SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis

Ocular diseases are one of the main causes of irreversible disability in people in productive age. In 2020, approximately 18% of the worldwide population was estimated to suffer of diabetic retinopathy and diabetic macular edema, but, unfortunately, only half of these people were correctly diagnosed...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14294
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769
https://repositorio.uptc.edu.co/handle/001/14294
Palabra clave:
clinical decision support
deep learning
intelligent analysis
ocular diseases
ophthalmic image acquisition
telemedicine
adquisición de imágenes oftálmicas
análisis inteligente
apoyo a la decisión clínica
aprendizaje profundo
enfermedades oculares
telemedicina
Rights
License
http://purl.org/coar/access_right/c_abf419
id REPOUPTC2_fc69f1fefd16126b3097a56d533e6cc4
oai_identifier_str oai:repositorio.uptc.edu.co:001/14294
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
dc.title.es-ES.fl_str_mv SOPHIA: Sistema para adquisición, transmisión, y análisis inteligente de imágenes oftálmicas
title SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
spellingShingle SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
clinical decision support
deep learning
intelligent analysis
ocular diseases
ophthalmic image acquisition
telemedicine
adquisición de imágenes oftálmicas
análisis inteligente
apoyo a la decisión clínica
aprendizaje profundo
enfermedades oculares
telemedicina
title_short SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
title_full SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
title_fullStr SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
title_full_unstemmed SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
title_sort SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
dc.subject.en-US.fl_str_mv clinical decision support
deep learning
intelligent analysis
ocular diseases
ophthalmic image acquisition
telemedicine
topic clinical decision support
deep learning
intelligent analysis
ocular diseases
ophthalmic image acquisition
telemedicine
adquisición de imágenes oftálmicas
análisis inteligente
apoyo a la decisión clínica
aprendizaje profundo
enfermedades oculares
telemedicina
dc.subject.es-ES.fl_str_mv adquisición de imágenes oftálmicas
análisis inteligente
apoyo a la decisión clínica
aprendizaje profundo
enfermedades oculares
telemedicina
description Ocular diseases are one of the main causes of irreversible disability in people in productive age. In 2020, approximately 18% of the worldwide population was estimated to suffer of diabetic retinopathy and diabetic macular edema, but, unfortunately, only half of these people were correctly diagnosed. On the other hand, in Colombia, the diabetic population (8% of the country’s total population) presents or has presented some ocular complication that has led to other associated costs and, in some cases, has caused vision limitation or blindness. Eye fundus images are the fastest and most economical source of ocular information that can provide a full clinical assessment of the retinal condition of patients. However, the number of ophthalmologists is insufficient and the clinical settings, as well as the attention of these experts, are limited to urban areas. Also, the analysis of said images by professionals requires extensive training, and even for experienced ones, it is a cumbersome and error-prone process. Deep learning methods have marked important breakthroughs in medical imaging due to outstanding performance in segmentation, detection, and disease classification tasks. This article presents SOPHIA, a deep learning-based system for ophthalmic image acquisition, transmission, intelligent analysis, and clinical decision support for the diagnosis of ocular diseases. The system is under active development in a project that brings together healthcare provider institutions, ophthalmology specialists, and computer scientists. Finally, the preliminary results in the automatic analysis of ocular images using deep learning are presented, as well as future work necessary for the implementation and validation of the system in Colombia.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.none.fl_str_mv 2020-09-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a502
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769
10.19053/01211129.v29.n54.2020.11769
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14294
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769
https://repositorio.uptc.edu.co/handle/001/14294
identifier_str_mv 10.19053/01211129.v29.n54.2020.11769
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/9638
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/9679
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/10018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf419
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf419
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11769
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11769
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633898437345280
spelling 2020-09-292024-07-05T19:11:56Z2024-07-05T19:11:56Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1176910.19053/01211129.v29.n54.2020.11769https://repositorio.uptc.edu.co/handle/001/14294Ocular diseases are one of the main causes of irreversible disability in people in productive age. In 2020, approximately 18% of the worldwide population was estimated to suffer of diabetic retinopathy and diabetic macular edema, but, unfortunately, only half of these people were correctly diagnosed. On the other hand, in Colombia, the diabetic population (8% of the country’s total population) presents or has presented some ocular complication that has led to other associated costs and, in some cases, has caused vision limitation or blindness. Eye fundus images are the fastest and most economical source of ocular information that can provide a full clinical assessment of the retinal condition of patients. However, the number of ophthalmologists is insufficient and the clinical settings, as well as the attention of these experts, are limited to urban areas. Also, the analysis of said images by professionals requires extensive training, and even for experienced ones, it is a cumbersome and error-prone process. Deep learning methods have marked important breakthroughs in medical imaging due to outstanding performance in segmentation, detection, and disease classification tasks. This article presents SOPHIA, a deep learning-based system for ophthalmic image acquisition, transmission, intelligent analysis, and clinical decision support for the diagnosis of ocular diseases. The system is under active development in a project that brings together healthcare provider institutions, ophthalmology specialists, and computer scientists. Finally, the preliminary results in the automatic analysis of ocular images using deep learning are presented, as well as future work necessary for the implementation and validation of the system in Colombia.Las enfermedades oculares son una de las principales causas de incapacidad irreversible en personas en edad productiva. En 2020, la población mundial con retinopatía diabética y edema macular diabético está estimada como el 18% de la población mundial, aproximadamente, desafortunadamente, solo la mitad de estas personas fueron diagnosticadas correctamente. Por otro lado, en Colombia, la población diabética (8% de la población total del país) presenta o ha presentado alguna complicación ocular que ha llevado a otros costos asociados y, en algunos casos, ha provocado limitación de la visión o ceguera. Las imágenes de fondo de ojo son la fuente de información ocular más rápida y económica que puede proveer una valoración clínica del estado de la retina de los pacientes. Sin embargo, el número de oftalmólogos es insuficiente, la atención de estos expertos está limitada a zonas urbanas, y el análisis de dichas imágenes por parte de profesionales requiere una amplia formación; incluso para los más experimentados, es un proceso engorroso y propenso a errores. Los métodos de aprendizaje profundo han marcado avances importantes en imágenes médicas debido al desempeño sobresaliente en tareas de segmentación, detección y clasificación de enfermedades. Este artículo presenta SOPHIA, un sistema basado en el aprendizaje profundo para la adquisición, transmisión, análisis inteligente y soporte de decisiones clínicas para el diagnóstico de enfermedades oculares. El sistema se encuentra en desarrollo activo en un proyecto que reúne a instituciones proveedoras de salud, especialistas en oftalmología e informáticos. Finalmente, los resultados preliminares en el análisis automático de imágenes oculares utilizando el aprendizaje profundo son presentados, y se discute el trabajo futuro necesario para la implementación y validación del sistema en Colombia.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/9638https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/9679https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11769/10018Copyright (c) 2020 Oscar Julián Perdomo-Charry, Ph. D., Andrés Daniel Pérez-Pérez, Melissa de-la-Pava-Rodríguez, Hernán Andrés Ríos-Calixto, Víctor Alfonso Arias-Vanegas, Juan Sebastián Lara-Ramírez, Santiago Toledo-Cortés, Ph. D. (c), Jorge Eliecer Camargo-Mendoza, Ph. D., Francisco José Rodríguez-Alvira, Fabio Augusto González-Osorio, Ph. D.http://purl.org/coar/access_right/c_abf419http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11769Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e117692357-53280121-1129clinical decision supportdeep learningintelligent analysisocular diseasesophthalmic image acquisitiontelemedicineadquisición de imágenes oftálmicasanálisis inteligenteapoyo a la decisión clínicaaprendizaje profundoenfermedades ocularestelemedicinaSOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent AnalysisSOPHIA: Sistema para adquisición, transmisión, y análisis inteligente de imágenes oftálmicasinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a502http://purl.org/coar/version/c_970fb48d4fbd8a85Perdomo-Charry, Oscar JuliánPérez-Pérez, Andrés Danielde-la-Pava-Rodríguez, MelissaRíos-Calixto, Hernán AndrésArias-Vanegas, Víctor AlfonsoLara-Ramírez, Juan SebastiánToledo-Cortés, SantiagoCamargo-Mendoza, Jorge EliecerRodríguez-Alvira, Francisco JoséGonzález-Osorio, Fabio Augusto001/14294oai:repositorio.uptc.edu.co:001/142942025-07-18 11:53:58.296metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co