Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina

1 recurso en línea (páginas 99-117).

Autores:
Tipo de recurso:
article
Fecha de publicación:
2018
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/2366
Acceso en línea:
http://repositorio.uptc.edu.co/handle/001/2366
Palabra clave:
Actividad antibacteriana
Complejos de inclusión
Complejos lantánidos
Interacción con ADN
Rights
openAccess
License
Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC_9fa99ea7b42d78154ba5157382b3621f
oai_identifier_str oai:repositorio.uptc.edu.co:001/2366
network_acronym_str REPOUPTC
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.none.fl_str_mv Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
Synthesis, antibacterial activity and interaction of DNA with lanthanide-β-cyclodextrin inclusion complexes
title Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
spellingShingle Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
Mayor Rivera, Angélica María
Actividad antibacteriana
Complejos de inclusión
Complejos lantánidos
Interacción con ADN
title_short Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
title_full Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
title_fullStr Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
title_full_unstemmed Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
title_sort Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina
dc.creator.none.fl_str_mv Mayor Rivera, Angélica María
Aragón Muriel, Alberto
Polo Cerón, Dorian
author Mayor Rivera, Angélica María
author_facet Mayor Rivera, Angélica María
Aragón Muriel, Alberto
Polo Cerón, Dorian
author_role author
author2 Aragón Muriel, Alberto
Polo Cerón, Dorian
author2_role author
author
dc.subject.none.fl_str_mv Actividad antibacteriana
Complejos de inclusión
Complejos lantánidos
Interacción con ADN
topic Actividad antibacteriana
Complejos de inclusión
Complejos lantánidos
Interacción con ADN
description 1 recurso en línea (páginas 99-117).
publishDate 2018
dc.date.none.fl_str_mv 2018-07-04
2019-01-31T20:39:28Z
2019-01-31T20:39:28Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text
https://purl.org/redcol/resource_type/ART
http://purl.org/coar/version/c_970fb48d4fbd8a85
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Mayor Rivera, A. M., Aragón Muriel, A. & Polo Cerón, D. (2018). Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina. Ciencia en Desarrollo, 9(2), 99-117. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7365. http://repositorio.uptc.edu.co/handle/001/2366
2462-7658
http://repositorio.uptc.edu.co/handle/001/2366
10.19053/01217488.v9.n2.2018.7365
identifier_str_mv Mayor Rivera, A. M., Aragón Muriel, A. & Polo Cerón, D. (2018). Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina. Ciencia en Desarrollo, 9(2), 99-117. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7365. http://repositorio.uptc.edu.co/handle/001/2366
2462-7658
10.19053/01217488.v9.n2.2018.7365
url http://repositorio.uptc.edu.co/handle/001/2366
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv G. Wright, “Solving the antibiotics crisis”, ACS Infect. Dis., vol. 1, no. 2, pp. 80-84, Jan. 2015. http://pubs.acs.org/doi/abs/10.1021/ id500052s.
R. Hamidpour, M. Hamidpour, S. Hamidpour, M. Shahlari, “Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities”, J. Tradit. Complement. Med., vol. 5, no. 2, pp. 66-70, Apr. 2015. https://doi.org/10.1016/j. jtcme.2014.11.008.
Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Y. Queck, “Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus”, Food Control, vol. 59, pp. 282- 289, Jan. 2016. https://doi.org/10.1016/j. foodcont.2015.05.032.
C. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko, A. Api, “Fragrance material review on cinnamic acid”, Food Chem. Toxicol., vol. 43, no. 6, pp. 925-943, Jun. 2005. https:// doi.org/10.1016/j.fct.2004.09.015.
B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, A. Dhake, “Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations”, Eur. J. Med. Chem., vol. 39, no. 10, pp. 827-834. Oct. 2004. https://doi. org/10.1016/j.ejmech.2004.06.013.
P. Sharma, “Cinnamic acid derivatives: A new chapter of various pharmacological activities”. J. Chem. Pharm. Res., vol. 3, no. 2, pp. 403-423. Jan. 2011. http://www. jocpr.com/abstract/cinnamic-acid-derivatives-a-new-chapter-of-various-pharmacological-activities-712.html.
S. Venkateswarlu, M. Ramachandra, A. Krishnaraju, G. Trimurtulu, G. Subbaraju, “Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives”, Indian J. Chem., vol. 45B, pp. 252-257, Jan. 2006. http://hdl.handle. net/123456789/6188.
A. Chambel, C. Viegas, I. Sá-Correia, “Effect of cinnamic acid on the growth and on plasma membrane 1H-ATPase activity Saccharomyces cerevisiae”, Inter. J. Food Microbiol., vol. 50, no. 3, pp. 173-179, Sep. 1999. https://doi.org/10.1016/ S0168-1605(99)00100-2.
S. Adisakwattana, K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, D. Deesamer, S. Yibchok, “Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition”, Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2893–2896, Jun. 2004. https://doi.org/10.1016/j.bmcl.2004.03.037.
S. Carvalho, E. Silva, M. Souza, M. Lourenc¸ F. Vicenteb, “Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives”, Bioorg. Med. Chem. Lett., vol. 18, no. 2, pp. 538–541, Jan. 2008. https://doi.org/10.1016/j.bmcl.2007.11.091.
F. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz, “Structure-antifungal activity relationship of cinnamic acid derivatives”, J. Agr. Food Chem., vol. 55, no. 26, pp. 10635–10640, Nov. 2007. http://pubs.acs. org/doi/abs/10.1021/jf0729098.
N. J. Bello-Vieda, H. F. Pastrana, M. F. Garavito, A. G. Ávila, A. M. Celis, A. Muñoz-Castro, S. Restrepo, J. J. Hurtado, “Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles”, Molecules, vol. 23, no. 2, pp. 361, 1-17, Feb. 2018. https://doi. org/10.3390/molecules23020361.
K. F. Castillo, N. J. Bello-Vieda, N. G. Nuñez-Dallos, H. F. Pastrana, A. M. Celis, S. Restrepo, J. J. Hurtado, A. G. Ávila, “Metal Complex Derivatives of Azole: a Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities”, J. Braz. Chem. Soc., vol. 27, no. 12, pp. 2334-2347, Dec. 2016. http://dx.doi. org/10.5935/0103-5053.20160130.
N. K. Singh, S. B. Singh, D. K. Singh, V. B. Chauhan, “Synthesis, characterization and biological properties of N-nicotinoyl-N’-thiobenzoyl-hydrazine complexes of cobalt(II), nickel(II), copper(II) and zinc(II), Indian J. Chem., vol. 42A, pp. 2767-2771, Nov. 2003. http://nopr.niscair.res. in/bitstream/123456789/20791/1/IJCA%20 42A(11)%202767-2771.pdf.
A. Aragon-Muriel, D. Polo-Cerón, “Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate”, J. Rare Earths, vol. 31, no. 11, pp. 1106-1113, Nov. 2013. https://doi.org/10.1016/ S1002-0721(12)60412-8.
A. Aragon-Muriel, Y. Upegui, J. A. Muñoz, S. M. Robledo, D. Polo-Ceron, “Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases Leishmaniasis, Malaria and Trypanosomiasis”, Avances en Química, vol. 11, no. 2, pp. 53-61, Aug. 2016. http://erevistas. saber.ula.ve/index.php/avancesenquímica/ article/view/7863/7806.
E. M. Martin Del Valle, “Cyclodextrins and their uses: a review”. Process Biochem., vol. 39, no. 9, pp. 1033–1046, May 2004. https:// doi.org/10.1016/S0032-9592(03)00258-9.
E. Santos, J. Kamimura, L. Hill, C. Gomes, “Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications”, Food Sci. Technol., vol. 60, no. 1, pp. 583-592, Jan. 2015. https://doi. org/10.1016/j.lwt.2014.08.046.
K. Uekama, F. Hirayama, T. Irie, “Cyclodextrin Drug Carrier Systems”, Chem. Rev., vol. 98, no. 5, pp. 2045-2076, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970025p
C. Demicheli, R. Ochoa, J. Da Silva, C. Falcao, B. Rossi-Bergmann, A. De Melo, R. Sinisterra, F. Frézard, “Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis”, Antimicrob. Agents Chemother., vol. 48, no. 1, pp. 100-103, Jan. 2004. https://dx.doi. org/10.1128%2FAAC.48.1.100-103.2004.
G. Deacon, M. Forsyth, P. Junk, S. Leary, W. Lee, “Synthesis and characterisation of rare earth complexes supported by para-substituted cinnamate ligands”, Z. Anorg. Allg. Chem., vol. 635, no. 6-7, pp. 833-839, May 2009. http://dx.doi.org/10.1002/zaac. 200801379.
Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI M31-A3. 3 ed., 2008.
G. Deacon, F. Huber, R. Phillips, “Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbón-oxygen stretching frequencies”, Inorg. Chim. Acta., vol. 104, no. 1, pp. 41-45, Oct. 1985. https:// doi.org/10.1016/S0020-1693(00)83783-4.
A. Aragón-Muriel, M. Camprubi, E. Gonzalez, A. Salinas, A. Rodriguez, S. Gomez, D. Polo-Cerón, “Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene”, Polyhedron, vol. 80, pp. 117–128, Sep. 2014. https://doi.org/10.1016/j. poly.2014.02.040.
N. Roik, L. Belyakova, “Infrared spectroscopy, x-ray diffraction and thermal analysis studies of solid b-cyclodextrin - para-aminobenzoic acid inclusion complex”, PCSS, vol. 12, no. 1, pp. 168-173, 2011. http:// www.pu.if.ua/inst/phys_che/start/pcss/ vol12/1201-26.pdf
A. Kokkinou, S. Makedonopoulou, D. Mentzafos, “The cristal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid”, Carbohydr. Res., vol. 328, no. 2, pp. 135-140, Sep. 2000. https://doi.org/10.1016/ S0008-6215(00)00091-4.
H. Schneider, F. Hacket, V. Rüdiger, I. Ikeda, “NMR studies of cyclodextrins and cyclodextrin complexes”, Chem. Rev., vol. 98, no. 5, pp. 1755-1786, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970019t.
F. Giordano, C. Novak, J. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds”, Thermochim. Acta, vol. 380, no. 2, pp. 123-151, Dec. 2001. https://doi. org/10.1016/S0040-6031(01)00665-7.
K. Chandrul, “Role of Macromolecules in Chromatography: Cyclodextrines”, J. Chem. Pharm. Res., vol. 3, no. 6, pp. 822-828, 2011. http://www.jocpr.com/articles/role-of-macromolecules-in-chromatography-cyclodextrines.pdf
T. Pijpers, V. Mathot, B. Goderis, R. Scherrenberg, E. Van der Vegte, “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, vol. 35, no. 9, pp. 3601-3613, Mar. 2002. http://pubs.acs.org/doi/abs/10.1021/ ma011122u?journalCode=mamobx.
R. Abu-Eittah, M. Khedr, M. Goma, W. Zordok, “The structure of cinnamic acid and cinnamoyl azides, a unique localized p system: the electronic spectra and DFT-treatment”, Int. J. Quantum. Chem., vol. 112, no. 5, pp. 1256-1272, Mar. 2012. http://dx.doi.org/10.1002/qua.23120.
A. Essawy, M. Afifi, H. Moustafa, S. El-Medani, “DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids”, Spectrochim. Acta A., vol. 131, pp. 388-397, Oct. 2014. https://doi.org/10.1016/j. saa.2014.04.134.
T. Abbs, A. Pearl, B. Rosy, “Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid”, J. Rare Earths, vol. 31, no. 10, pp. 1009-1016. Oct. 2013. https://doi.org/10.1016/ S1002-0721(13)60022-8.
J. Calvo, L. Martínez-Martínez, “Mecanismo de acción de los antimicrobianos”, Enferm. Infecc. Microbiol. Clin., vol. 27, no. 1, pp. 44–52, Jan. 2009. http://dx.doi. org/10.1016/j.eimc.2008.11.001.
A. Deredjian, C. Colinon, S. Brothier, S. Favre-Bonte, B. Cournoyer, S. Nazaret, “Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa”, Res. Microbiol., vol. 162, no. 7, pp. 689-700, Sep. 2011. https://doi. org/10.1016/j.resmic.2011.06.007.
K. Suntharalingam, O. Mendoza, A. Duarte, D. Mann, R. Vilar, “A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin”, Metallomics., vol. 5, pp. 514-523, Feb. 2013. https://doi.org/10.1039/ C3MT20252F.
Y. Sun, F. Dong, D. Wang, Y. Lib, “Crystal Structure, Supramolécular Self-Assembly and Interaction with DNA of a Mixed Ligand Manganese(II) Complex”, J. Braz. Chem. Soc., vol. 22, no. 6, pp. 1089- 1095, Jun. 2011. http://dx.doi.org/10.1590/ S0103-50532011000600013.
N. Sohrabi, “Binding and uv/vis spectral investigation of interaction of ni(ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach”, J. Pharm. Sci. & Res., vol. 7, no. 8, pp. 533-537, Aug. 2015. http://www. jpsr.pharmainfo.in/Documents/Volumes/ vol7Issue08/jpsr07081507.pdf
A. Jamali, A. Tavakoli, J. Nazhad, “Analytical overview of DNA interaction with Morin and its metal complexes”, Eur. Food Res. Technol., vol. 235, no. 3, pp 367–373, Sep. 2012. https://doi.org/10.1007/ s00217-012-1778-8.
A. Sigel, H. Sigel, R. Sigel, Interplay between metal ions and nucleic acids. New York: Springer, 2012.
A. Kresel, J. Lisowski, “Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes”, J. Inorg. Biochem., vol. 107, no. 1, pp. 1–5, Feb. 2012. https://doi.org/10.1016/j. jinorgbio.2011.10.011
M. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications”, Chem. Commun., vol. 16, pp. 1443–1451, 1999. https://doi.org/10.1039/ A901621J.
S. Tabassum, G. Sharma, F. Arjmand, “New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity”, Spectrochim. Acta Part A., vol. 90, pp. 208-217, May 2012. https://doi.org/10.1016/j. saa.2012.01.020.
Ciencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)
dc.rights.none.fl_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7365/7263
reponame:RiUPTC: Repositorio Institucional UPTC
instname:Universidad Pedagógica y Tecnológica de Colombia
instacron:Universidad Pedagógica y Tecnológica de Colombia
instname_str Universidad Pedagógica y Tecnológica de Colombia
instacron_str Universidad Pedagógica y Tecnológica de Colombia
institution Universidad Pedagógica y Tecnológica de Colombia
reponame_str RiUPTC: Repositorio Institucional UPTC
collection RiUPTC: Repositorio Institucional UPTC
_version_ 1841545964240764928
spelling Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrinaSynthesis, antibacterial activity and interaction of DNA with lanthanide-β-cyclodextrin inclusion complexesMayor Rivera, Angélica MaríaAragón Muriel, AlbertoPolo Cerón, DorianActividad antibacterianaComplejos de inclusiónComplejos lantánidosInteracción con ADN1 recurso en línea (páginas 99-117).En este trabajo se han sintetizado complejos de lantánidos a partir de los cloruros de La(III), Ce(III), Sm (III) e Yb(III) con ligandos cinamato, presentando coordinación bidentada entre el grupo carboxilo del ligando y el metal lantánido. Estos compuestos se utilizaron como huéspedes de la β-ciclodextrina con el fin de obtener nuevos complejos de inclusión mediante el método de co-precipitación, utilizando N,N-dimetilformamida como disolvente. Los productos de inclusión obtenidos fueron caracterizados mediante espectroscopía IR-ATR, Raman, UV-vis, RMN 1H y 13C, DRX, TGA, DSC, análisis elemental y complexometría con EDTA. Se realizaron pruebas de actividad antibacteriana empleando 6 cepas ATTC (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 y K. pneumoniae ATCC BAA-2146) mediante el método de microdilución con caldo Mueller-Hinton; los resultados de actividad biológica para los complejos lantánidos permitieron evidenciar el efecto sinérgico entre el catión lantánido y el ligando cinamato. Igualmente, para los complejos de inclusión se observó una disminución de la concentración mínima inhibitoria (CMI) respecto a los complejos lantánidos iniciales. Los resultados obtenidos con el ADN de timo de ternera y el ADN plasmídico pBR322 permiten proponer una interacción electrostática entre los complejos evaluados y la estructura molécular del ADN.In this work, lanthanide complexes were synthesized starting from the corresponding La (III), Ce (III), Sm (III) and Yb (III) chlorides and cinnamate ligands which present bidentate coordination between the carboxyl group of the ligand and the lanthanide metal. These compounds were used as hosts of β-cyclodextrin to obtain new inclusion complexes by a co-precipitation method using N,N-dimethylformamide as solvent. The inclusion products were characterized by IR-ATR spectroscopy, Raman, UV-vis, 1H and 13C NMR,XRD, TGA-DSC, elemental analysis and EDTA complexometry. Antibacterial activity tests were performed using six ATTC strains (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 and K. pneumoniae ATCC BAA-2146) by the microdilution method with Mueller-Hinton broth. The results of the biological activity for the lanthanide complexes showed the synergistic effect between the lanthanide cation and the cinnamate ligand. For the inclusion complexes, a decrease of the minimum inhibitory concentration (MIC) was observed with respect to the initial lanthanide complexes. The results obtained with the bovine thymus DNA and the plasmid pBR322 DNA allow to propose an electrostatic interaction between the evaluated complexes and the molécular structure of the DNA.Bibliografía y webgrafía: páginas 114-117.Universidad Pedagógica y Tecnológica de Colombia2019-01-31T20:39:28Z2019-01-31T20:39:28Z2018-07-04Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfMayor Rivera, A. M., Aragón Muriel, A. & Polo Cerón, D. (2018). Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina. Ciencia en Desarrollo, 9(2), 99-117. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7365. http://repositorio.uptc.edu.co/handle/001/23662462-7658http://repositorio.uptc.edu.co/handle/001/236610.19053/01217488.v9.n2.2018.7365https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7365/7263reponame:RiUPTC: Repositorio Institucional UPTCinstname:Universidad Pedagógica y Tecnológica de Colombiainstacron:Universidad Pedagógica y Tecnológica de ColombiaspaG. Wright, “Solving the antibiotics crisis”, ACS Infect. Dis., vol. 1, no. 2, pp. 80-84, Jan. 2015. http://pubs.acs.org/doi/abs/10.1021/ id500052s.R. Hamidpour, M. Hamidpour, S. Hamidpour, M. Shahlari, “Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities”, J. Tradit. Complement. Med., vol. 5, no. 2, pp. 66-70, Apr. 2015. https://doi.org/10.1016/j. jtcme.2014.11.008.Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Y. Queck, “Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus”, Food Control, vol. 59, pp. 282- 289, Jan. 2016. https://doi.org/10.1016/j. foodcont.2015.05.032.C. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko, A. Api, “Fragrance material review on cinnamic acid”, Food Chem. Toxicol., vol. 43, no. 6, pp. 925-943, Jun. 2005. https:// doi.org/10.1016/j.fct.2004.09.015.B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, A. Dhake, “Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations”, Eur. J. Med. Chem., vol. 39, no. 10, pp. 827-834. Oct. 2004. https://doi. org/10.1016/j.ejmech.2004.06.013.P. Sharma, “Cinnamic acid derivatives: A new chapter of various pharmacological activities”. J. Chem. Pharm. Res., vol. 3, no. 2, pp. 403-423. Jan. 2011. http://www. jocpr.com/abstract/cinnamic-acid-derivatives-a-new-chapter-of-various-pharmacological-activities-712.html.S. Venkateswarlu, M. Ramachandra, A. Krishnaraju, G. Trimurtulu, G. Subbaraju, “Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives”, Indian J. Chem., vol. 45B, pp. 252-257, Jan. 2006. http://hdl.handle. net/123456789/6188.A. Chambel, C. Viegas, I. Sá-Correia, “Effect of cinnamic acid on the growth and on plasma membrane 1H-ATPase activity Saccharomyces cerevisiae”, Inter. J. Food Microbiol., vol. 50, no. 3, pp. 173-179, Sep. 1999. https://doi.org/10.1016/ S0168-1605(99)00100-2.S. Adisakwattana, K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, D. Deesamer, S. Yibchok, “Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition”, Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2893–2896, Jun. 2004. https://doi.org/10.1016/j.bmcl.2004.03.037.S. Carvalho, E. Silva, M. Souza, M. Lourenc¸ F. Vicenteb, “Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives”, Bioorg. Med. Chem. Lett., vol. 18, no. 2, pp. 538–541, Jan. 2008. https://doi.org/10.1016/j.bmcl.2007.11.091.F. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz, “Structure-antifungal activity relationship of cinnamic acid derivatives”, J. Agr. Food Chem., vol. 55, no. 26, pp. 10635–10640, Nov. 2007. http://pubs.acs. org/doi/abs/10.1021/jf0729098.N. J. Bello-Vieda, H. F. Pastrana, M. F. Garavito, A. G. Ávila, A. M. Celis, A. Muñoz-Castro, S. Restrepo, J. J. Hurtado, “Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles”, Molecules, vol. 23, no. 2, pp. 361, 1-17, Feb. 2018. https://doi. org/10.3390/molecules23020361.K. F. Castillo, N. J. Bello-Vieda, N. G. Nuñez-Dallos, H. F. Pastrana, A. M. Celis, S. Restrepo, J. J. Hurtado, A. G. Ávila, “Metal Complex Derivatives of Azole: a Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities”, J. Braz. Chem. Soc., vol. 27, no. 12, pp. 2334-2347, Dec. 2016. http://dx.doi. org/10.5935/0103-5053.20160130.N. K. Singh, S. B. Singh, D. K. Singh, V. B. Chauhan, “Synthesis, characterization and biological properties of N-nicotinoyl-N’-thiobenzoyl-hydrazine complexes of cobalt(II), nickel(II), copper(II) and zinc(II), Indian J. Chem., vol. 42A, pp. 2767-2771, Nov. 2003. http://nopr.niscair.res. in/bitstream/123456789/20791/1/IJCA%20 42A(11)%202767-2771.pdf.A. Aragon-Muriel, D. Polo-Cerón, “Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate”, J. Rare Earths, vol. 31, no. 11, pp. 1106-1113, Nov. 2013. https://doi.org/10.1016/ S1002-0721(12)60412-8.A. Aragon-Muriel, Y. Upegui, J. A. Muñoz, S. M. Robledo, D. Polo-Ceron, “Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases Leishmaniasis, Malaria and Trypanosomiasis”, Avances en Química, vol. 11, no. 2, pp. 53-61, Aug. 2016. http://erevistas. saber.ula.ve/index.php/avancesenquímica/ article/view/7863/7806.E. M. Martin Del Valle, “Cyclodextrins and their uses: a review”. Process Biochem., vol. 39, no. 9, pp. 1033–1046, May 2004. https:// doi.org/10.1016/S0032-9592(03)00258-9.E. Santos, J. Kamimura, L. Hill, C. Gomes, “Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications”, Food Sci. Technol., vol. 60, no. 1, pp. 583-592, Jan. 2015. https://doi. org/10.1016/j.lwt.2014.08.046.K. Uekama, F. Hirayama, T. Irie, “Cyclodextrin Drug Carrier Systems”, Chem. Rev., vol. 98, no. 5, pp. 2045-2076, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970025pC. Demicheli, R. Ochoa, J. Da Silva, C. Falcao, B. Rossi-Bergmann, A. De Melo, R. Sinisterra, F. Frézard, “Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis”, Antimicrob. Agents Chemother., vol. 48, no. 1, pp. 100-103, Jan. 2004. https://dx.doi. org/10.1128%2FAAC.48.1.100-103.2004.G. Deacon, M. Forsyth, P. Junk, S. Leary, W. Lee, “Synthesis and characterisation of rare earth complexes supported by para-substituted cinnamate ligands”, Z. Anorg. Allg. Chem., vol. 635, no. 6-7, pp. 833-839, May 2009. http://dx.doi.org/10.1002/zaac. 200801379.Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI M31-A3. 3 ed., 2008.G. Deacon, F. Huber, R. Phillips, “Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbón-oxygen stretching frequencies”, Inorg. Chim. Acta., vol. 104, no. 1, pp. 41-45, Oct. 1985. https:// doi.org/10.1016/S0020-1693(00)83783-4.A. Aragón-Muriel, M. Camprubi, E. Gonzalez, A. Salinas, A. Rodriguez, S. Gomez, D. Polo-Cerón, “Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene”, Polyhedron, vol. 80, pp. 117–128, Sep. 2014. https://doi.org/10.1016/j. poly.2014.02.040.N. Roik, L. Belyakova, “Infrared spectroscopy, x-ray diffraction and thermal analysis studies of solid b-cyclodextrin - para-aminobenzoic acid inclusion complex”, PCSS, vol. 12, no. 1, pp. 168-173, 2011. http:// www.pu.if.ua/inst/phys_che/start/pcss/ vol12/1201-26.pdfA. Kokkinou, S. Makedonopoulou, D. Mentzafos, “The cristal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid”, Carbohydr. Res., vol. 328, no. 2, pp. 135-140, Sep. 2000. https://doi.org/10.1016/ S0008-6215(00)00091-4.H. Schneider, F. Hacket, V. Rüdiger, I. Ikeda, “NMR studies of cyclodextrins and cyclodextrin complexes”, Chem. Rev., vol. 98, no. 5, pp. 1755-1786, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970019t.F. Giordano, C. Novak, J. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds”, Thermochim. Acta, vol. 380, no. 2, pp. 123-151, Dec. 2001. https://doi. org/10.1016/S0040-6031(01)00665-7.K. Chandrul, “Role of Macromolecules in Chromatography: Cyclodextrines”, J. Chem. Pharm. Res., vol. 3, no. 6, pp. 822-828, 2011. http://www.jocpr.com/articles/role-of-macromolecules-in-chromatography-cyclodextrines.pdfT. Pijpers, V. Mathot, B. Goderis, R. Scherrenberg, E. Van der Vegte, “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, vol. 35, no. 9, pp. 3601-3613, Mar. 2002. http://pubs.acs.org/doi/abs/10.1021/ ma011122u?journalCode=mamobx.R. Abu-Eittah, M. Khedr, M. Goma, W. Zordok, “The structure of cinnamic acid and cinnamoyl azides, a unique localized p system: the electronic spectra and DFT-treatment”, Int. J. Quantum. Chem., vol. 112, no. 5, pp. 1256-1272, Mar. 2012. http://dx.doi.org/10.1002/qua.23120.A. Essawy, M. Afifi, H. Moustafa, S. El-Medani, “DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids”, Spectrochim. Acta A., vol. 131, pp. 388-397, Oct. 2014. https://doi.org/10.1016/j. saa.2014.04.134.T. Abbs, A. Pearl, B. Rosy, “Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid”, J. Rare Earths, vol. 31, no. 10, pp. 1009-1016. Oct. 2013. https://doi.org/10.1016/ S1002-0721(13)60022-8.J. Calvo, L. Martínez-Martínez, “Mecanismo de acción de los antimicrobianos”, Enferm. Infecc. Microbiol. Clin., vol. 27, no. 1, pp. 44–52, Jan. 2009. http://dx.doi. org/10.1016/j.eimc.2008.11.001.A. Deredjian, C. Colinon, S. Brothier, S. Favre-Bonte, B. Cournoyer, S. Nazaret, “Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa”, Res. Microbiol., vol. 162, no. 7, pp. 689-700, Sep. 2011. https://doi. org/10.1016/j.resmic.2011.06.007.K. Suntharalingam, O. Mendoza, A. Duarte, D. Mann, R. Vilar, “A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin”, Metallomics., vol. 5, pp. 514-523, Feb. 2013. https://doi.org/10.1039/ C3MT20252F.Y. Sun, F. Dong, D. Wang, Y. Lib, “Crystal Structure, Supramolécular Self-Assembly and Interaction with DNA of a Mixed Ligand Manganese(II) Complex”, J. Braz. Chem. Soc., vol. 22, no. 6, pp. 1089- 1095, Jun. 2011. http://dx.doi.org/10.1590/ S0103-50532011000600013.N. Sohrabi, “Binding and uv/vis spectral investigation of interaction of ni(ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach”, J. Pharm. Sci. & Res., vol. 7, no. 8, pp. 533-537, Aug. 2015. http://www. jpsr.pharmainfo.in/Documents/Volumes/ vol7Issue08/jpsr07081507.pdfA. Jamali, A. Tavakoli, J. Nazhad, “Analytical overview of DNA interaction with Morin and its metal complexes”, Eur. Food Res. Technol., vol. 235, no. 3, pp 367–373, Sep. 2012. https://doi.org/10.1007/ s00217-012-1778-8.A. Sigel, H. Sigel, R. Sigel, Interplay between metal ions and nucleic acids. New York: Springer, 2012.A. Kresel, J. Lisowski, “Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes”, J. Inorg. Biochem., vol. 107, no. 1, pp. 1–5, Feb. 2012. https://doi.org/10.1016/j. jinorgbio.2011.10.011M. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications”, Chem. Commun., vol. 16, pp. 1443–1451, 1999. https://doi.org/10.1039/ A901621J.S. Tabassum, G. Sharma, F. Arjmand, “New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity”, Spectrochim. Acta Part A., vol. 90, pp. 208-217, May 2012. https://doi.org/10.1016/j. saa.2012.01.020.Ciencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf22021-02-10T13:03:15Z