Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental

Autores:
Ahmadi, Taha
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Universidad de Cundinamarca
Repositorio:
Repositorio UdeC
Idioma:
OAI Identifier:
oai:repositorio.cun.edu.co:cun/10868
Acceso en línea:
https://repositorio.cun.edu.co/handle/cun/10868
https://doi.org/10.52143/2346139X.941
Palabra clave:
Estudio de viabilidad
Generación distribuida
Generación simultánea de electricidad y calor
Contaminación ambiental
Feasibility study
Distributed generation
Simultaneous generation of electricity and heat
environmental pollution
Rights
openAccess
License
#ashtag - 2022
id RUCUN2_47be0908bca1788d3e92fc894cf41f24
oai_identifier_str oai:repositorio.cun.edu.co:cun/10868
network_acronym_str RUCUN2
network_name_str Repositorio UdeC
repository_id_str
dc.title.spa.fl_str_mv Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
title Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
spellingShingle Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
Estudio de viabilidad
Generación distribuida
Generación simultánea de electricidad y calor
Contaminación ambiental
Feasibility study
Distributed generation
Simultaneous generation of electricity and heat
environmental pollution
title_short Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
title_full Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
title_fullStr Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
title_full_unstemmed Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
title_sort Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental
dc.creator.fl_str_mv Ahmadi, Taha
dc.contributor.author.spa.fl_str_mv Ahmadi, Taha
dc.subject.none.fl_str_mv Estudio de viabilidad
Generación distribuida
Generación simultánea de electricidad y calor
Contaminación ambiental
Feasibility study
Distributed generation
Simultaneous generation of electricity and heat
environmental pollution
topic Estudio de viabilidad
Generación distribuida
Generación simultánea de electricidad y calor
Contaminación ambiental
Feasibility study
Distributed generation
Simultaneous generation of electricity and heat
environmental pollution
publishDate 2025
dc.date.issued.none.fl_str_mv %0-%08-%12
dc.date.accessioned.none.fl_str_mv 2022-08-12 00:00:00
2025-11-05T14:59:24Z
dc.date.available.none.fl_str_mv 2022-08-12 00:00:00
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.cun.edu.co/handle/cun/10868
dc.identifier.doi.none.fl_str_mv 10.52143/2346139X.941
dc.identifier.eissn.none.fl_str_mv 2346-139X
dc.identifier.url.none.fl_str_mv https://doi.org/10.52143/2346139X.941
url https://repositorio.cun.edu.co/handle/cun/10868
https://doi.org/10.52143/2346139X.941
identifier_str_mv 10.52143/2346139X.941
2346-139X
dc.language.iso.none.fl_str_mv
language_invalid_str_mv
dc.relation.bitstream.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/download/941/640
dc.relation.citationedition.spa.fl_str_mv Núm. 20 , Año 2022 : Revista Hashtag 2022A
dc.relation.citationendpage.none.fl_str_mv 29
dc.relation.citationissue.spa.fl_str_mv 20
dc.relation.citationstartpage.none.fl_str_mv 18
dc.relation.citationvolume.spa.fl_str_mv 1
dc.relation.ispartofjournal.spa.fl_str_mv #ashtag
dc.relation.references.none.fl_str_mv Ahmadi, T., & Gaona, S. S. (july 2021). Designing a Mathematical Model and Control System for the Makariza Steam Boiler. Paper presented at the International Conference on Swarm Intelligence. https://doi.org/10.1007/978-3-030-78811-7_50
Al-Maghalseh, M., Odeh, S., & Saleh, A. (2017). Optimal sizing and allocation of DGs for real power loss reduction and voltage profile improvement in radial LV networks. Paper presented at the 2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT).
Andoni, M., Robu, V., Früh, W.-G., & Flynn, D. (2017). Game-theoretic modeling of curtailment rules and network investments with distributed generation. Applied energy, 201, 174-187. https://doi.org/10.1016/j.apenergy.2017.05.035
Arabkoohsar, A. (2020). Combined steam based high-temperature heat and power storage with an Organic Rankine Cycle, an efficient mechanical electricity storage technology. Journal of Cleaner Production, 247, 119098. https://doi.org/10.1016/j.jclepro.2019.119098
Beiron, J., Montañés, R. M., Normann, F., & Johnsson, F. (2020). Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy, 202, 117696. https://doi.org/10.1016/j.energy.2020.117696
Bulatov, Y. N., & Kryukov, A. (2017). A multi-agent control system of distributed generation plants. Paper presented at the 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). DOI:10.1109/ICIEAM.2017.8076128
Chahartaghi, M., & Baghaee, A. (2020). Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy and Buildings, 217, 110005. https://doi.org/10.1016/j.enbuild.2020.110005
Di Fraia, S., Massarotti, N., Prati, M., & Vanoli, L. (2020). A new example of circular economy: Waste vegetable oil for cogeneration in wastewater treatment plants. Energy Conversion and Management, 211, 112763. https://doi.org/10.1016/j.enconman.2020.112763
Ferreira, A. C., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2021). Application of a cost-benefit model to evaluate the investment viability of the small-scale cogeneration systems in the Portuguese context. International journal of Sustainable Energy Planning and Management, 30. https://doi.org/10.5278/ijsepm.5400
Fytili, D., & Zabaniotou, A. (2018). Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Current Sustainable/Renewable Energy Reports, 5(2), 150-155. https://doi.org/10.1007/s40518-018-0109-5
Iora, P., Beretta, G. P., & Ghoniem, A. F. (2019). Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle. Energy, 173, 893-901. https://doi.org/10.1016/j.energy.2019.02.095 Revista #ashtag | 29
Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553. https://doi.org/10.1016/j.enconman.2020.112553
Lisin, E., Shuvalova, D., Volkova, I., & Strielkowski, W. (2018). Sustainable development of regional power systems and the consumption of electric energy. Sustainability, 10(4), 1111. https://doi.org/10.3390/su10041111
Odetayo, B., MacCormack, J., Rosehart, W. D., & Zareipour, H. (2017). A sequential planning approach for distributed generation and natural gas networks. Energy, 127, 428-437. https://doi.org/10.1016/j.energy.2017.03.118
Safarian, S., Unnthorsson, R., & Richter, C. (2020). Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy, 197, 117268. https://doi.org/10.1016/j.energy.2020.117268
Strambo, C., & González Espinosa, A. C. (2020). Extraction and development: fossil fuel production narratives and counternarratives in Colombia. Climate Policy, 20(8), 931-948. https://doi.org/10.1080/14693062.2020.1719810
Sung, T., Kim, S., & Kim, K. C. (2017). Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Applied Thermal Engineering, 127, 963-974. https://doi.org/10.1016/j.applthermaleng.2017.08.106
Tan, Y., & Shi, Y. (2021). Advances in Swarm Intelligence: 12th International Conference, ICSI 2021, Qingdao, China, July 17-21, 2021, Proceedings: Springer Nature. https://doi.org/10.1007/978-3-030-78811-7
Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. https://doi.org/10.1016/j.energy.2017.05.160
van der Walt, H. L., Bansal, R. C., & Naidoo, R. (2018). PV based distributed generation power system protection: A review. Renewable Energy Focus, 24, 33-40. https://doi.org/10.1016/j.ref.2017.12.002
Wegener, M., Malmquist, A., Isalgué, A., & Martin, A. (2018). Biomass-fired combined cooling, heating and power for small scale applications–A review. Renewable and Sustainable Energy Reviews, 96, 392-410. https://doi.org/10.1016/j.rser.2018.07.044
dc.rights.none.fl_str_mv #ashtag - 2022
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv #ashtag - 2022
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial CUN
dc.source.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/view/941
institution Universidad de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.cun.edu.co/bitstreams/cad9a01c-b18c-4db0-92a3-20a37516bfd1/download
bitstream.checksum.fl_str_mv a8ef8913504da221807390b96e95c3de
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Corporación Unificada Nacional de Educación Superior
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849967499549868032
spelling Ahmadi, Taha2022-08-12 00:00:002025-11-05T14:59:24Z2022-08-12 00:00:00%0-%08-%12https://repositorio.cun.edu.co/handle/cun/1086810.52143/2346139X.9412346-139Xhttps://doi.org/10.52143/2346139X.941application/pdfFondo Editorial CUN#ashtag - 2022https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/941Estudio de viabilidadGeneración distribuidaGeneración simultánea de electricidad y calorContaminación ambientalFeasibility studyDistributed generationSimultaneous generation of electricity and heatenvironmental pollutionCentral de Cogeneración Makariza - Estudio de Viabilidad AmbientalArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/941/640Núm. 20 , Año 2022 : Revista Hashtag 2022A2920181#ashtagAhmadi, T., & Gaona, S. S. (july 2021). Designing a Mathematical Model and Control System for the Makariza Steam Boiler. Paper presented at the International Conference on Swarm Intelligence. https://doi.org/10.1007/978-3-030-78811-7_50Al-Maghalseh, M., Odeh, S., & Saleh, A. (2017). Optimal sizing and allocation of DGs for real power loss reduction and voltage profile improvement in radial LV networks. Paper presented at the 2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT).Andoni, M., Robu, V., Früh, W.-G., & Flynn, D. (2017). Game-theoretic modeling of curtailment rules and network investments with distributed generation. Applied energy, 201, 174-187. https://doi.org/10.1016/j.apenergy.2017.05.035Arabkoohsar, A. (2020). Combined steam based high-temperature heat and power storage with an Organic Rankine Cycle, an efficient mechanical electricity storage technology. Journal of Cleaner Production, 247, 119098. https://doi.org/10.1016/j.jclepro.2019.119098Beiron, J., Montañés, R. M., Normann, F., & Johnsson, F. (2020). Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy, 202, 117696. https://doi.org/10.1016/j.energy.2020.117696Bulatov, Y. N., & Kryukov, A. (2017). A multi-agent control system of distributed generation plants. Paper presented at the 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). DOI:10.1109/ICIEAM.2017.8076128Chahartaghi, M., & Baghaee, A. (2020). Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy and Buildings, 217, 110005. https://doi.org/10.1016/j.enbuild.2020.110005Di Fraia, S., Massarotti, N., Prati, M., & Vanoli, L. (2020). A new example of circular economy: Waste vegetable oil for cogeneration in wastewater treatment plants. Energy Conversion and Management, 211, 112763. https://doi.org/10.1016/j.enconman.2020.112763Ferreira, A. C., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2021). Application of a cost-benefit model to evaluate the investment viability of the small-scale cogeneration systems in the Portuguese context. International journal of Sustainable Energy Planning and Management, 30. https://doi.org/10.5278/ijsepm.5400Fytili, D., & Zabaniotou, A. (2018). Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Current Sustainable/Renewable Energy Reports, 5(2), 150-155. https://doi.org/10.1007/s40518-018-0109-5Iora, P., Beretta, G. P., & Ghoniem, A. F. (2019). Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle. Energy, 173, 893-901. https://doi.org/10.1016/j.energy.2019.02.095 Revista #ashtag | 29Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553. https://doi.org/10.1016/j.enconman.2020.112553Lisin, E., Shuvalova, D., Volkova, I., & Strielkowski, W. (2018). Sustainable development of regional power systems and the consumption of electric energy. Sustainability, 10(4), 1111. https://doi.org/10.3390/su10041111Odetayo, B., MacCormack, J., Rosehart, W. D., & Zareipour, H. (2017). A sequential planning approach for distributed generation and natural gas networks. Energy, 127, 428-437. https://doi.org/10.1016/j.energy.2017.03.118Safarian, S., Unnthorsson, R., & Richter, C. (2020). Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy, 197, 117268. https://doi.org/10.1016/j.energy.2020.117268Strambo, C., & González Espinosa, A. C. (2020). Extraction and development: fossil fuel production narratives and counternarratives in Colombia. Climate Policy, 20(8), 931-948. https://doi.org/10.1080/14693062.2020.1719810Sung, T., Kim, S., & Kim, K. C. (2017). Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Applied Thermal Engineering, 127, 963-974. https://doi.org/10.1016/j.applthermaleng.2017.08.106Tan, Y., & Shi, Y. (2021). Advances in Swarm Intelligence: 12th International Conference, ICSI 2021, Qingdao, China, July 17-21, 2021, Proceedings: Springer Nature. https://doi.org/10.1007/978-3-030-78811-7Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. https://doi.org/10.1016/j.energy.2017.05.160van der Walt, H. L., Bansal, R. C., & Naidoo, R. (2018). PV based distributed generation power system protection: A review. Renewable Energy Focus, 24, 33-40. https://doi.org/10.1016/j.ref.2017.12.002Wegener, M., Malmquist, A., Isalgué, A., & Martin, A. (2018). Biomass-fired combined cooling, heating and power for small scale applications–A review. Renewable and Sustainable Energy Reviews, 96, 392-410. https://doi.org/10.1016/j.rser.2018.07.044PublicationOREORE.xmltext/xml2454https://repositorio.cun.edu.co/bitstreams/cad9a01c-b18c-4db0-92a3-20a37516bfd1/downloada8ef8913504da221807390b96e95c3deMD51falseAnonymousREADcun/10868oai:repositorio.cun.edu.co:cun/108682025-11-05 09:59:24.626https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2022metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com