Evolución cultural en sociedades artificiales
- Autores:
-
Sterpin Buitrago, Dante Giovanni
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Cundinamarca
- Repositorio:
- Repositorio UdeC
- Idioma:
- OAI Identifier:
- oai:repositorio.cun.edu.co:cun/10813
- Acceso en línea:
- https://repositorio.cun.edu.co/handle/cun/10813
https://doi.org/10.52143/2346139X.610
- Palabra clave:
- Evolución Cultural
Genes
Memes
Memética
Modelos Computacionales
Sociedades Artificiales
Artificial Societies
Computational Models
Cultural Evolution
Genes
Memes
Memetics
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/ - 2018
| id |
RUCUN2_23979440cba47148cb813fb1436d93e2 |
|---|---|
| oai_identifier_str |
oai:repositorio.cun.edu.co:cun/10813 |
| network_acronym_str |
RUCUN2 |
| network_name_str |
Repositorio UdeC |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Evolución cultural en sociedades artificiales |
| title |
Evolución cultural en sociedades artificiales |
| spellingShingle |
Evolución cultural en sociedades artificiales Evolución Cultural Genes Memes Memética Modelos Computacionales Sociedades Artificiales Artificial Societies Computational Models Cultural Evolution Genes Memes Memetics |
| title_short |
Evolución cultural en sociedades artificiales |
| title_full |
Evolución cultural en sociedades artificiales |
| title_fullStr |
Evolución cultural en sociedades artificiales |
| title_full_unstemmed |
Evolución cultural en sociedades artificiales |
| title_sort |
Evolución cultural en sociedades artificiales |
| dc.creator.fl_str_mv |
Sterpin Buitrago, Dante Giovanni |
| dc.contributor.author.spa.fl_str_mv |
Sterpin Buitrago, Dante Giovanni |
| dc.subject.none.fl_str_mv |
Evolución Cultural Genes Memes Memética Modelos Computacionales Sociedades Artificiales Artificial Societies Computational Models Cultural Evolution Genes Memes Memetics |
| topic |
Evolución Cultural Genes Memes Memética Modelos Computacionales Sociedades Artificiales Artificial Societies Computational Models Cultural Evolution Genes Memes Memetics |
| publishDate |
2025 |
| dc.date.issued.none.fl_str_mv |
%0-%08-%04 |
| dc.date.accessioned.none.fl_str_mv |
2018-08-04 00:00:00 2025-11-05T14:58:07Z |
| dc.date.available.none.fl_str_mv |
2018-08-04 00:00:00 |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.local.eng.fl_str_mv |
Journal article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_6501 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.cun.edu.co/handle/cun/10813 |
| dc.identifier.doi.none.fl_str_mv |
10.52143/2346139X.610 |
| dc.identifier.eissn.none.fl_str_mv |
2346-139X |
| dc.identifier.url.none.fl_str_mv |
https://doi.org/10.52143/2346139X.610 |
| url |
https://repositorio.cun.edu.co/handle/cun/10813 https://doi.org/10.52143/2346139X.610 |
| identifier_str_mv |
10.52143/2346139X.610 2346-139X |
| dc.language.iso.none.fl_str_mv |
|
| language_invalid_str_mv |
|
| dc.relation.bitstream.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/download/610/449 |
| dc.relation.citationedition.spa.fl_str_mv |
Núm. 12 , Año 2018 : Revista Hashtag 2018A |
| dc.relation.citationendpage.none.fl_str_mv |
45 |
| dc.relation.citationissue.spa.fl_str_mv |
12 |
| dc.relation.citationstartpage.none.fl_str_mv |
31 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
#ashtag |
| dc.relation.references.none.fl_str_mv |
Acerbi, A. y Marocco, D. (Junio del 2009). Orienting learning by exploiting sociality: An evolutio¬nary robotics simulation. Conferencia presentada en 2009 International Joint Conference on Neural Networks, Atlanta, Estados Unidos, 20-27. doi: https://doi.org/10.1109/ IJCNN.2009.5178607 Aunger, R. (2002). The Electric Meme: A New Theory of How We Think. Nueva York: Free Press. Blackmore, S. (1999). The Meme Machine. Oxford: Oxford University Press. Bongard, J. (2013). Evolutionary robotics. Communications of the acm, 56(8), 74-83. Borenstein, E. y Ruppin E. (2004). Envolving imitating agents and the emergence of a neural mi¬rror system. En M. Bedau, P. Husbands, T. Ikegami, J. Pollack y R. Watson (eds.), Artificial life ix. Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (pp. 146-151). Cambridge, Estados Unidos: The mit press. Brodie, R. (2009). Virus of the Mind: The New Science of the Meme. Nueva York: Hay House. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. y Qu, R. (2013). Hyper-heu¬ristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695- 1724. doi: https://doi.org/10.1057/jors.2013.71 Chen, X., Ong, Y., Lim, M. y Tan, K. (2011). A multi-facet survey on memetic computation. IEEE Transactions on evolutionary computation, 15(5), 591-607. doi: https://doi.org/10.1109/ TEVC.2011.2132725 Cowling, P., Kendall, G. y Soubeiga, E. (2001). A Hyperheuristic Approach to Scheduling a Sa¬les Summit. En E. Burke y W. Erben (eds.), Practice and Theory of Automated Timetabling iii. patat 2000. Lecture Notes in Computer Science (vol. 2079) (pp. 176-190), Konstanz, Germany: Springer. Curran, D. y O’Riordan, C. (2007). The effects of cultural learning in populations of neural networks. Artificial Life, 13(1), 45-67. doi: https://doi.org/10.1162/artl.2007.13.1.45 Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press. Dawkins, R. (1983). Universal Darwinism. En D. Bendall (ed.), Evolution from Molecules to Man (pp. 403-425). Nueva York: Cambridge University Press. Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. Nueva York y Londres: WW Norton & Company. Dawkins, R. (1993). Viruses of the mind. En B. Dahlbom (ed.), Dennett and His Critics: Demystifying Mind (pp. 13-27). Oxford: Blackwell. Dennett, D. (2006). Breaking the Spell: Religion as a Natural Phenomenon. Estados Unidos Penguin Books. Doncieux, S., Bredeche, N., Mouret, J-B. y Eiben A. (2015). Evolutionary robotics: what, why,and where to. Frontiers in Robotics and ai, 2(4), 1-18. doi: https://doi.org/10.3389/frobt.2015.00004 Espingardeiro, A. (2014). A roboethics framework for the development and introduction of social assistive robots in elderly care (tesis de doctorado). Universidad de Salford, Manchester. Recuperado de https://bit.ly/2toFxNQ Feng, L., Ong, Y., Tan, A. y Chen, X. (Junio del 2011). Towards human-like social multi agents with memetic automaton. Conferencia presentada en Congress of Evolutionary Computation (cec), Nueva Orleans, Estados Unidos, 1092-1099. doi: https://doi.org/10.1109/ CEC.2011.5949739 Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Boston: Addison-Wesley Longman Publishing Co. Floreano, D., Husbands, P. y Nolfi, S. (2008). Evolutionary robotics. En B. Siciliano y O. Khatib(eds.), Springer handbook of robotics (pp. 1423-1451). Berlin: Springer. Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co. Gong, T. (2010). Exploring the roles of horizontal, vertical, and oblique transmissions in language evolution. Adaptive Behavior, 18(3-4), 356-376. González, S. (2004). ¿Sociedades artificiales? Una introducción a la simulación social. Revista Internacional de Sociología, 62(39), 199-222. Recuperado de https://bit.ly/2PpCa1y Hart, W., Krasnogor, N. y Smith, J. (2005). Memetic evolutionary algorithms. En W. Hart, N. Krasnogor y J. Smith. (eds.), Recent Advances in Memetic Algorithms (pp. 3-27). Berlin; Heidelberg; New York: Springer. Hauser, M. (2006). Moral Minds: How Nature Designed our Universal Sense of Right and Wrong.Nueva York: Harper Collins. Heinerman, J., Rango, M. y Eiben, A. (Diciembre del 2015). Evolution, individual learning, and social learning in a swarm of real robots. Conferencia presentada en 2015 ieee Symposium Series on Computational Intelligence, Cape Town, Sur Africa, 1055-1062. doi: https://doi.org/10.1109/SSCI.2015.152 Holland, J. (1975). Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Míchigan: University of Michigan Press. Huy, N., Soon, O., Hiot, L. y Krasnogor, N. (2009). Adaptive cellular memetic algorithms. Evolutionary Computation, 17(2), 231-256. doi: https://doi.org/10.1162/evco.2009.17.2.231 Kendall, G., Cowling, P. y Soubeiga, E. (2002). Choice function and random hyperheuristics. Conferencia presentada en 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 667-671. Recuperado de https://bit.ly/2PSE9dU Krasnogor, N., Aragón, A. y Pacheco, J. (2006). Memetic algorithms. En E. Alba y R. Martí (eds.), Metaheuristic Procedures for Training Neutral Networks (pp. 225-248). Boston: Springer. doi:https://doi.org/10.1007/0-387-33416-5 Krasnogor, N. y Gustafson, S. (2002). Toward truly “memetic” memetic algorithms: Discussion and proofs of concept. En D. Corne, G. Fogel, W. Hart, J. Knowles, N. Krasnogor, R. Roy, J. Smith y A. Tiwari (eds.), Advances in Nature-Inspired Computation: The ppsn vii Workshops, (pp. 9-10). Reading: pedal; University of Reading. Krasnogor, N. y Gustafson, S. (2004). A study on the use of “self-generation” in memetic algorithms. Natural Computing, 3(1), 53-76. doi: https://doi.org/10.1023/B:NACO.0000023419.83147.67 Krasnogor, N. y Smith, J. (2005). A tutorial for competent memetic algorithms: models, taxonomy and design issues. ieee Trans Evol Comput, 9, 474-488. Lamma, E., Riguzzi, F. y Pereira, L. (2003). Belief revision via lamarckian evolution. New Generation Computing, 21(3), 247-275. DOI: https://doi.org/10.1007/BF03037475 Le, M., Neri, F. y Ong, Y. (2015). Memetic algorithms. En H. Ishibuchi (ed.), Encyclopedia of Life Support Systems: Computational Intelligence (vol. 2), (pp. 57-86). Singapur: Unesco; Eolss Publishers. Le, M., Ong, Y., Jin, Y. y Sendhoff, B. (2009). Lamarckian memetic algorithms: Local optimum and connectivity structure analysis. Memetic Computing, 1(3), 175-190. doi: https://doi.org/10.1007/s12293-009-0016-9 Lewontin, R. (1970). The Units of Selection. Annual Review of Ecology and Systematics, 1, 1-18. Maldonado, C. y Gómez, N. (2010). Modelamiento y simulación de sistemas complejos. Bogotá: Editorial Universidad del Rosario. Recuperado de https://bit.ly/36JK4sD Meuth, R., Lim, M., Ong, Y. y Wunsch, D. (2009). A proposition on memes and meta-memes incomputing for higher-order learning. Memetic Computing, 1(2), 85-100. Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Pasadena, Estados Unidos: Caltech. Recuperado de https://bit.ly/38K6hsb Nedjah, N., Coelho, L. y Mourelle, L. (Eds.). (2007). Mobile robots: The evolutionary approach - Studies in Computational Intelligence (vol. 50). Berlin: Springer. Nguyen, Q., Ong, Y. y Lim, M. (Julio del 2008). Non-genetic transmission of memes by diffusion. Conferencia presentada en 10th annual conference on Genetic and evolutionary computation, Atlanta, Estados Unidos, 1017-1024. doi: http://doi.acm.org/10.1145/1389095.1389285 Pam, N. (13 de abril del 2013). Sociality [recurso en línea]. Recuperado de https://bit.ly/34vpt9Q Pan, Z., Feng, L., Ong, Y., Kang, Y., Tan, A. y Miao, C. (Septiembre del 2010). Meme selection, variation, and transmission in multi-agent system. Conferencia presentada en World Automation Congress, Kobe, Japón, 1-6. Recuperado de https://bit.ly/2rXpo1j Radetic, E., Pelikan, M. y Goldberg, D. (Julio del 2009). Effects of a deterministic hill climber on hBOA. Conferencia presentada en 11th Annual conference on Genetic and evolutionary computation, Montreal, Canadá, 437-444. doi: http://doi.acm.org/10.1145/1830483.1830543 Randsley de Moura, G. y Abrams, D. (2013). Bribery, Blackmail, and the Double Standard for Leader Transgressions. Group Dynamics: Theory, Research, and Practice, 17(1), 43-52. doi: https://doi.org/10.1037/a0031287 Reynolds, R. (1994). An introduction to cultural algorithms. En A. Sebald y L. Fogel (eds.), Proceedings of the third annual conference on evolutionary programming (pp. 131-139). River Edge, Estados Unidos: World Scientific Programming. Reynolds, R. y Peng, B. (2005). Cultural algorithms: computational modeling of how cultures learn to solve problems: an engineering example. Cybernetics and Systems: An International Journal, 36(8), 753-771. doi: https://doi.org/10.1080/01969720500306147 Sawyer, R. (2003). Artificial Societies: Multiagent Systems and the Micro-Macro Link in Sociological Theory. Sociological Methods & research, 31(3), 325-363. doi: https://doi.org/10.1177/0049124102239079 Smith, J. (Diciembre de 2003). Co-evolving memetic algorithms: A learning approach to robust scalableoptimisation. Conferencia presentada en The 2003 Congress on Evolutionary Computation, cec ‹03, Canberra, Australia, 498-505. doi: https://doi.org/10.1109/CEC.2003.1299617 Squazzoni, F., Jager, W. y Edmonds, B. (2014). Social Simulation in the Social Sciences: A Brief Overview. Social Science Computer Review, 32(3), 279-294. doi: https://doi.org/10.1177/0894439313512975 Sutton, R. y Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, Estados Unidos: mit Press. Talbi, E. (2009). Metaheuristics: from design to implementation. Nueva Jersey: John Wiley & Sons. Tan, A., Lu, N. y Xiao, D. (2008). Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. ieee Transactions on Neural Networks, 19(2), 230-244. doi: https://doi.org/10.1109/TNN.2007.905839 Ullah, A., Sarker, R., Comfort, D. y Lokan, C. (Septiembre del 2007). An agent-based memetic algorithm (ama) for solving constrained optimization problems. Conferencia presentada en 2007 ieee Congress on Evolutionary Computation, Singapur, Singapur, 999-1006. doi: https://doi.org/10.1109/CEC.2007.4424579 Veruggio, G., Solis, J. y Van der Loos, M. (2011). Roboethics: Ethics Applied to Robotics. ieee Robotics & Automation Magazine, 18(1), 21-22. doi: 10.1109/MRA.2010.940149 Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow: John Wiley & Sons. Zaikman, Y. y Marks, M. (2014). Ambivalent Sexism and the Sexual Double Standard. Sex Roles, 71(9-10), 333-344. |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ - 2018 |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ - 2018 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Fondo Editorial CUN |
| dc.source.none.fl_str_mv |
https://revistas.cun.edu.co/index.php/hashtag/article/view/610 |
| institution |
Universidad de Cundinamarca |
| bitstream.url.fl_str_mv |
https://repositorio.cun.edu.co/bitstreams/329f7208-5e61-40f5-ae0d-95d95dcdd7db/download |
| bitstream.checksum.fl_str_mv |
07c0a6549d947a571d9408d04512e744 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Digital Corporación Unificada Nacional de Educación Superior |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1849967442850217984 |
| spelling |
Sterpin Buitrago, Dante Giovanni2018-08-04 00:00:002025-11-05T14:58:07Z2018-08-04 00:00:00%0-%08-%04https://repositorio.cun.edu.co/handle/cun/1081310.52143/2346139X.6102346-139Xhttps://doi.org/10.52143/2346139X.610application/pdfFondo Editorial CUNhttps://creativecommons.org/licenses/by-nc-nd/4.0/ - 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/610Evolución CulturalGenesMemesMeméticaModelos ComputacionalesSociedades ArtificialesArtificial SocietiesComputational ModelsCultural EvolutionGenesMemesMemeticsEvolución cultural en sociedades artificialesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/610/449Núm. 12 , Año 2018 : Revista Hashtag 2018A451231#ashtagAcerbi, A. y Marocco, D. (Junio del 2009). Orienting learning by exploiting sociality: An evolutio¬nary robotics simulation. Conferencia presentada en 2009 International Joint Conference on Neural Networks, Atlanta, Estados Unidos, 20-27. doi: https://doi.org/10.1109/ IJCNN.2009.5178607Aunger, R. (2002). The Electric Meme: A New Theory of How We Think. Nueva York: Free Press.Blackmore, S. (1999). The Meme Machine. Oxford: Oxford University Press.Bongard, J. (2013). Evolutionary robotics. Communications of the acm, 56(8), 74-83.Borenstein, E. y Ruppin E. (2004). Envolving imitating agents and the emergence of a neural mi¬rror system. En M. Bedau, P. Husbands, T. Ikegami, J. Pollack y R. Watson (eds.), Artificial life ix. Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (pp. 146-151). Cambridge, Estados Unidos: The mit press.Brodie, R. (2009). Virus of the Mind: The New Science of the Meme. Nueva York: Hay House.Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. y Qu, R. (2013). Hyper-heu¬ristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695- 1724. doi: https://doi.org/10.1057/jors.2013.71Chen, X., Ong, Y., Lim, M. y Tan, K. (2011). A multi-facet survey on memetic computation. IEEE Transactions on evolutionary computation, 15(5), 591-607. doi: https://doi.org/10.1109/ TEVC.2011.2132725Cowling, P., Kendall, G. y Soubeiga, E. (2001). A Hyperheuristic Approach to Scheduling a Sa¬les Summit. En E. Burke y W. Erben (eds.), Practice and Theory of Automated Timetabling iii. patat 2000. Lecture Notes in Computer Science (vol. 2079) (pp. 176-190), Konstanz, Germany: Springer.Curran, D. y O’Riordan, C. (2007). The effects of cultural learning in populations of neural networks. Artificial Life, 13(1), 45-67. doi: https://doi.org/10.1162/artl.2007.13.1.45Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Dawkins, R. (1983). Universal Darwinism. En D. Bendall (ed.), Evolution from Molecules to Man (pp. 403-425). Nueva York: Cambridge University Press.Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. Nueva York y Londres: WW Norton & Company.Dawkins, R. (1993). Viruses of the mind. En B. Dahlbom (ed.), Dennett and His Critics: Demystifying Mind (pp. 13-27). Oxford: Blackwell.Dennett, D. (2006). Breaking the Spell: Religion as a Natural Phenomenon. Estados Unidos Penguin Books.Doncieux, S., Bredeche, N., Mouret, J-B. y Eiben A. (2015). Evolutionary robotics: what, why,and where to. Frontiers in Robotics and ai, 2(4), 1-18. doi: https://doi.org/10.3389/frobt.2015.00004Espingardeiro, A. (2014). A roboethics framework for the development and introduction of social assistive robots in elderly care (tesis de doctorado). Universidad de Salford, Manchester. Recuperado de https://bit.ly/2toFxNQFeng, L., Ong, Y., Tan, A. y Chen, X. (Junio del 2011). Towards human-like social multi agents with memetic automaton. Conferencia presentada en Congress of Evolutionary Computation (cec), Nueva Orleans, Estados Unidos, 1092-1099. doi: https://doi.org/10.1109/ CEC.2011.5949739Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Boston: Addison-Wesley Longman Publishing Co.Floreano, D., Husbands, P. y Nolfi, S. (2008). Evolutionary robotics. En B. Siciliano y O. Khatib(eds.), Springer handbook of robotics (pp. 1423-1451). Berlin: Springer.Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co. Gong, T. (2010). Exploring the roles of horizontal, vertical, and oblique transmissions in language evolution. Adaptive Behavior, 18(3-4), 356-376.González, S. (2004). ¿Sociedades artificiales? Una introducción a la simulación social. Revista Internacional de Sociología, 62(39), 199-222. Recuperado de https://bit.ly/2PpCa1yHart, W., Krasnogor, N. y Smith, J. (2005). Memetic evolutionary algorithms. En W. Hart, N. Krasnogor y J. Smith. (eds.), Recent Advances in Memetic Algorithms (pp. 3-27). Berlin; Heidelberg; New York: Springer.Hauser, M. (2006). Moral Minds: How Nature Designed our Universal Sense of Right and Wrong.Nueva York: Harper Collins.Heinerman, J., Rango, M. y Eiben, A. (Diciembre del 2015). Evolution, individual learning, and social learning in a swarm of real robots. Conferencia presentada en 2015 ieee Symposium Series on Computational Intelligence, Cape Town, Sur Africa, 1055-1062. doi: https://doi.org/10.1109/SSCI.2015.152Holland, J. (1975). Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Míchigan: University of Michigan Press.Huy, N., Soon, O., Hiot, L. y Krasnogor, N. (2009). Adaptive cellular memetic algorithms. Evolutionary Computation, 17(2), 231-256. doi: https://doi.org/10.1162/evco.2009.17.2.231Kendall, G., Cowling, P. y Soubeiga, E. (2002). Choice function and random hyperheuristics. Conferencia presentada en 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 667-671. Recuperado de https://bit.ly/2PSE9dUKrasnogor, N., Aragón, A. y Pacheco, J. (2006). Memetic algorithms. En E. Alba y R. Martí (eds.), Metaheuristic Procedures for Training Neutral Networks (pp. 225-248). Boston: Springer. doi:https://doi.org/10.1007/0-387-33416-5Krasnogor, N. y Gustafson, S. (2002). Toward truly “memetic” memetic algorithms: Discussion and proofs of concept. En D. Corne, G. Fogel, W. Hart, J. Knowles, N. Krasnogor, R. Roy, J. Smith y A. Tiwari (eds.), Advances in Nature-Inspired Computation: The ppsn vii Workshops, (pp. 9-10). Reading: pedal; University of Reading.Krasnogor, N. y Gustafson, S. (2004). A study on the use of “self-generation” in memetic algorithms. Natural Computing, 3(1), 53-76. doi: https://doi.org/10.1023/B:NACO.0000023419.83147.67Krasnogor, N. y Smith, J. (2005). A tutorial for competent memetic algorithms: models, taxonomy and design issues. ieee Trans Evol Comput, 9, 474-488.Lamma, E., Riguzzi, F. y Pereira, L. (2003). Belief revision via lamarckian evolution. New Generation Computing, 21(3), 247-275. DOI: https://doi.org/10.1007/BF03037475Le, M., Neri, F. y Ong, Y. (2015). Memetic algorithms. En H. Ishibuchi (ed.), Encyclopedia of Life Support Systems: Computational Intelligence (vol. 2), (pp. 57-86). Singapur: Unesco; Eolss Publishers.Le, M., Ong, Y., Jin, Y. y Sendhoff, B. (2009). Lamarckian memetic algorithms: Local optimum and connectivity structure analysis. Memetic Computing, 1(3), 175-190. doi: https://doi.org/10.1007/s12293-009-0016-9Lewontin, R. (1970). The Units of Selection. Annual Review of Ecology and Systematics, 1, 1-18.Maldonado, C. y Gómez, N. (2010). Modelamiento y simulación de sistemas complejos. Bogotá: Editorial Universidad del Rosario. Recuperado de https://bit.ly/36JK4sDMeuth, R., Lim, M., Ong, Y. y Wunsch, D. (2009). A proposition on memes and meta-memes incomputing for higher-order learning. Memetic Computing, 1(2), 85-100.Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Pasadena, Estados Unidos: Caltech. Recuperado de https://bit.ly/38K6hsbNedjah, N., Coelho, L. y Mourelle, L. (Eds.). (2007). Mobile robots: The evolutionary approach - Studies in Computational Intelligence (vol. 50). Berlin: Springer.Nguyen, Q., Ong, Y. y Lim, M. (Julio del 2008). Non-genetic transmission of memes by diffusion. Conferencia presentada en 10th annual conference on Genetic and evolutionary computation, Atlanta, Estados Unidos, 1017-1024. doi: http://doi.acm.org/10.1145/1389095.1389285Pam, N. (13 de abril del 2013). Sociality [recurso en línea]. Recuperado de https://bit.ly/34vpt9QPan, Z., Feng, L., Ong, Y., Kang, Y., Tan, A. y Miao, C. (Septiembre del 2010). Meme selection, variation, and transmission in multi-agent system. Conferencia presentada en World Automation Congress, Kobe, Japón, 1-6. Recuperado de https://bit.ly/2rXpo1jRadetic, E., Pelikan, M. y Goldberg, D. (Julio del 2009). Effects of a deterministic hill climber on hBOA. Conferencia presentada en 11th Annual conference on Genetic and evolutionary computation, Montreal, Canadá, 437-444. doi: http://doi.acm.org/10.1145/1830483.1830543Randsley de Moura, G. y Abrams, D. (2013). Bribery, Blackmail, and the Double Standard for Leader Transgressions. Group Dynamics: Theory, Research, and Practice, 17(1), 43-52. doi: https://doi.org/10.1037/a0031287Reynolds, R. (1994). An introduction to cultural algorithms. En A. Sebald y L. Fogel (eds.), Proceedings of the third annual conference on evolutionary programming (pp. 131-139). River Edge, Estados Unidos: World Scientific Programming.Reynolds, R. y Peng, B. (2005). Cultural algorithms: computational modeling of how cultures learn to solve problems: an engineering example. Cybernetics and Systems: An International Journal, 36(8), 753-771. doi: https://doi.org/10.1080/01969720500306147Sawyer, R. (2003). Artificial Societies: Multiagent Systems and the Micro-Macro Link in Sociological Theory. Sociological Methods & research, 31(3), 325-363. doi: https://doi.org/10.1177/0049124102239079Smith, J. (Diciembre de 2003). Co-evolving memetic algorithms: A learning approach to robust scalableoptimisation. Conferencia presentada en The 2003 Congress on Evolutionary Computation, cec ‹03, Canberra, Australia, 498-505. doi: https://doi.org/10.1109/CEC.2003.1299617Squazzoni, F., Jager, W. y Edmonds, B. (2014). Social Simulation in the Social Sciences: A Brief Overview. Social Science Computer Review, 32(3), 279-294. doi: https://doi.org/10.1177/0894439313512975Sutton, R. y Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, Estados Unidos: mit Press.Talbi, E. (2009). Metaheuristics: from design to implementation. Nueva Jersey: John Wiley & Sons.Tan, A., Lu, N. y Xiao, D. (2008). Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. ieee Transactions on Neural Networks, 19(2), 230-244. doi: https://doi.org/10.1109/TNN.2007.905839Ullah, A., Sarker, R., Comfort, D. y Lokan, C. (Septiembre del 2007). An agent-based memetic algorithm (ama) for solving constrained optimization problems. Conferencia presentada en 2007 ieee Congress on Evolutionary Computation, Singapur, Singapur, 999-1006. doi: https://doi.org/10.1109/CEC.2007.4424579Veruggio, G., Solis, J. y Van der Loos, M. (2011). Roboethics: Ethics Applied to Robotics. ieee Robotics & Automation Magazine, 18(1), 21-22. doi: 10.1109/MRA.2010.940149Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow: John Wiley & Sons.Zaikman, Y. y Marks, M. (2014). Ambivalent Sexism and the Sexual Double Standard. Sex Roles, 71(9-10), 333-344.PublicationOREORE.xmltext/xml2431https://repositorio.cun.edu.co/bitstreams/329f7208-5e61-40f5-ae0d-95d95dcdd7db/download07c0a6549d947a571d9408d04512e744MD51falseAnonymousREADcun/10813oai:repositorio.cun.edu.co:cun/108132025-11-05 09:58:07.932https://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/ - 2018metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com |
