Thermal transfer analysis of tubes with extended surface with fractal design

1 recurso en línea (páginas 31-37).

Autores:
Tipo de recurso:
article
Fecha de publicación:
2018
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/2167
Acceso en línea:
http://repositorio.uptc.edu.co/handle/001/2167
Palabra clave:
Alternate energy sources
Dynamical systems
Boilers
Cesaro curve
Fractal design
Heat transfer
Koch Snowflake
Tubes with extended surface
Rights
openAccess
License
Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
id REPOUPTC_31f3a073dac0fcd6f69843bed67b36bf
oai_identifier_str oai:repositorio.uptc.edu.co:001/2167
network_acronym_str REPOUPTC
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.none.fl_str_mv Thermal transfer analysis of tubes with extended surface with fractal design
Análisis de transferencia térmica de tubos con superficies extendidas con diseño fractal
Análise de transferência térmica de tubos com superfícies estendidas com desenho fractal
title Thermal transfer analysis of tubes with extended surface with fractal design
spellingShingle Thermal transfer analysis of tubes with extended surface with fractal design
Llano Sánchez, Luis Eduardo
Alternate energy sources
Dynamical systems
Boilers
Cesaro curve
Fractal design
Heat transfer
Koch Snowflake
Tubes with extended surface
title_short Thermal transfer analysis of tubes with extended surface with fractal design
title_full Thermal transfer analysis of tubes with extended surface with fractal design
title_fullStr Thermal transfer analysis of tubes with extended surface with fractal design
title_full_unstemmed Thermal transfer analysis of tubes with extended surface with fractal design
title_sort Thermal transfer analysis of tubes with extended surface with fractal design
dc.creator.none.fl_str_mv Llano Sánchez, Luis Eduardo
Domínguez Cajeli, Darío Manuel
Ruiz Cárdenas, Luis Carlos
author Llano Sánchez, Luis Eduardo
author_facet Llano Sánchez, Luis Eduardo
Domínguez Cajeli, Darío Manuel
Ruiz Cárdenas, Luis Carlos
author_role author
author2 Domínguez Cajeli, Darío Manuel
Ruiz Cárdenas, Luis Carlos
author2_role author
author
dc.subject.none.fl_str_mv Alternate energy sources
Dynamical systems
Boilers
Cesaro curve
Fractal design
Heat transfer
Koch Snowflake
Tubes with extended surface
topic Alternate energy sources
Dynamical systems
Boilers
Cesaro curve
Fractal design
Heat transfer
Koch Snowflake
Tubes with extended surface
description 1 recurso en línea (páginas 31-37).
publishDate 2018
dc.date.none.fl_str_mv 2018-09-10T15:49:54Z
2018-09-10T15:49:54Z
2018-01-15
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text
https://purl.org/redcol/resource_type/ART
http://purl.org/coar/version/c_970fb48d4fbd8a85
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Llano Sánchez, L. E., Domínguez Cajeli, D. M. & Ruiz Cárdenas, L. C. (2018). Thermal transfer analysis of tubes with extended surface with fractal design. Revista Facultad de Ingeniería, 27(47), 31-37. https://doi.org/10.19053/01211129.v27.n47.2018.7749. http://repositorio.uptc.edu.co/handle/001/2167
2357-5328
http://repositorio.uptc.edu.co/handle/001/2167
10.19053/01211129.v27.n47.2018.7749
identifier_str_mv Llano Sánchez, L. E., Domínguez Cajeli, D. M. & Ruiz Cárdenas, L. C. (2018). Thermal transfer analysis of tubes with extended surface with fractal design. Revista Facultad de Ingeniería, 27(47), 31-37. https://doi.org/10.19053/01211129.v27.n47.2018.7749. http://repositorio.uptc.edu.co/handle/001/2167
2357-5328
10.19053/01211129.v27.n47.2018.7749
url http://repositorio.uptc.edu.co/handle/001/2167
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv R. Senthilkumar, S. Prabhu, and M. Cheralathan, “Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces,” Applied Thermal Engineering, vol. 50(1), pp. 1361-1368, Jan. 2013. DOI: DOI: http://doi.org/10.1016/j. applthermaleng.2012.05.040.
S. W. Chang, W. L. Cai, and R. S. Syu, “Heat transfer and pressure drop measurements for tubes fitted with twin and four twisted fins on rod,” Experimental Thermal and Fluid Science, vol. 74, pp. 220-234, Jun. 2016. DOI: DOI: http://doi.org/10.1016/j. expthermflusci.2016.01.001.
B. Niezgoda – Zelasko, and J. Zelasko, “Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings,” International Journal of Refrigeration, vol. 54, pp. 151-169, Jun. 2015. DOI: http://doi.org/10.1016/j.ijrefrig.2015.03.007.
E. Gkanas, and Makridis, “Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process,” International Journal of Hydrogen Energy, vol. 41(13), pp. 5693-5708, Apr. 2016. DOI: http:// doi.org/10.1016/j.ijhydene.2016.01.165.
H. W. Carpenter, and R. G. Reid, “The response of layered anisotropic tubes to centrifugal loading,” Composite Structures, vol. 139, pp. 141- 150, Apr. 2016. DOI: http://doi.org/10.1016/j. compstruct.2015.11.071.
K. Yang, S. Xu, J. Shen, S. Zhou, and Y. M. Xie, “Energy absorption of thin-walled tubes with prefolded origami patterns: Numerical simulation and experimental verification,” Thin-Walled Structures, vol. 103, pp. 33-44, Jun. 2016. DOI: http://doi. org/10.1016/j.tws.2016.02.007.
R. Romero-Méndez, P. Lara-Vázquez, F. Oviedo- Tolentino, H. M. Durán-García, F. G. Pérez- Gutiérrez, and A. Pacheco-Vega, “Use of Artificial Neural Networks for Prediction of the Convective Heat Transfer Coefficient in Evaporative Mini- Tubes,” Ingeniería, Investigación y Tecnología, vol. 17(1), pp. 23-34, Jan. 2016. DOI: http://doi. org/10.1016/j.riit.2016.01.003.
S. Jedari Salami, “Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets,” Physica E: Low-dimensional Systems and Nanostructures, vol. 76, pp. 187-197, Feb. 2016. DOI: http://doi.org/10.1016/j.physe.2015.10.015.
S. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, “Optimal design of divertor heat sink with different geometric configurations of sectorial extended surfaces,” Fusion Engineering and Design, vol. 100, pp. 581-595, Nov. 2015. DOI: http://doi. org/10.1016/j.fusengdes.2015.08.008.
B. Anoop, C. Balaji, Velusamu, and K. Velusamy, “A characteristic correlation for heat transfer over serrated finned tubes,” Annals of Nuclear Energy, vol. 85, pp. 1052-1065, Nov. 2015. DOI: http://doi. org/10.1016/j.anucene.2015.07.025.
P. A. Di Maio, P. Arena, G. Bongiovi, P. Chiovaro, A. del Nevo, and R. Forte, “Optimization of the breeder zone cooling tubes of the DEMO Water- Cooled Lithium Lead breeding blanket,” Fusion Engineering and Design, vol. 109-111(A), pp. 227-231, Nov. 2016. DOI: http://doi.org/10.1016/j. fusengdes.2016.03.021.
S. Mirfendereski, A. Abbassi, and M. Saffar - Avval, “Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux,” Advanced Powder Technology, vol. 26(5), pp. 1483-1494, Sep. 2015. DOI: http://doi.org/10.1016/j.apt.2015.08.006.
D. J. Kukulka, and R. Smith, “Thermal-hydraulic performance of Vipertex 1EHT enhanced heat transfer tubes,” Applied Thermal Engineering, vol. 61(1), pp. 60-66, Oct. 2013. DOI: http://doi. org/10.1016/j.applthermaleng.2012.12.037.
J. Yan, Q. Bi, G. Zhu, L. Cai, Q. Yuan, and H. Lv, “Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 606-619, Apr. 2016. DOI: http://doi.org/10.1016/j. ijheatmasstransfer.2015.12.024.
J. Yan, Q. Bi, L. Cai, G. Zhu, and Q. Yuan, “Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes,” Experimental Thermal and Fluid Science, vol. 68, pp. 11-21, Nov. 2015. DOI: http://doi.org/10.1016/j. expthermflusci.2015.04.003.
B. Li, X. Han, Z. Wan, X. Wang, and Y. Tang, “Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in subcooled boiling,” Applied Thermal Engineering, vol. 92, pp. 93-103, Jan. 2016. DOI: http://doi. org/10.1016/j.applthermaleng.2015.09.069.
V. Garcia-Morales, “Fractal surfaces from simple arithmetic operations,” Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 535- 544, Apr. 2016. DOI: http://doi.org/10.1016/j. physa.2015.12.028.
I. M. Rian, and S. Asayama, “Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals,” Automation in Construction, vol. 66, pp. 43-58, Jun. 2016. DOI: http://doi.org/10.1016/j. autcon.2016.03.010.
H. Khezrzadeh, “Overall properties of particulate composites with fractal distribution of fibers,” Mechanics of Materials, vol. 96, pp. 1-11, May. 2016. DOI: http://doi.org/10.1016/j.mechmat.2016.01.014.
G. Pia, L. Casnedi, R. Ricciu, L. A. Besalduch, O. Cocco, A. Murru, Paola Meloni, and U. Sanna, “Thermal properties of porous stones in cultural heritage: Experimental findings and predictions using an intermingled fractal units model,” Energy and Buildings, vol. 118, pp. 232-239, Apr. 2016. DOI: http://doi.org/10.1016/j.enbuild.2016.03.011.
N. Nagarani, K. Mayilsamy, A. Murugesan, and G. Sathesh Kumar, “Review of utilization of extended surfaces in heat transfer problems,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 604- 613, Jan. 2014. DOI: http://doi.org/10.1016/j. rser.2013.08.068.
M. L. Lapidus, and R. G. Niemeyer, “Towards the Koch Snowflake Fractal Billard: Computer Experiments and Mathematical Conjectures,” Contemporary Mathematics, vol. 517, pp. 231- 265, Jan. 2010. DOI: http://doi.org/10.1090/ conm/517/1014.
Revista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)
dc.rights.none.fl_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
publisher.none.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7749/6139
reponame:RiUPTC: Repositorio Institucional UPTC
instname:Universidad Pedagógica y Tecnológica de Colombia
instacron:Universidad Pedagógica y Tecnológica de Colombia
instname_str Universidad Pedagógica y Tecnológica de Colombia
instacron_str Universidad Pedagógica y Tecnológica de Colombia
institution Universidad Pedagógica y Tecnológica de Colombia
reponame_str RiUPTC: Repositorio Institucional UPTC
collection RiUPTC: Repositorio Institucional UPTC
_version_ 1841545965768540160
spelling Thermal transfer analysis of tubes with extended surface with fractal designAnálisis de transferencia térmica de tubos con superficies extendidas con diseño fractalAnálise de transferência térmica de tubos com superfícies estendidas com desenho fractalLlano Sánchez, Luis EduardoDomínguez Cajeli, Darío ManuelRuiz Cárdenas, Luis CarlosAlternate energy sourcesDynamical systemsBoilersCesaro curveFractal designHeat transferKoch SnowflakeTubes with extended surface1 recurso en línea (páginas 31-37).Os permutadores de calor estão conformados por tubos com superfícies estendidas, com o propósito de melhorar a transferência de calor entre dois meios, que podem ser um sólido e um líquido em movimento. No presente trabalho expõe-se o desenho que se realizou de um tubo de superfície estendida com geometria fractal, correspondente ao floco de Koch e a curva de Cesaro, com a ferramenta computacional CAD, para logo realizar a análise por elementos finitos CAE e verificar o comportamento térmico do tubo desenhado. Logrou-se obter como resultado reduzir o tempo de transferência de calor e aumentar o fluxo de calor no sistema da seguinte maneira: para tubo liso, 250 W/m2; para superfície de Koch, 500 W/m2; para seis aletas, 1450 W/m2, e, finalmente, para curva de Cesaro, 3600 W/m2. Tudo isto, permitiu evidenciar os limites do desenho e as vantagens que podem chegar a terem relação a sua implementação em maquinarias como condensadores, permutadores de calor e caldeiras.Heat exchangers are formed by tubes with extended surfaces that improve the transfer of heat between two media (e.g., a solid and a liquid in motion). This paper presents the design of an extended surface tube with fractal geometry, corresponding to the Koch snowflake and the Cesaro curve. For the design, we used the CAD computational tool, and afterwards we performed the CAE finite element analysis and verified the thermal behavior of the designed tube. We were able to reduce the heat transfer time and increase the heat flow in the system in the following manner: for smooth tube, 250 W/m2; for Koch surface, 500 W/m2; for six fins, 1450 W/ m2; and for Cesaro curve, 3600 W/m2. These results demonstrate the limits of the design and the advantages of its implementation in machinery such as condensers, heat exchangers, and boilers.Los intercambiadores de calor están conformados por tubos con superficies extendidas, con el propósito de mejorar la transferencia de calor entre dos medios, que pueden ser un sólido y un líquido en movimiento. En el presente trabajo se expone el diseño que se llevó a cabo de un tubo de superficie extendida con geometría fractal, correspondiente al copo de Koch y la curva de Cesaro, con la herramienta computacional CAD, para luego realizar el análisis por elementos finitos CAE y verificar el comportamiento térmico del tubo diseñado. Se logró obtener como resultado reducir el tiempo de transferencia de calor y aumentar el flujo de calor en el sistema del modo siguiente: para tubo liso, 250 W/m2; para superficie de Koch, 500 W/m2; para seis aletas, 1450 W/m2, y, finalmente, para curva de Cesaro, 3600 W/m2. Todo ello, permitió evidenciar los límites del diseño y las ventajas que pueden llegar a tener respecto a su implementación en maquinarias como condensadores, intercambiadores de calor y calderas.Bibliografía: páginas 36-37.Universidad Pedagógica y Tecnológica de Colombia2018-09-10T15:49:54Z2018-09-10T15:49:54Z2018-01-15Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfLlano Sánchez, L. E., Domínguez Cajeli, D. M. & Ruiz Cárdenas, L. C. (2018). Thermal transfer analysis of tubes with extended surface with fractal design. Revista Facultad de Ingeniería, 27(47), 31-37. https://doi.org/10.19053/01211129.v27.n47.2018.7749. http://repositorio.uptc.edu.co/handle/001/21672357-5328http://repositorio.uptc.edu.co/handle/001/216710.19053/01211129.v27.n47.2018.7749https://revistas.uptc.edu.co/index.php/ingenieria/article/view/7749/6139reponame:RiUPTC: Repositorio Institucional UPTCinstname:Universidad Pedagógica y Tecnológica de Colombiainstacron:Universidad Pedagógica y Tecnológica de ColombiaengR. Senthilkumar, S. Prabhu, and M. Cheralathan, “Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces,” Applied Thermal Engineering, vol. 50(1), pp. 1361-1368, Jan. 2013. DOI: DOI: http://doi.org/10.1016/j. applthermaleng.2012.05.040.S. W. Chang, W. L. Cai, and R. S. Syu, “Heat transfer and pressure drop measurements for tubes fitted with twin and four twisted fins on rod,” Experimental Thermal and Fluid Science, vol. 74, pp. 220-234, Jun. 2016. DOI: DOI: http://doi.org/10.1016/j. expthermflusci.2016.01.001.B. Niezgoda – Zelasko, and J. Zelasko, “Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings,” International Journal of Refrigeration, vol. 54, pp. 151-169, Jun. 2015. DOI: http://doi.org/10.1016/j.ijrefrig.2015.03.007.E. Gkanas, and Makridis, “Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process,” International Journal of Hydrogen Energy, vol. 41(13), pp. 5693-5708, Apr. 2016. DOI: http:// doi.org/10.1016/j.ijhydene.2016.01.165.H. W. Carpenter, and R. G. Reid, “The response of layered anisotropic tubes to centrifugal loading,” Composite Structures, vol. 139, pp. 141- 150, Apr. 2016. DOI: http://doi.org/10.1016/j. compstruct.2015.11.071.K. Yang, S. Xu, J. Shen, S. Zhou, and Y. M. Xie, “Energy absorption of thin-walled tubes with prefolded origami patterns: Numerical simulation and experimental verification,” Thin-Walled Structures, vol. 103, pp. 33-44, Jun. 2016. DOI: http://doi. org/10.1016/j.tws.2016.02.007.R. Romero-Méndez, P. Lara-Vázquez, F. Oviedo- Tolentino, H. M. Durán-García, F. G. Pérez- Gutiérrez, and A. Pacheco-Vega, “Use of Artificial Neural Networks for Prediction of the Convective Heat Transfer Coefficient in Evaporative Mini- Tubes,” Ingeniería, Investigación y Tecnología, vol. 17(1), pp. 23-34, Jan. 2016. DOI: http://doi. org/10.1016/j.riit.2016.01.003.S. Jedari Salami, “Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets,” Physica E: Low-dimensional Systems and Nanostructures, vol. 76, pp. 187-197, Feb. 2016. DOI: http://doi.org/10.1016/j.physe.2015.10.015.S. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, “Optimal design of divertor heat sink with different geometric configurations of sectorial extended surfaces,” Fusion Engineering and Design, vol. 100, pp. 581-595, Nov. 2015. DOI: http://doi. org/10.1016/j.fusengdes.2015.08.008.B. Anoop, C. Balaji, Velusamu, and K. Velusamy, “A characteristic correlation for heat transfer over serrated finned tubes,” Annals of Nuclear Energy, vol. 85, pp. 1052-1065, Nov. 2015. DOI: http://doi. org/10.1016/j.anucene.2015.07.025.P. A. Di Maio, P. Arena, G. Bongiovi, P. Chiovaro, A. del Nevo, and R. Forte, “Optimization of the breeder zone cooling tubes of the DEMO Water- Cooled Lithium Lead breeding blanket,” Fusion Engineering and Design, vol. 109-111(A), pp. 227-231, Nov. 2016. DOI: http://doi.org/10.1016/j. fusengdes.2016.03.021.S. Mirfendereski, A. Abbassi, and M. Saffar - Avval, “Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux,” Advanced Powder Technology, vol. 26(5), pp. 1483-1494, Sep. 2015. DOI: http://doi.org/10.1016/j.apt.2015.08.006.D. J. Kukulka, and R. Smith, “Thermal-hydraulic performance of Vipertex 1EHT enhanced heat transfer tubes,” Applied Thermal Engineering, vol. 61(1), pp. 60-66, Oct. 2013. DOI: http://doi. org/10.1016/j.applthermaleng.2012.12.037.J. Yan, Q. Bi, G. Zhu, L. Cai, Q. Yuan, and H. Lv, “Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 606-619, Apr. 2016. DOI: http://doi.org/10.1016/j. ijheatmasstransfer.2015.12.024.J. Yan, Q. Bi, L. Cai, G. Zhu, and Q. Yuan, “Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes,” Experimental Thermal and Fluid Science, vol. 68, pp. 11-21, Nov. 2015. DOI: http://doi.org/10.1016/j. expthermflusci.2015.04.003.B. Li, X. Han, Z. Wan, X. Wang, and Y. Tang, “Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in subcooled boiling,” Applied Thermal Engineering, vol. 92, pp. 93-103, Jan. 2016. DOI: http://doi. org/10.1016/j.applthermaleng.2015.09.069.V. Garcia-Morales, “Fractal surfaces from simple arithmetic operations,” Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 535- 544, Apr. 2016. DOI: http://doi.org/10.1016/j. physa.2015.12.028.I. M. Rian, and S. Asayama, “Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals,” Automation in Construction, vol. 66, pp. 43-58, Jun. 2016. DOI: http://doi.org/10.1016/j. autcon.2016.03.010.H. Khezrzadeh, “Overall properties of particulate composites with fractal distribution of fibers,” Mechanics of Materials, vol. 96, pp. 1-11, May. 2016. DOI: http://doi.org/10.1016/j.mechmat.2016.01.014.G. Pia, L. Casnedi, R. Ricciu, L. A. Besalduch, O. Cocco, A. Murru, Paola Meloni, and U. Sanna, “Thermal properties of porous stones in cultural heritage: Experimental findings and predictions using an intermingled fractal units model,” Energy and Buildings, vol. 118, pp. 232-239, Apr. 2016. DOI: http://doi.org/10.1016/j.enbuild.2016.03.011.N. Nagarani, K. Mayilsamy, A. Murugesan, and G. Sathesh Kumar, “Review of utilization of extended surfaces in heat transfer problems,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 604- 613, Jan. 2014. DOI: http://doi.org/10.1016/j. rser.2013.08.068.M. L. Lapidus, and R. G. Niemeyer, “Towards the Koch Snowflake Fractal Billard: Computer Experiments and Mathematical Conjectures,” Contemporary Mathematics, vol. 517, pp. 231- 265, Jan. 2010. DOI: http://doi.org/10.1090/ conm/517/1014.Revista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiahttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf22021-02-10T12:57:22Z