Beneficio de los finos de coque

66 páginas

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad de la Sabana
Repositorio:
Repositorio Universidad de la Sabana
Idioma:
spa
OAI Identifier:
oai:intellectum.unisabana.edu.co:10818/20477
Acceso en línea:
https://hdl.handle.net/10818/20477
Palabra clave:
Carbón -- Análisis -- Colombia
Combustibles fósiles -- Colombia
Ensayes
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id REPOUSABAN_07001c12f4c2682a3b5294a79657065a
oai_identifier_str oai:intellectum.unisabana.edu.co:10818/20477
network_acronym_str REPOUSABAN
network_name_str Repositorio Universidad de la Sabana
repository_id_str
dc.title.none.fl_str_mv Beneficio de los finos de coque
title Beneficio de los finos de coque
spellingShingle Beneficio de los finos de coque
Carbón -- Análisis -- Colombia
Combustibles fósiles -- Colombia
Ensayes
title_short Beneficio de los finos de coque
title_full Beneficio de los finos de coque
title_fullStr Beneficio de los finos de coque
title_full_unstemmed Beneficio de los finos de coque
title_sort Beneficio de los finos de coque
dc.contributor.none.fl_str_mv Rincón Almanza, Jaime Alberto
dc.subject.none.fl_str_mv Carbón -- Análisis -- Colombia
Combustibles fósiles -- Colombia
Ensayes
topic Carbón -- Análisis -- Colombia
Combustibles fósiles -- Colombia
Ensayes
description 66 páginas
publishDate 2015
dc.date.none.fl_str_mv 2015-11-30T18:44:06Z
2015-11-30T18:44:06Z
2015
2015-11-30
dc.type.none.fl_str_mv Tesis/Trabajo de grado – Especialización
Tesis/Trabajo de grado – Especialización
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_7a1f
info:eu-repo/semantics/bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv Alvarez, R. (2005). La tecnología de producción de coque de horno alto ante el nuevo milenio. Revista de metalurgia, 29-34.
Belkin, A. (2003). Use of iron-coke briquets on a cement binder in blast-furnace smelting. Metallurgist, 147-154.
Benk, A. (2008). Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze. Elsevier, 28-37.
Benk, A. (2011). Molasses and air blown coal tar pitch binders for the production of metallurgical quality formed coke from anthracite fines or coke breeze. Elsevier, 1078-1086.
Benk, A., & Coban, A. (2010). Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite. Kayseri, Turkey: Elsevier
Cimadevilla, J. (1999). Comparación de la calidad del coque siderúrgico obtenido a diferentes escalas. Revista de Metalurgia, 1-5.
Das, A. (2010). Efficient recovery of combustibles from coking coal fines. Mineral Processing & Extractive Metall, 236-249.
Diez, M., Alvarez, R., & Cimadevilla, J. (2011). Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production. Oviedo, España: Elsevier.
Equihua, L. (22 de 11 de 2011). Que es el valor agregado. Obtenido de http://foroalfa.org/articulos/que-es-el-valor-agregado
Groover, M. P. (1997). Fundamentos de manufactura moderna. Mexico: Prentice Hall.
Guerrero, C. (2012). Construcción de un modelo de mezcla de carbones colombianos para la producción de coque. Bogotá: Universidad Nacional de Colombia
Gupta, A., & D.S., Y. (2006). Mineral Processing Design and Operations an Introduction. Netherlands: Elsevier
Gutierrez, M., Mora, W., Rodriguez, L., & Ramirez, J. (2011). Aprovechamiento de partículas de ultrafinos de carbón de una planta lavadora en la producción de coque metalúrgico. Ingeniería e investigación, 65-73.
Kulkova, T. (2007). Use of resin-bearing wastes from coke and coal chemicals production at the novokuznetsk metallurgical combine. Metallurgist, 206-2010.
Logachov, G. (2012). Evaluating the effectiveness of using coke breeze in blast-furnace smelting. Metallurgist, 15-21.
Mahoney, M. (2005). Pilot scale simulation of cokemaking in integrated steelworks. Ironmaking and Steelmaking, 468-478
Maistrenko, A. (2007). Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed. Journal of Engineering Physics and Thermophysics, 1019-1032.
Majumder, A., & Shan, H. (2009). Applicability of a dense-medium cyclone and vorsyl separator for upgrading non-coking coal fines for use as a blast furnace injection fuel. International Journal of Coal Preparation and Utilization, 23-33.
Mota, O., & Campos, J. (1995). Combustion of coke with high ash content in fluidised beds. Chemical Engineering Science, 433-439
Nersesian, R. L. (2010). Coal and the Industrial Revolution. U.K
Nomura, S. (2012). Effect of coke contraction on mean coke size. Elsevier, 176-183.
Pinho, C. (2006). Fragmentation on batches of coke or char particles during fluidized bed combustion. Elsevier, 147-155.
Pitak, Y. (2010). Study of the properties of ceramic surfacing material used for restoring coking chamber linings. Refractories and industrial ceramics, 114-119.
Prachethan, P. (2008). Maximisation of non-coking coals in coke production from non-recovery coke ovens. Ironmaking and Steelmaking, 33-39.
Prieto, I. (2010). Centrales termicas sistemas de combustión en lecho fluido. España.
Rodriguez, I. B. (2000). Manual de Carbones y Coquización. Tunja: UPTC.
Rojas, J. (2013). Productos de valor agregado. Monterrey: Raady 2 eat consulting.
Sahu, A. (2009). Development of air dense medium fluidized bed technology for dry beneficiation of coal ¿ a review. International Journal of Coal Preparation and Utilization, 216-241.
Sutcu, H. (2006). Effect of hydroxides on carbonization of bituminous coal. Coal Preparation, 201-208.
Totten, G. E., Funatani, K., & Xie, L. (2004). Handbook of Metallurgical Process Desing. USA: Marcel Dekker.
Umadevi, T. (2008). Influence of coke breeze particle size on quality of sinter. Ironmaking and steelmaking, 567-575.
Wang, B. (2012). Experimental investigation of secondary reactions of intermediates in delayed coking. Res Chem Intermed, 2295-2307.
Wills, B., & Napier-Munn, T. (2006). Wills Mineral Processing Technology. Elsevier.
World Energy Council. (2010). 2010 Survey of Energy Sources. Obtenido de http://www.worldenergy.org/
Yarar, B. (1984). Mineral Processing Design. Turkey: Kluwer Academic Publishers.
https://hdl.handle.net/10818/20477
176733
TE07969
identifier_str_mv Alvarez, R. (2005). La tecnología de producción de coque de horno alto ante el nuevo milenio. Revista de metalurgia, 29-34.
Belkin, A. (2003). Use of iron-coke briquets on a cement binder in blast-furnace smelting. Metallurgist, 147-154.
Benk, A. (2008). Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze. Elsevier, 28-37.
Benk, A. (2011). Molasses and air blown coal tar pitch binders for the production of metallurgical quality formed coke from anthracite fines or coke breeze. Elsevier, 1078-1086.
Benk, A., & Coban, A. (2010). Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite. Kayseri, Turkey: Elsevier
Cimadevilla, J. (1999). Comparación de la calidad del coque siderúrgico obtenido a diferentes escalas. Revista de Metalurgia, 1-5.
Das, A. (2010). Efficient recovery of combustibles from coking coal fines. Mineral Processing & Extractive Metall, 236-249.
Diez, M., Alvarez, R., & Cimadevilla, J. (2011). Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production. Oviedo, España: Elsevier.
Equihua, L. (22 de 11 de 2011). Que es el valor agregado. Obtenido de http://foroalfa.org/articulos/que-es-el-valor-agregado
Groover, M. P. (1997). Fundamentos de manufactura moderna. Mexico: Prentice Hall.
Guerrero, C. (2012). Construcción de un modelo de mezcla de carbones colombianos para la producción de coque. Bogotá: Universidad Nacional de Colombia
Gupta, A., & D.S., Y. (2006). Mineral Processing Design and Operations an Introduction. Netherlands: Elsevier
Gutierrez, M., Mora, W., Rodriguez, L., & Ramirez, J. (2011). Aprovechamiento de partículas de ultrafinos de carbón de una planta lavadora en la producción de coque metalúrgico. Ingeniería e investigación, 65-73.
Kulkova, T. (2007). Use of resin-bearing wastes from coke and coal chemicals production at the novokuznetsk metallurgical combine. Metallurgist, 206-2010.
Logachov, G. (2012). Evaluating the effectiveness of using coke breeze in blast-furnace smelting. Metallurgist, 15-21.
Mahoney, M. (2005). Pilot scale simulation of cokemaking in integrated steelworks. Ironmaking and Steelmaking, 468-478
Maistrenko, A. (2007). Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed. Journal of Engineering Physics and Thermophysics, 1019-1032.
Majumder, A., & Shan, H. (2009). Applicability of a dense-medium cyclone and vorsyl separator for upgrading non-coking coal fines for use as a blast furnace injection fuel. International Journal of Coal Preparation and Utilization, 23-33.
Mota, O., & Campos, J. (1995). Combustion of coke with high ash content in fluidised beds. Chemical Engineering Science, 433-439
Nersesian, R. L. (2010). Coal and the Industrial Revolution. U.K
Nomura, S. (2012). Effect of coke contraction on mean coke size. Elsevier, 176-183.
Pinho, C. (2006). Fragmentation on batches of coke or char particles during fluidized bed combustion. Elsevier, 147-155.
Pitak, Y. (2010). Study of the properties of ceramic surfacing material used for restoring coking chamber linings. Refractories and industrial ceramics, 114-119.
Prachethan, P. (2008). Maximisation of non-coking coals in coke production from non-recovery coke ovens. Ironmaking and Steelmaking, 33-39.
Prieto, I. (2010). Centrales termicas sistemas de combustión en lecho fluido. España.
Rodriguez, I. B. (2000). Manual de Carbones y Coquización. Tunja: UPTC.
Rojas, J. (2013). Productos de valor agregado. Monterrey: Raady 2 eat consulting.
Sahu, A. (2009). Development of air dense medium fluidized bed technology for dry beneficiation of coal ¿ a review. International Journal of Coal Preparation and Utilization, 216-241.
Sutcu, H. (2006). Effect of hydroxides on carbonization of bituminous coal. Coal Preparation, 201-208.
Totten, G. E., Funatani, K., & Xie, L. (2004). Handbook of Metallurgical Process Desing. USA: Marcel Dekker.
Umadevi, T. (2008). Influence of coke breeze particle size on quality of sinter. Ironmaking and steelmaking, 567-575.
Wang, B. (2012). Experimental investigation of secondary reactions of intermediates in delayed coking. Res Chem Intermed, 2295-2307.
Wills, B., & Napier-Munn, T. (2006). Wills Mineral Processing Technology. Elsevier.
World Energy Council. (2010). 2010 Survey of Energy Sources. Obtenido de http://www.worldenergy.org/
Yarar, B. (1984). Mineral Processing Design. Turkey: Kluwer Academic Publishers.
176733
TE07969
url https://hdl.handle.net/10818/20477
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de La Sabana
publisher.none.fl_str_mv Universidad de La Sabana
dc.source.none.fl_str_mv Universidad de La Sabana
Intellectum Repositorio Universidad de La Sabana
institution Universidad de la Sabana
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1850009272697487360
spelling Beneficio de los finos de coqueCarbón -- Análisis -- ColombiaCombustibles fósiles -- ColombiaEnsayes66 páginasEn este trabajo de investigación se plantea una alternativa de comercialización para los finos de coque, subproducto del proceso de coquización, por medio del diseño de un proceso productivo que permita dar un valor agregado a este producto. A partir del marco teórico se definieron 4 alternativas técnicamente viables para el beneficio de los finos de coque, en las cuales se hace énfasis y se desarrollan, planteando ventajas y desventajas de cada una de ellas. Al final se plantean las hipótesis de la investigación con la alternativa técnica y económicamente más viable para la empresa. Par el desarrollo de la investigación se usaran las herramientas de diseño de productos y procesos así como un planteamiento de las variables a controlar en el proceso diseñado a partir del control estadístico, teniendo siempre presente los parámetros de control de calidad del coque aceptados ampliamente en la industrial a nivel mundial.Universidad de La SabanaRincón Almanza, Jaime AlbertoMora Camacho, Fernando2015-11-30T18:44:06Z2015-11-30T18:44:06Z20152015-11-30Tesis/Trabajo de grado – EspecializaciónTesis/Trabajo de grado – Especializacióninfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisapplication/pdfapplication/pdfAlvarez, R. (2005). La tecnología de producción de coque de horno alto ante el nuevo milenio. Revista de metalurgia, 29-34.Belkin, A. (2003). Use of iron-coke briquets on a cement binder in blast-furnace smelting. Metallurgist, 147-154.Benk, A. (2008). Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze. Elsevier, 28-37.Benk, A. (2011). Molasses and air blown coal tar pitch binders for the production of metallurgical quality formed coke from anthracite fines or coke breeze. Elsevier, 1078-1086.Benk, A., & Coban, A. (2010). Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite. Kayseri, Turkey: ElsevierCimadevilla, J. (1999). Comparación de la calidad del coque siderúrgico obtenido a diferentes escalas. Revista de Metalurgia, 1-5.Das, A. (2010). Efficient recovery of combustibles from coking coal fines. Mineral Processing & Extractive Metall, 236-249.Diez, M., Alvarez, R., & Cimadevilla, J. (2011). Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production. Oviedo, España: Elsevier.Equihua, L. (22 de 11 de 2011). Que es el valor agregado. Obtenido de http://foroalfa.org/articulos/que-es-el-valor-agregadoGroover, M. P. (1997). Fundamentos de manufactura moderna. Mexico: Prentice Hall.Guerrero, C. (2012). Construcción de un modelo de mezcla de carbones colombianos para la producción de coque. Bogotá: Universidad Nacional de ColombiaGupta, A., & D.S., Y. (2006). Mineral Processing Design and Operations an Introduction. Netherlands: ElsevierGutierrez, M., Mora, W., Rodriguez, L., & Ramirez, J. (2011). Aprovechamiento de partículas de ultrafinos de carbón de una planta lavadora en la producción de coque metalúrgico. Ingeniería e investigación, 65-73.Kulkova, T. (2007). Use of resin-bearing wastes from coke and coal chemicals production at the novokuznetsk metallurgical combine. Metallurgist, 206-2010.Logachov, G. (2012). Evaluating the effectiveness of using coke breeze in blast-furnace smelting. Metallurgist, 15-21.Mahoney, M. (2005). Pilot scale simulation of cokemaking in integrated steelworks. Ironmaking and Steelmaking, 468-478Maistrenko, A. (2007). Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed. Journal of Engineering Physics and Thermophysics, 1019-1032.Majumder, A., & Shan, H. (2009). Applicability of a dense-medium cyclone and vorsyl separator for upgrading non-coking coal fines for use as a blast furnace injection fuel. International Journal of Coal Preparation and Utilization, 23-33.Mota, O., & Campos, J. (1995). Combustion of coke with high ash content in fluidised beds. Chemical Engineering Science, 433-439Nersesian, R. L. (2010). Coal and the Industrial Revolution. U.KNomura, S. (2012). Effect of coke contraction on mean coke size. Elsevier, 176-183.Pinho, C. (2006). Fragmentation on batches of coke or char particles during fluidized bed combustion. Elsevier, 147-155.Pitak, Y. (2010). Study of the properties of ceramic surfacing material used for restoring coking chamber linings. Refractories and industrial ceramics, 114-119.Prachethan, P. (2008). Maximisation of non-coking coals in coke production from non-recovery coke ovens. Ironmaking and Steelmaking, 33-39.Prieto, I. (2010). Centrales termicas sistemas de combustión en lecho fluido. España.Rodriguez, I. B. (2000). Manual de Carbones y Coquización. Tunja: UPTC.Rojas, J. (2013). Productos de valor agregado. Monterrey: Raady 2 eat consulting.Sahu, A. (2009). Development of air dense medium fluidized bed technology for dry beneficiation of coal ¿ a review. International Journal of Coal Preparation and Utilization, 216-241.Sutcu, H. (2006). Effect of hydroxides on carbonization of bituminous coal. Coal Preparation, 201-208.Totten, G. E., Funatani, K., & Xie, L. (2004). Handbook of Metallurgical Process Desing. USA: Marcel Dekker.Umadevi, T. (2008). Influence of coke breeze particle size on quality of sinter. Ironmaking and steelmaking, 567-575.Wang, B. (2012). Experimental investigation of secondary reactions of intermediates in delayed coking. Res Chem Intermed, 2295-2307.Wills, B., & Napier-Munn, T. (2006). Wills Mineral Processing Technology. Elsevier.World Energy Council. (2010). 2010 Survey of Energy Sources. Obtenido de http://www.worldenergy.org/Yarar, B. (1984). Mineral Processing Design. Turkey: Kluwer Academic Publishers.https://hdl.handle.net/10818/20477176733TE07969Universidad de La SabanaIntellectum Repositorio Universidad de La SabanaspaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2oai:intellectum.unisabana.edu.co:10818/204772025-10-15T22:20:15Z