Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia

Autores:
León León, Jose
Medina, Ruben Javier
Ovalle, Diana Marcela
Tipo de recurso:
Article of journal
Fecha de publicación:
2025
Institución:
Corporación Unificada Nacional de Educación Superior
Repositorio:
Repositorio Corporación Unificada Nacional de Educación Superior
Idioma:
OAI Identifier:
oai:repositorio.cun.edu.co:cun/10862
Acceso en línea:
https://repositorio.cun.edu.co/handle/cun/10862
https://doi.org/10.52143/2346139X.930
Palabra clave:
clasificadores no supervisados,
cobertura del suelo
imágenes satelitales
unsupervised classifiers
ground cover
satellite images
Rights
openAccess
License
#ashtag - 2021
id RICUN2_196037b57f5843135d483c7bc43aed69
oai_identifier_str oai:repositorio.cun.edu.co:cun/10862
network_acronym_str RICUN2
network_name_str Repositorio Corporación Unificada Nacional de Educación Superior
repository_id_str
dc.title.spa.fl_str_mv Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
title Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
spellingShingle Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
clasificadores no supervisados,
cobertura del suelo
imágenes satelitales
unsupervised classifiers
ground cover
satellite images
title_short Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
title_full Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
title_fullStr Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
title_full_unstemmed Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
title_sort Mapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – Colombia
dc.creator.fl_str_mv León León, Jose
Medina, Ruben Javier
Ovalle, Diana Marcela
dc.contributor.author.spa.fl_str_mv León León, Jose
Medina, Ruben Javier
Ovalle, Diana Marcela
dc.subject.none.fl_str_mv clasificadores no supervisados,
cobertura del suelo
imágenes satelitales
unsupervised classifiers
ground cover
satellite images
topic clasificadores no supervisados,
cobertura del suelo
imágenes satelitales
unsupervised classifiers
ground cover
satellite images
publishDate 2025
dc.date.issued.none.fl_str_mv %0-%12-%12
dc.date.accessioned.none.fl_str_mv 2021-12-12 00:00:00
2025-11-05T14:59:15Z
dc.date.available.none.fl_str_mv 2021-12-12 00:00:00
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.cun.edu.co/handle/cun/10862
dc.identifier.doi.none.fl_str_mv 10.52143/2346139X.930
dc.identifier.eissn.none.fl_str_mv 2346-139X
dc.identifier.url.none.fl_str_mv https://doi.org/10.52143/2346139X.930
url https://repositorio.cun.edu.co/handle/cun/10862
https://doi.org/10.52143/2346139X.930
identifier_str_mv 10.52143/2346139X.930
2346-139X
dc.language.iso.none.fl_str_mv
language_invalid_str_mv
dc.relation.bitstream.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/download/930/634
dc.relation.citationedition.spa.fl_str_mv Núm. 19 , Año 2021 : Revista Hashtag 2021B
dc.relation.citationendpage.none.fl_str_mv 27
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.none.fl_str_mv 8
dc.relation.citationvolume.spa.fl_str_mv 2
dc.relation.ispartofjournal.spa.fl_str_mv #ashtag
dc.relation.references.none.fl_str_mv Abbas, A., Minallh, N., Ahmad, N., Rehman, S., y Khan, M. (2016). K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. ResearchGate, 48, 315-318. https://www.researchgate.net/publication/303971825_K-Means_and_ISODATA_Clustering_Algorithms_for_Landcover_Classification_Using_Remote_Sensing
Fisterra. (2020). Medidas de concordancia: El índice Kappa. https://www.fisterra.com/formacion/metodologia-investigacion/medidas-concordancia-indice-kappa/
García, D., Camacho, M., y Paegelow, M. (2019). Sensitivity of a common Land Use Cover Change (LUCC) model to the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input maps. Computers, Environment and Urban Systems, 78, 101389. https://doi.org/10.1016/j.compenvurbsys.2019.101389
Gisadminbeers. (26 de marzo de 2017). Combinaciones RGB de imágenes satélite Landsat y Sentinel. Gis&Beers. http://www.gisandbeers.com/combinacion-de-imagenes-satelite-landsat-sentinel-rgb/
He, Y., Lee, E., y Warner, T. A. (2017). A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment, 199, 201-217. https://doi.org/10.1016/j.rse.2017.07.010
Kiswanto, Tsuyuki, S., Mardiany, y Sumaryono. (2018). Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Global Ecology and Conservation, 13. https://doi.org/10.1016/j.gecco.2018.e00384 NV5 Geospatial. (2020). K-Means. https://www.harrisgeospatial.com/docs/KMeansClassification.html
Li, X., Ling, F., Foody, G., Ge, Y., Zhang, Y., y Du, Y. (2017). Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293-311. https://doi.org/10.1016/j.rse.2017.05.011
Misra, M., Kumar, D., y Shekhar, S. (2020). Assessing Machine Learning Based Supervised Classifiers For Built-Up Impervious Surface Area Extraction From Sentinel-2 Images. Urban Forestry & Urban Greening, 53. https://doi.org/10.1016/j.ufug.2020.126714
Nuestro municipio - Alcaldía Municipal de Covarachía en Boyacá. (2020). http://www.covarachia-boyaca.gov.co/municipio/nuestro-municipio
Pérez, A., Udías, F., y Rembold, F. (2020). Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation, 88. https://doi.org/10.1016/j.jag.2020.102064
Rega, C., Short, C., Pérez, M., y Paracchini, M. (2020). A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103793
Renza, D., Martinez, E., Molina, I., y Ballesteros, D. (2017). Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Advances in Space Research, 59(8), 2019-2031. https://doi.org/10.1016/j.asr.2017.01.027
Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., … Ganz, D. (2020). Primitives as building blocks for constructing land cover maps. International Journal of Applied Earth Observation and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101979
Satélite Sentinel-2. Flota de satélites europeos de vigilancia medioambiental del programa Copernicus
Satélite Landsat-8. Satélite estadounidense para estudios cartográficos y de características de temperatura de la superficie
Stéphane, D., Laurence, D., Raffaele, G., Valérie, A., y Eloise, R. Land Cover Maps of Antananarivo (Capital of Madagascar) Produced by Processing Multisource Satellite Imagery and Geospatial Reference Data. Data in Brief, 31. https://doi.org/10.1016/j.dib.2020.105952 Humboldt State University. (2019). Supervised Classification. http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/Classification/supervised.html
Szantoi, Z., Geller, G., Tsendbazar, N., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., y Obregón, A. (2020). Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 112, 28-35. https://doi.org/10.1016/j.envsci.2020.04.005
Vilar, L., Garrido, J., Echavarría, P., Martínez, J., y Martín, M. (2019). Comparative analysis of CORINE and climate change initiative land cover maps in Europe: Implications for wildfire occurrence estimation at regional and local scales. International Journal of Applied Earth Observation and Geoinformation, 78, 102-117. https://doi.org/10.1016/j.jag.2019.01.019
dc.rights.none.fl_str_mv #ashtag - 2021
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv #ashtag - 2021
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial CUN
dc.source.none.fl_str_mv https://revistas.cun.edu.co/index.php/hashtag/article/view/930
institution Corporación Unificada Nacional de Educación Superior
bitstream.url.fl_str_mv https://repositorio.cun.edu.co/bitstreams/db5c7761-1078-4c69-96eb-058263b638cb/download
bitstream.checksum.fl_str_mv 46933c91b4ad9869918d119dfa9dc79f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Corporación Unificada Nacional de Educación Superior
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851060421337808896
spelling León León, JoseMedina, Ruben JavierOvalle, Diana Marcela2021-12-12 00:00:002025-11-05T14:59:15Z2021-12-12 00:00:00%0-%12-%12https://repositorio.cun.edu.co/handle/cun/1086210.52143/2346139X.9302346-139Xhttps://doi.org/10.52143/2346139X.930application/pdfFondo Editorial CUN#ashtag - 2021https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.cun.edu.co/index.php/hashtag/article/view/930clasificadores no supervisados,cobertura del sueloimágenes satelitalesunsupervised classifiersground coversatellite imagesMapa de coberturas del suelo utilizando imágenes satelitales Sentinel-2 y Landsat-8 del municipio de Covarachía – ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttps://revistas.cun.edu.co/index.php/hashtag/article/download/930/634Núm. 19 , Año 2021 : Revista Hashtag 2021B271982#ashtagAbbas, A., Minallh, N., Ahmad, N., Rehman, S., y Khan, M. (2016). K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. ResearchGate, 48, 315-318. https://www.researchgate.net/publication/303971825_K-Means_and_ISODATA_Clustering_Algorithms_for_Landcover_Classification_Using_Remote_SensingFisterra. (2020). Medidas de concordancia: El índice Kappa. https://www.fisterra.com/formacion/metodologia-investigacion/medidas-concordancia-indice-kappa/García, D., Camacho, M., y Paegelow, M. (2019). Sensitivity of a common Land Use Cover Change (LUCC) model to the Minimum Mapping Unit (MMU) and Minimum Mapping Width (MMW) of input maps. Computers, Environment and Urban Systems, 78, 101389. https://doi.org/10.1016/j.compenvurbsys.2019.101389Gisadminbeers. (26 de marzo de 2017). Combinaciones RGB de imágenes satélite Landsat y Sentinel. Gis&Beers. http://www.gisandbeers.com/combinacion-de-imagenes-satelite-landsat-sentinel-rgb/He, Y., Lee, E., y Warner, T. A. (2017). A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment, 199, 201-217. https://doi.org/10.1016/j.rse.2017.07.010Kiswanto, Tsuyuki, S., Mardiany, y Sumaryono. (2018). Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Global Ecology and Conservation, 13. https://doi.org/10.1016/j.gecco.2018.e00384 NV5 Geospatial. (2020). K-Means. https://www.harrisgeospatial.com/docs/KMeansClassification.htmlLi, X., Ling, F., Foody, G., Ge, Y., Zhang, Y., y Du, Y. (2017). Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293-311. https://doi.org/10.1016/j.rse.2017.05.011Misra, M., Kumar, D., y Shekhar, S. (2020). Assessing Machine Learning Based Supervised Classifiers For Built-Up Impervious Surface Area Extraction From Sentinel-2 Images. Urban Forestry & Urban Greening, 53. https://doi.org/10.1016/j.ufug.2020.126714Nuestro municipio - Alcaldía Municipal de Covarachía en Boyacá. (2020). http://www.covarachia-boyaca.gov.co/municipio/nuestro-municipioPérez, A., Udías, F., y Rembold, F. (2020). Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation, 88. https://doi.org/10.1016/j.jag.2020.102064Rega, C., Short, C., Pérez, M., y Paracchini, M. (2020). A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning, 198. https://doi.org/10.1016/j.landurbplan.2020.103793Renza, D., Martinez, E., Molina, I., y Ballesteros, D. (2017). Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Advances in Space Research, 59(8), 2019-2031. https://doi.org/10.1016/j.asr.2017.01.027Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., … Ganz, D. (2020). Primitives as building blocks for constructing land cover maps. International Journal of Applied Earth Observation and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101979Satélite Sentinel-2. Flota de satélites europeos de vigilancia medioambiental del programa CopernicusSatélite Landsat-8. Satélite estadounidense para estudios cartográficos y de características de temperatura de la superficieStéphane, D., Laurence, D., Raffaele, G., Valérie, A., y Eloise, R. Land Cover Maps of Antananarivo (Capital of Madagascar) Produced by Processing Multisource Satellite Imagery and Geospatial Reference Data. Data in Brief, 31. https://doi.org/10.1016/j.dib.2020.105952 Humboldt State University. (2019). Supervised Classification. http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/Classification/supervised.htmlSzantoi, Z., Geller, G., Tsendbazar, N., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., y Obregón, A. (2020). Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 112, 28-35. https://doi.org/10.1016/j.envsci.2020.04.005Vilar, L., Garrido, J., Echavarría, P., Martínez, J., y Martín, M. (2019). Comparative analysis of CORINE and climate change initiative land cover maps in Europe: Implications for wildfire occurrence estimation at regional and local scales. International Journal of Applied Earth Observation and Geoinformation, 78, 102-117. https://doi.org/10.1016/j.jag.2019.01.019PublicationOREORE.xmltext/xml2681https://repositorio.cun.edu.co/bitstreams/db5c7761-1078-4c69-96eb-058263b638cb/download46933c91b4ad9869918d119dfa9dc79fMD51falseAnonymousREADcun/10862oai:repositorio.cun.edu.co:cun/108622025-11-05 09:59:16.169https://creativecommons.org/licenses/by-nc-sa/4.0/#ashtag - 2021metadata.onlyhttps://repositorio.cun.edu.coRepositorio Digital Corporación Unificada Nacional de Educación Superiorbdigital@metabiblioteca.com