038/S42256-019-0055-Y Goldfarb-Tarrant, S., Marchant, R., Sánchez, R., Pandya, M., & Lopez, A. (2020). Intrinsic Bias Metrics Do Not Correlate with Application Bias. ArXiv, abs/2012.15859. https://doi.org/10.18653/v1/2021.acl-long.150 Gómez Cano, C. A. (2022). Ingreso, permanencia y estrategias para el fomento de los Semilleros de Investigación en una IES de Colombia. Región Científica, 1(1), 20226. https://doi.org/10.58763/rc20226 Gómez Miranda, O. M. (2022). La franquicia: de la inversión al emprendimiento. Región Científica, 1(1), 20229. https://doi.org/10.58763/rc20229 Gómez-Cano, C. y Sánchez-Castillo, V. (2021). Evaluación del nivel de madurez en la gestión de proyectos de una empresa prestadora de servicios públicos. Económicas CUC, 42(2), 133-144. https://doi.org/10.17981/econcuc.42.2.2021.Org.7 Gray, C. (2022). Overcoming Political Fragmentation: The Potential of Meso-Level Mechanisms. International Journal of Health Policy and Management, 12. https://doi.org/10.34172/ijhpm.2022.7075 Guzmán, D. L., Gómez-Cano, C. y Sánchez-Castillo, V. (2022). Construcción del Estado a partir de la participación ciudadana. Revista Academia & Derecho, 14(25). https://doi.org/10.18041/2215-8944/academia.25.10601 Han, X., Baldwin, T., & Cohn, T. (2022). Towards Equal Opportunity Fairness through Adversarial Learning. ArXiv, abs/2203.06317. https://doi.org/10.48550/arXiv.2203.06317 Heiden, B., Tonino-Heiden, B., Obermüller, T., Loipold, C., & Wissounig, W. (2020). Rising from systemic to industrial artificial intelligence applications (AIA) for predictive decision making (PDM): Four examples. En Y. Bi, R. Bhatia & S. Kapoor (Eds.), Intelligent systems and applications. IntelliSys 2019 (Advances in Intelligent Systems and Computing, 1038, pp. 1222–1233). Springer. https://doi.org/10.1007/978-3-030-29513-4_94Higuera Carrillo, E. L. (2022). Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica, 1(1), 20224. https://doi.org/10.58763/rc20224 Hoyos Chavarro, Y. A., Melo Zamudio, J. C., & Sánchez Castillo, V. (2022). Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica, 1(1), 20228. https://doi.org/10.58763/rc20228 Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1426-2 Kimura, A., Antón-Oldenburg, M., & Pinderhughes, E. (2021). Developing and Teaching an Anti-Bias Curriculum in a Public Elementary School: Leadership, K-1 Teachers’, and Young Children’s Experiences. Journal of Research in Childhood Education, 36, 183 - 202. https://doi.org/10.1080/02568543.2021.1912222 Kinavey, H., & Cool, C. (2019). The Broken Lens: How Anti-Fat Bias in Psychotherapy is Harming Our Clients and What To Do About It. Women & Therapy, 42, 116 - 130. https://doi.org/10.1080/02703149.2018.1524070 Langenkamp, M., Costa, A., & Cheung, C. (2020). Hiring Fairly in the Age of Algorithms. ArXiv, abs/2004.07132. https://doi.org/10.2139/ssrn.3723046 Ledesma, F. y Malave-González, B. E. (2022). Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica, 1(1), 202214. https://doi.org/10.58763/rc202214 Lin, L., & Chu, H. (2018). Quantifying publication bias in meta‐analysis. Biometrics, 74. https://doi.org/10.1111/biom.12817 Lyu, Y., Lu, H., Lee, M., Schmitt, G., & Lim, B. (2022). IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality. IEEE Transactions on Visualization and Computer Graphics, 30, 3749-3766. https://doi.org/10.1109/TVCG.2023.3239909 Madaio, M., Egede, L., Subramonyam, H., Vaughan, J., & Wallach, H. (2021). Assessing the Fairness of AI Systems: AI Practitioners' Processes, Challenges, and Needs for Support. Proceedings of the ACM on Human-Computer Interaction, 6, 1 - 26. https://doi.org/10.1145/3512899 Mazen, J., & Tong, X. (2020). Bias Correction for Replacement Samples in Longitudinal Research. Multivariate Behavioral Research, 56, 805 - 827. https://doi.org/10.1080/00273171.2020.1794774 McGregor, L., Murray, D., & Ng, V. (2019). International human rights law as a framework for algorithmic accountability. International and Comparative Law Quarterly, 68, 309 - 343. https://doi.org/10.1017/S0020589319000046 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR), 54, 1 - 35. https://doi.org/10.1145/3457607 Miroshnikov, A., Kotsiopoulos, K., Franks, R., & Kannan, A. (2020). Wasserstein-based fairness interpretability framework for machine learning models. Machine Learning, 111, 3307 - 3357. https://doi.org/10.1007/s10994-022-06213-9 Mogrovejo Andrade, J. M. (2022). Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica, 1(1), 202211. https://doi.org/10.58763/rc202211 Mökander, J., Juneja, P., Watson, D., & Floridi, L. (2022). The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: what can they learn from each other?. Minds and Machines, 32, 751 - 758. https://doi.org/10.1007/s11023-022-09612-y Morgan, A., Chaiyachati, K., Weissman, G., & Liao, J. (2018). Eliminating Gender-Based Bias in Academic Medicine: More Than Naming the “Elephant in the Room”. Journal of General Internal Medicine, 33, 966-968. https://doi.org/10.1007/s11606-018-4411-0 Ngxande, M., Tapamo, J., & Burke, M. (2019). Bias Remediation in Driver Drowsiness Detection Systems Using Generative Adversarial Networks. IEEE Access, 8, 55592-55601. https://doi.org/10.1109/ACCESS.2020.2981912 Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10. https://doi.org/10.1002/widm.1356 Orozco Castillo, E. A. (2022). Experiencias en torno al emprendimiento femenino. Región Científica, 1(1), 20227. https://doi.org/10.58763/rc20225 Pérez Gamboa, A. J., García Acevedo, Y. y García Batán, J. (2019). Proyecto de vida y proceso formativo universitario: un estudio exploratorio en la Universidad de Camagüey. Trasnsformación, 15(3), 280-296. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2077-29552019000300280 Pérez-Gamboa, A. J., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Decision making in university contexts based on knowledge management systems. Data & Metadata, 2, 92. https://doi.org/10.56294/dm202292 Peters, U. (2022). Algorithmic Political Bias in Artificial Intelligence Systems. Philosophy & Technology, 35. https://doi.org/10.1007/s13347-022-00512-8 Petersen, J., Ranker, L., Barnard-Mayers, R., Maclehose, R., & Fox, M. (2021). A systematic review of quantitative bias analysis applied to epidemiological research. International journal of epidemiology. https://doi.org/10.1093/ije/dyab061 Petrenko, A. (2020). OECD acts as instruments of soft international law. Law Review of Kyiv University of Law. https://doi.org/10.36695/2219-5521.3.2020.74 Pospisil, D., & Bair, W. (2022). Accounting for Bias in the Estimation of r2 between Two Sets of Noisy Neural Responses. The Journal of Neuroscience, 42, 9343 - 9355. https://doi.org/10.1523/JNEUROSCI.0198-22.2022 Ricardo Jiménez, L. S. (2022). Dimensiones de emprendimiento: Relación educativa. El caso del programa cumbre. Región Científica, 1(1), 202210. https://doi.org/10.58763/rc202210 Ringe, W., & Ruof, C. (2020). Regulating Fintech in the EU: the Case for a Guided Sandbox. European Journal of Risk Regulation, 11, 604 - 629. https://doi.org/10.1017/err.2020.8 Rodríguez-Torres, E., Gómez-Cano, C., & Sánchez-Castillo, V. (2022). Management information systems and their impact on business decision making. Data & Metadata, 1, 21. https://doi.org/10.56294/dm202221 Royal, K. (2019). Survey research methods: A guide for creating post-stratification weights to correct for sample bias. Education in the Health Professions, 2, 48 - 50. https://doi.org/10.4103/EHP.EHP_8_19 Rus, C., Luppes, J., Oosterhuis, H., & Schoenmacker, G. (2022). Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation. ArXiv, abs/2209.09592. https://doi.org/10.48550/arXiv.2209.09592 Sanabria Martínez, M. J. (2022). Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica, 1(1), 20222. https://doi.org/10.58763/rc20222 Shen, A., Han, X., Cohn, T., Baldwin, T., & Frermann, L. (2022). Does Representational Fairness Imply Empirical Fairness? 81-95. https://doi.org/10.18653/v1/2022.findings-aacl.8 Sherman, L., Cantor, A., Milman, A., & Kiparsky, M. (2020). Examining the complex relationship between innovation and regulation through a survey of wastewater utility managers. Journal of environmental management, 260, 110025. https://doi.org/10.1016/j.jenvman.2019.110025 Simpson, A., & Dervin, F. (2019). Global and intercultural competences for whom? By whom? For what purpose?: an example from the Asia Society and the OECD. Compare: A Journal of Comparative and International Education, 49, 672 - 677. https://doi.org/10.1080/03057925.2019.1586194 Thompson, J. (2021). Mental Models and Interpretability in AI Fairness Tools and Code Environments. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. HCII 2021. Lecture Notes in Computer Science, vol 13095. Springer, Cham. https://doi.org/10.1007/978-3-030-90963-5_43 Vaccari, V., & Gardinier, M. (2019). Toward one world or many? A comparative analysis of OECD and UNESCO global education policy documents. International Journal of Development Education and Global Learning. https://doi.org/10.18546/IJDEGL.11.1.05 Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions on Visualization and Computer Graphics, 26, 56-65. https://doi.org/10.1109/TVCG.2019.2934619 Yam, J., & Skorburg, J. (2021). From human resources to human rights: Impact assessments for hiring algorithms. Ethics and Information Technology, 23, 611 - 623. https://doi.org/10.1007/s10676-021-09599-7 Yarborough, M. (2021). Moving towards less biased research. BMJ Open Science, 5. https://doi.org/10.1136/bmjos-2020-100116 Zahid, A., Khan, M., Khan, A., Kamiran, F., & Nasir, B. (2020). Modeling, Quantifying and Visualizing Media Bias on Twitter. IEEE Access, 8, 81812-81821. https://doi.org/10.1109/ACCESS.2020.2990800 Zapp, M. (2020). The authority of science and the legitimacy of international organisations: OECD, UNESCO and World Bank in global education governance. Compare: A Journal of Comparative and International Education, 51, 1022 - 1041. https://doi.org/10.1080/03057925.2019.1702503PublicationOREORE.xmltext/xml2500https://repositorio.cun.edu.co/bitstreams/a4cb6803-24a5-44a9-8ace-3a1777e7d54f/download97b519988b41fcf0ccb7d1ea46fdf7b4MD51falseAnonymousREADcun/10881oai:repositorio.cun.edu.co:cun/108812025-11-05 09:59:42.069https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2025metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com |
