Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia

The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of mu...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14270
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853
https://repositorio.uptc.edu.co/handle/001/14270
Palabra clave:
agricultural-yield
agroforestry-system
cocoa
machine-learning
prediction
productivity
aprendizaje-automático
cacao
predicción
productividad
rendimientos-agrícolas
sistemas-agroforestales
Rights
License
Copyright (c) 2020 Henry Lamos-Díaz; David-Esteban Puentes-Garzón; Diego-Alejandro Zarate-Caicedo
id REPOUPTC2_d5543647db7a05fc953cd2e21f9a5e12
oai_identifier_str oai:repositorio.uptc.edu.co:001/14270
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
dc.title.es-ES.fl_str_mv Comparación de modelos de aprendizaje automático para la predicción de rendimientos agrícolas en cultivos de cacao en Santander, Colombia
title Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
spellingShingle Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
agricultural-yield
agroforestry-system
cocoa
machine-learning
prediction
productivity
aprendizaje-automático
cacao
predicción
productividad
rendimientos-agrícolas
sistemas-agroforestales
title_short Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
title_full Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
title_fullStr Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
title_full_unstemmed Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
title_sort Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia
dc.subject.en-US.fl_str_mv agricultural-yield
agroforestry-system
cocoa
machine-learning
prediction
productivity
topic agricultural-yield
agroforestry-system
cocoa
machine-learning
prediction
productivity
aprendizaje-automático
cacao
predicción
productividad
rendimientos-agrícolas
sistemas-agroforestales
dc.subject.es-ES.fl_str_mv aprendizaje-automático
cacao
predicción
productividad
rendimientos-agrícolas
sistemas-agroforestales
description The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of multiple machine learning algorithms for cocoa yield prediction and influencing factors identification. The Support Vector Machines (SVM) and Ensemble Learning Models (Random Forests, Gradient Boosting) are compared with Least Absolute Shrinkage and Selection Operator (LASSO) regression models. The considered predictors were climate conditions, cocoa variety, fertilization level and sun exposition in an experimental crop located in Rionegro, Santander. Results showed that Gradient Boosting is the best prediction alternative with Coefficient of determination (R2) = 68%, Mean Absolute Error (MAE) = 13.32, and Root Mean Square Error (RMSE) = 20.41. The crop yield variability is explained mainly by the radiation one month before harvest, the accumulated rainfall on the harvest month, and the temperature one month before harvest. Likewise, the crop yields are evaluated based on the kind of sun exposure, and it was found that radiation one month before harvest is the most influential factor in shade-grown plants. On the other hand, rainfall and soil moisture are determining variables in sun-grown plants, which is associated with the water requirements. These results suggest a differentiated management for crops depending on the kind of sun exposure to avoid compromising productivity, since there is no significant difference in the yield of both agricultural managements.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:53Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:53Z
dc.date.none.fl_str_mv 2020-05-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a251
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853
10.19053/01211129.v29.n54.2020.10853
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14270
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853
https://repositorio.uptc.edu.co/handle/001/14270
identifier_str_mv 10.19053/01211129.v29.n54.2020.10853
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9281
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9282
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9507
dc.rights.en-US.fl_str_mv Copyright (c) 2020 Henry Lamos-Díaz; David-Esteban Puentes-Garzón; Diego-Alejandro Zarate-Caicedo
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf168
rights_invalid_str_mv Copyright (c) 2020 Henry Lamos-Díaz; David-Esteban Puentes-Garzón; Diego-Alejandro Zarate-Caicedo
http://purl.org/coar/access_right/c_abf168
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10853
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e10853
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633827141517312
spelling 2020-05-152024-07-05T19:11:53Z2024-07-05T19:11:53Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1085310.19053/01211129.v29.n54.2020.10853https://repositorio.uptc.edu.co/handle/001/14270The identification of influencing factors in crop yield (kg·ha-1) provides essential information for decision-making processes related to the prediction and improvement of productivity, which gives farmers the opportunity to increase their income. The current study investigates the application of multiple machine learning algorithms for cocoa yield prediction and influencing factors identification. The Support Vector Machines (SVM) and Ensemble Learning Models (Random Forests, Gradient Boosting) are compared with Least Absolute Shrinkage and Selection Operator (LASSO) regression models. The considered predictors were climate conditions, cocoa variety, fertilization level and sun exposition in an experimental crop located in Rionegro, Santander. Results showed that Gradient Boosting is the best prediction alternative with Coefficient of determination (R2) = 68%, Mean Absolute Error (MAE) = 13.32, and Root Mean Square Error (RMSE) = 20.41. The crop yield variability is explained mainly by the radiation one month before harvest, the accumulated rainfall on the harvest month, and the temperature one month before harvest. Likewise, the crop yields are evaluated based on the kind of sun exposure, and it was found that radiation one month before harvest is the most influential factor in shade-grown plants. On the other hand, rainfall and soil moisture are determining variables in sun-grown plants, which is associated with the water requirements. These results suggest a differentiated management for crops depending on the kind of sun exposure to avoid compromising productivity, since there is no significant difference in the yield of both agricultural managements.La identificación de los factores que influyen en el rendimiento (kg·ha-1) de un cultivo provee información esencial para la toma de decisiones orientadas al mejoramiento y predicción de la productividad, proporcionando posibilidades a los agricultores para mejorar sus ingresos económicos. En este estudio, se presenta la aplicación y comparación de diversos algoritmos de aprendizaje automático para la predicción del rendimiento agrícola en cultivos de cacao y la identificación de los factores que influyen sobre éste. Se comparan los algoritmos de máquinas de soporte vectorial (SVM), modelos ensamblados (Random Forest, Gradient Boosting) y el modelo de regresión Least Absolute Shrinkage and Selection Operator (LASSO). Los predictores considerados fueron: condiciones climáticas de la región, variedad de cacao, nivel de fertilización y exposición al sol para un cultivo experimental ubicado en Rionegro, Santander. Los resultados identifican a Gradient Boosting como la mejor alternativa de pronóstico con un coeficiente de determinación (R2) = 68 %, Error Absoluto Medio (MAE) = 13.32 y Raíz Cuadrada del Error Medio (RMSE) = 20.41. La variabilidad del rendimiento del cultivo es explicada principalmente por la radiación y la temperatura un mes previo a la cosecha, además de las lluvias acumuladas el mes de la cosecha. De igual manera, los rendimientos de los cultivos son evaluados con base en el tipo de exposición al sol, encontrando que la radiación un mes previo a la cosecha es el factor más influyente para los cultivos bajo sombra. Por otro lado, la lluvia y la humedad son las variables determinantes en las plantas con exposición plena a sol, lo que está asociado a los requerimientos hídricos. Estos resultados sugieren un manejo diferenciado de los cultivos dependiendo del tipo de exposición, sin tener que comprometer la productividad, dado que no se evidencia diferencia significativa en los rendimientos de ambos manejos agrícolas.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9281https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9282https://revistas.uptc.edu.co/index.php/ingenieria/article/view/10853/9507Copyright (c) 2020 Henry Lamos-Díaz; David-Esteban Puentes-Garzón; Diego-Alejandro Zarate-Caicedohttp://purl.org/coar/access_right/c_abf168http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e10853Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e108532357-53280121-1129agricultural-yieldagroforestry-systemcocoamachine-learningpredictionproductivityaprendizaje-automáticocacaopredicciónproductividadrendimientos-agrícolassistemas-agroforestalesComparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, ColombiaComparación de modelos de aprendizaje automático para la predicción de rendimientos agrícolas en cultivos de cacao en Santander, Colombiainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a251http://purl.org/coar/version/c_970fb48d4fbd8a85Lamos-Díaz, HenryPuentes-Garzón, David EstebanZarate-Caicedo, Diego Alejandro001/14270oai:repositorio.uptc.edu.co:001/142702025-07-18 11:53:37.566metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co