Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation

1 recurso en línea (páginas 149-159).

Autores:
Tipo de recurso:
article
Fecha de publicación:
2018
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/2362
Acceso en línea:
http://repositorio.uptc.edu.co/handle/001/2362
Palabra clave:
Almidón
Almidón de papa - Análisis - Métodos
Almidón de papa - Estudio de casos
Injerto
Hidrólisis
Microondas
Micropartículas de almidón
Ultrasonido
Rights
openAccess
License
Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC_9d7d0d850c37a5db4bb083bb6b1fb803
oai_identifier_str oai:repositorio.uptc.edu.co:001/2362
network_acronym_str REPOUPTC
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.none.fl_str_mv Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
Preparación y caracterización de micropartículas de almidón de papa con acrilamida por irradiación de microondas
title Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
spellingShingle Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
Rodríguez Pineda, Lina María
Almidón
Almidón de papa - Análisis - Métodos
Almidón de papa - Estudio de casos
Injerto
Hidrólisis
Microondas
Micropartículas de almidón
Ultrasonido
title_short Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
title_full Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
title_fullStr Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
title_full_unstemmed Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
title_sort Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation
dc.creator.none.fl_str_mv Rodríguez Pineda, Lina María
Muñoz Prieto, Efren de Jesús
Rius Alonso, Carlos Antonio
Palacios Alquisira, Joaquín
author Rodríguez Pineda, Lina María
author_facet Rodríguez Pineda, Lina María
Muñoz Prieto, Efren de Jesús
Rius Alonso, Carlos Antonio
Palacios Alquisira, Joaquín
author_role author
author2 Muñoz Prieto, Efren de Jesús
Rius Alonso, Carlos Antonio
Palacios Alquisira, Joaquín
author2_role author
author
author
dc.subject.none.fl_str_mv Almidón
Almidón de papa - Análisis - Métodos
Almidón de papa - Estudio de casos
Injerto
Hidrólisis
Microondas
Micropartículas de almidón
Ultrasonido
topic Almidón
Almidón de papa - Análisis - Métodos
Almidón de papa - Estudio de casos
Injerto
Hidrólisis
Microondas
Micropartículas de almidón
Ultrasonido
description 1 recurso en línea (páginas 149-159).
publishDate 2018
dc.date.none.fl_str_mv 2018-07-04
2019-01-31T16:37:44Z
2019-01-31T16:37:44Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text
https://purl.org/redcol/resource_type/ART
http://purl.org/coar/version/c_970fb48d4fbd8a85
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Rodríguez Pineda, L. M. y otros. (2018). Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation. Ciencia en Desarrollo, 9(2), 149-159. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7783. http://repositorio.uptc.edu.co/handle/001/2362
2462-7658
http://repositorio.uptc.edu.co/handle/001/2362
10.19053/01217488.v9.n2.2018.7783
identifier_str_mv Rodríguez Pineda, L. M. y otros. (2018). Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation. Ciencia en Desarrollo, 9(2), 149-159. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7783. http://repositorio.uptc.edu.co/handle/001/2362
2462-7658
10.19053/01217488.v9.n2.2018.7783
url http://repositorio.uptc.edu.co/handle/001/2362
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv D. Das, S. Jha, and K. J. Kumar, “Effect of carboxymethylation on physicochemical and release characteristics of Indian Palo starch,” International Journal of Biological Macromolecules, vol. 77, pp. 181–187, 2015
Q. Zhou, W. Shi, X. Meng, and Y. Liu, “Studies on the morphological, crystalline, thermal properties of an under utilized starch from yam Dioscoreae zingiberensis C. H. Wright,” Starch/Staerke, vol. 65, no. 1–2, pp. 123–133, 2013.
M. M. P. Andrade, C. S. De Oliveira, T. A. D. Colman, F. J. O. G. Da Costa, and E. Schnitzler, “Effects of heat-moisture treatment on organic cassava starch: Thermal, rheological and structural study,” Journal of Thermal Analysis and Calorimetry, vol. 115, no. 3, pp. 2115–2122, 2014.
S. Bel Haaj, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study,” Carbohydrate Polymers, vol. 143, pp. 310–317, 2016.
A. Mohammad Amini and S. M. A. Razavi, “A fast and efficient approach to prepare starch nanocrystals from normal corn starch,” Food Hydrocolloids, vol. 57, pp. 132–138, 2016.
S. Bel Haaj, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydrate Polymers, vol. 92, no. 2, pp. 1625–1632, 2013.
A. M. Shi, D. Li, L. J. Wang, B. Z. Li, and B. Adhikari, “Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability,” Carbohydrate Polymers, vol. 83, no. 4, pp. 1604–1610, 2011
H. Y. Kim, S. S. Park, and S. T. Lim, “Preparation, characterization and utilization of starch nanoparticles,” Colloids and Surfaces B: Biointerfaces, vol. 126, pp. 607–620, 2015
Y. Qin, C. Liu, S. Jiang, L. Xiong, and Q. Sun, “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type,” Industrial Crops and Products, vol. 87, pp. 182–190, 2016
D. Song, Y. S. Thio, and Y. Deng, “Starch nanoparticle formation via reactive extrusion and related mechanism study,” Carbohydrate Polymers, vol. 85, no. 1, pp. 208–214, 2011.
H. Y. Kim, D. J. Park, J. Y. Kim, and S. T. Lim, “Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication,” Carbohydrate Polymers, vol. 98, no. 1, pp. 295–301, 2013.
A. Umar, M. M. Sanagi, A. Salisu, W. A. Wan Ibrahim, K. J. Abd Karim, and A. S. Abdul Keyon, “Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator,” Materials Letters, vol. 185, pp. 173–176, 2016.
R. Jain, B. K. Paswan, T. K. Mahto, and V. Mahto, “Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system,” Egyptian Journal of Petroleum, 2015.
E. M. Prieto, J. P. Alquisira, and C. R. Alonso, “Microwave and Ultrasound Activation Effect on Cationization of Corn and Potato Starches,” Ciencia en Desarrollo, vol. 4, no. 1, pp. 151–173, 2012.
E. de J. Muñoz Prieto, B. Rivas, and J. Sánchez, “Natural polymer grafted with syntethic monomer By microwave for water treatment-a review,” Ciencia en Desarrollo, vol. 4. pp. 219–241, 2012.
S. Mishra, A. Mukul, G. Sen, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment,” International Journal of Biological Macromolecules, vol. 48, no. 1, pp. 106–111, 2011.
V. Singh, A. Tiwari, S. Pandey, and S. K. Singh, “Microwave-accelerated synthesis and characterization of potato starch-g-poly(acryiamide),” Starch/Staerke, vol. 58, no. 10, pp. 536–543, 2006.
M. Eutamene, A. Benbakhti, M. Khodja, and A. Jada, “Preparation and aqueous properties of starch-grafted polyacrylamide copolymers,” Starch/Staerke, vol. 61, no. 2, pp. 81–91, 2009.
P. Rani, G. Sen, S. Mishra, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant,” Carbohydrate Polymers, vol. 89, no. 1, pp. 275–281, 2012.
M. C. Otálora, M. R. López, and L. J. Mancilla, “Caracterización Fisicoquímica, Funcional, Microbiológica, Sensorial y de Estabilidad de la harina de papa (Solanum tuberosum) para puré instantáneo.,” Ciencia en desarrollo, vol. 3, no. 2, pp. 107–128, 2011.
L. Novelo-Cen and D. Betancur-Ancona, “Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends,” Starch/Staerke, vol. 57, no. 9, pp. 431–441, 2005.
A. V. Singh, L. K. Nath, and M. Guha, “Microwave assisted synthesis and characterization of Phaseolus aconitifolius starch-g-acrylamide,” Carbohydrate Polymers, vol. 86, no. 2, pp. 872–876, 2011.
A. C. Bertolini, Starches: characterization, properties, and applications. Boca Raton London, New York: CRC Press, 2010.
S. Kaity, J. Isaac, P. M. Kumar, A. Bose, T. W. Wong, and A. Ghosh, “Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery,” Carbohydrate Polymers, vol. 98, no. 1, pp. 1083–1094, 2013.
H. Zhang, J. Wang, R. Wang, and Y. Dong, “Microwave irradiated synthesis of grafted cationic starch: Synthesis, characterization, application, and biodegradation,” Journal of Applied Polymer Science, vol. 130, no. 3, pp. 1645–1652, Nov.
C. Nakason, T. Wohmang, A. Kaesaman, and S. Kiatkamjornwong, “Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending,” Carbohydrate Polymers, vol. 81, no. 2, pp. 348–357, 2010.
A. J. M. Al-Karawi and A. H. R. Al-Daraji, “Preparation and using of acrylamide grafted starch as polymer drug carrier,” Carbohydrate Polymers, vol. 79, no. 3, pp. 769–774, 2010.
N. L. García, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, and S. Goyanes, “Biodegradable materials from grafting of modified PLA onto starch nanocrystals,” Polymer Degradation and Stability, vol. 97, no. 10, pp. 2021–2026, 2012.
M. Lamanna, N. J. Morales, N. L. Garcia, and S. Goyanes, “Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler,” Carbohydrate Polymers, vol. 97, no. 1, pp. 90–97, 2013.
Ciencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)
dc.rights.none.fl_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7783/7267
reponame:RiUPTC: Repositorio Institucional UPTC
instname:Universidad Pedagógica y Tecnológica de Colombia
instacron:Universidad Pedagógica y Tecnológica de Colombia
instname_str Universidad Pedagógica y Tecnológica de Colombia
instacron_str Universidad Pedagógica y Tecnológica de Colombia
institution Universidad Pedagógica y Tecnológica de Colombia
reponame_str RiUPTC: Repositorio Institucional UPTC
collection RiUPTC: Repositorio Institucional UPTC
_version_ 1841545972064190464
spelling Preparation and characterization of potato starch microparticles with acrylamide by microwave radiationPreparación y caracterización de micropartículas de almidón de papa con acrilamida por irradiación de microondasRodríguez Pineda, Lina MaríaMuñoz Prieto, Efren de JesúsRius Alonso, Carlos AntonioPalacios Alquisira, JoaquínAlmidónAlmidón de papa - Análisis - MétodosAlmidón de papa - Estudio de casosInjertoHidrólisisMicroondasMicropartículas de almidónUltrasonido1 recurso en línea (páginas 149-159).In this study on decreasing the particle size of the potato starch, ultrasound and acid hydrolysis methods were carried out at the same time. The starch microparticles (SMP) obtained were modified with acrylamide(AM) monomer by microwave irradiation, employing a small concentration of chemical initiator. It was found that, with a low concentration of potassium persulfate (PPS) in aqueous medium and microwave assistance, starch microparticles grafted with acrylamide could be prepared quickly. Native starch, starch microparticles and grafted copolymers were characterized by various analytical techniques. The Fourier transform infrared spectroscopy (FT-IR) analysis demonstrates group acrylamide attachment to starch microparticles chains. X-ray diffraction (XRD) and scanning electron microscopy (SEM) demonstrate an increased amorphous region of starch microparticles and grafted copolymers, while the thermogravimetric analysis (TGA) highlighted the increase in thermal stability of the copolymers in comparison to potato starch microparticles.En este estudio para la disminución del tamaño de partícula del almidón de papa, se llevaron a cabo métodos de hidrólisis ácida y ultrasonidos al mismo tiempo. Las micropartículas de almidón (SMP) obtenidas se modificaron con monómero de acrilamida (AM) mediante irradiación de microondas, empleando una pequeña concentración de iniciador químico. Se encontró que, con una baja concentración de persulfato de potasio (PPS) en medio acuoso y asistencia de microondas, las micropartículas de almidón injertadas con acrilamida podrían prepararse rápidamente. El almidón nativo, las micropartículas de almidón y los copolímeros injertados se caracterizaron por diversas técnicas analíticas. El análisis por espectroscopía infrarroja de transformada de Fourier (FT-IR) demuestra la unión del grupo acrilamida a las cadenas de micropartículas de almidón. La difracción de rayos X (XRD) y la microscopía electrónica de barrido (SEM) demuestran un incremento en la región amorfa de las micropartículas de almidón y copolímeros injertados, mientras que el análisis termogravimétrico (TGA) destacó el aumento de la estabilidad térmica de los copolímeros en comparación con las micropartículas de almidón de papa.Bibliografía: páginas 157-159.Universidad Pedagógica y Tecnológica de Colombia2019-01-31T16:37:44Z2019-01-31T16:37:44Z2018-07-04Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfRodríguez Pineda, L. M. y otros. (2018). Preparation and characterization of potato starch microparticles with acrylamide by microwave radiation. Ciencia en Desarrollo, 9(2), 149-159. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7783. http://repositorio.uptc.edu.co/handle/001/23622462-7658http://repositorio.uptc.edu.co/handle/001/236210.19053/01217488.v9.n2.2018.7783https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7783/7267reponame:RiUPTC: Repositorio Institucional UPTCinstname:Universidad Pedagógica y Tecnológica de Colombiainstacron:Universidad Pedagógica y Tecnológica de ColombiaengD. Das, S. Jha, and K. J. Kumar, “Effect of carboxymethylation on physicochemical and release characteristics of Indian Palo starch,” International Journal of Biological Macromolecules, vol. 77, pp. 181–187, 2015Q. Zhou, W. Shi, X. Meng, and Y. Liu, “Studies on the morphological, crystalline, thermal properties of an under utilized starch from yam Dioscoreae zingiberensis C. H. Wright,” Starch/Staerke, vol. 65, no. 1–2, pp. 123–133, 2013.M. M. P. Andrade, C. S. De Oliveira, T. A. D. Colman, F. J. O. G. Da Costa, and E. Schnitzler, “Effects of heat-moisture treatment on organic cassava starch: Thermal, rheological and structural study,” Journal of Thermal Analysis and Calorimetry, vol. 115, no. 3, pp. 2115–2122, 2014.S. Bel Haaj, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study,” Carbohydrate Polymers, vol. 143, pp. 310–317, 2016.A. Mohammad Amini and S. M. A. Razavi, “A fast and efficient approach to prepare starch nanocrystals from normal corn starch,” Food Hydrocolloids, vol. 57, pp. 132–138, 2016.S. Bel Haaj, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydrate Polymers, vol. 92, no. 2, pp. 1625–1632, 2013.A. M. Shi, D. Li, L. J. Wang, B. Z. Li, and B. Adhikari, “Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability,” Carbohydrate Polymers, vol. 83, no. 4, pp. 1604–1610, 2011H. Y. Kim, S. S. Park, and S. T. Lim, “Preparation, characterization and utilization of starch nanoparticles,” Colloids and Surfaces B: Biointerfaces, vol. 126, pp. 607–620, 2015Y. Qin, C. Liu, S. Jiang, L. Xiong, and Q. Sun, “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type,” Industrial Crops and Products, vol. 87, pp. 182–190, 2016D. Song, Y. S. Thio, and Y. Deng, “Starch nanoparticle formation via reactive extrusion and related mechanism study,” Carbohydrate Polymers, vol. 85, no. 1, pp. 208–214, 2011.H. Y. Kim, D. J. Park, J. Y. Kim, and S. T. Lim, “Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication,” Carbohydrate Polymers, vol. 98, no. 1, pp. 295–301, 2013.A. Umar, M. M. Sanagi, A. Salisu, W. A. Wan Ibrahim, K. J. Abd Karim, and A. S. Abdul Keyon, “Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator,” Materials Letters, vol. 185, pp. 173–176, 2016.R. Jain, B. K. Paswan, T. K. Mahto, and V. Mahto, “Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system,” Egyptian Journal of Petroleum, 2015.E. M. Prieto, J. P. Alquisira, and C. R. Alonso, “Microwave and Ultrasound Activation Effect on Cationization of Corn and Potato Starches,” Ciencia en Desarrollo, vol. 4, no. 1, pp. 151–173, 2012.E. de J. Muñoz Prieto, B. Rivas, and J. Sánchez, “Natural polymer grafted with syntethic monomer By microwave for water treatment-a review,” Ciencia en Desarrollo, vol. 4. pp. 219–241, 2012.S. Mishra, A. Mukul, G. Sen, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment,” International Journal of Biological Macromolecules, vol. 48, no. 1, pp. 106–111, 2011.V. Singh, A. Tiwari, S. Pandey, and S. K. Singh, “Microwave-accelerated synthesis and characterization of potato starch-g-poly(acryiamide),” Starch/Staerke, vol. 58, no. 10, pp. 536–543, 2006.M. Eutamene, A. Benbakhti, M. Khodja, and A. Jada, “Preparation and aqueous properties of starch-grafted polyacrylamide copolymers,” Starch/Staerke, vol. 61, no. 2, pp. 81–91, 2009.P. Rani, G. Sen, S. Mishra, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant,” Carbohydrate Polymers, vol. 89, no. 1, pp. 275–281, 2012.M. C. Otálora, M. R. López, and L. J. Mancilla, “Caracterización Fisicoquímica, Funcional, Microbiológica, Sensorial y de Estabilidad de la harina de papa (Solanum tuberosum) para puré instantáneo.,” Ciencia en desarrollo, vol. 3, no. 2, pp. 107–128, 2011.L. Novelo-Cen and D. Betancur-Ancona, “Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends,” Starch/Staerke, vol. 57, no. 9, pp. 431–441, 2005.A. V. Singh, L. K. Nath, and M. Guha, “Microwave assisted synthesis and characterization of Phaseolus aconitifolius starch-g-acrylamide,” Carbohydrate Polymers, vol. 86, no. 2, pp. 872–876, 2011.A. C. Bertolini, Starches: characterization, properties, and applications. Boca Raton London, New York: CRC Press, 2010.S. Kaity, J. Isaac, P. M. Kumar, A. Bose, T. W. Wong, and A. Ghosh, “Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery,” Carbohydrate Polymers, vol. 98, no. 1, pp. 1083–1094, 2013.H. Zhang, J. Wang, R. Wang, and Y. Dong, “Microwave irradiated synthesis of grafted cationic starch: Synthesis, characterization, application, and biodegradation,” Journal of Applied Polymer Science, vol. 130, no. 3, pp. 1645–1652, Nov.C. Nakason, T. Wohmang, A. Kaesaman, and S. Kiatkamjornwong, “Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending,” Carbohydrate Polymers, vol. 81, no. 2, pp. 348–357, 2010.A. J. M. Al-Karawi and A. H. R. Al-Daraji, “Preparation and using of acrylamide grafted starch as polymer drug carrier,” Carbohydrate Polymers, vol. 79, no. 3, pp. 769–774, 2010.N. L. García, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, and S. Goyanes, “Biodegradable materials from grafting of modified PLA onto starch nanocrystals,” Polymer Degradation and Stability, vol. 97, no. 10, pp. 2021–2026, 2012.M. Lamanna, N. J. Morales, N. L. Garcia, and S. Goyanes, “Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler,” Carbohydrate Polymers, vol. 97, no. 1, pp. 90–97, 2013.Ciencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf22021-02-10T13:02:59Z