Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset

Image recognition and processing is a suitable tool in systems using machine learning methods. The addition of smartphones as complementary tools in the health area for diagnosis is a fact nowadays due to the advantages they present. Following the trend of providing tools for diagnosis, this researc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14295
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846
https://repositorio.uptc.edu.co/handle/001/14295
Palabra clave:
dentistry
medical technology
preventive medicine
artificial intelligence
machine learning
oral diagnosis
oral disease identification
smartphone
odontología
tecnología médica
medicina preventiva
inteligencia artificial
aprendizaje automático
diagnóstico bucal
identificación de enfermedades bucales
teléfonos inteligentes
Rights
License
Copyright (c) 2021 Jormany Quintero-Rojas, M.Sc., Jesús David González
id REPOUPTC2_c64bb879cda310ae818f8b287632fd5a
oai_identifier_str oai:repositorio.uptc.edu.co:001/14295
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
dc.title.es-ES.fl_str_mv Uso de redes neuronales convolucionales en teléfonos inteligentes para la identificación de enfermedades bucales empleando un pequeño conjunto de datos
title Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
spellingShingle Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
dentistry
medical technology
preventive medicine
artificial intelligence
machine learning
oral diagnosis
oral disease identification
smartphone
odontología
tecnología médica
medicina preventiva
inteligencia artificial
aprendizaje automático
diagnóstico bucal
identificación de enfermedades bucales
teléfonos inteligentes
title_short Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
title_full Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
title_fullStr Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
title_full_unstemmed Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
title_sort Use of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small Dataset
dc.subject.en-US.fl_str_mv dentistry
medical technology
preventive medicine
artificial intelligence
machine learning
oral diagnosis
oral disease identification
smartphone
topic dentistry
medical technology
preventive medicine
artificial intelligence
machine learning
oral diagnosis
oral disease identification
smartphone
odontología
tecnología médica
medicina preventiva
inteligencia artificial
aprendizaje automático
diagnóstico bucal
identificación de enfermedades bucales
teléfonos inteligentes
dc.subject.es-ES.fl_str_mv odontología
tecnología médica
medicina preventiva
inteligencia artificial
aprendizaje automático
diagnóstico bucal
identificación de enfermedades bucales
teléfonos inteligentes
description Image recognition and processing is a suitable tool in systems using machine learning methods. The addition of smartphones as complementary tools in the health area for diagnosis is a fact nowadays due to the advantages they present. Following the trend of providing tools for diagnosis, this research aimed to develop a prototype mobile application for the identification of oral lesions, including potentially malignant lesions, based on convolutional neural networks, as early detection of indications of possible types of cancer in the oral cavity. A mobile application was developed for the Android operating system that implemented the TensorFlow library and the Mobilenet V2 convolutional neural network model. The training of the model was performed by transfer learning with a database of 500 images distributed in five classes for recognition (Leukoplakia, Herpes Simplex Virus Type 1, Aphthous stomatitis, Nicotinic stomatitis, and No lesion). The 80% of the images were used for training and 20% for validation. It was obtained that the application presented at least 80% precision in the recognition of four class. The f1-score and area under curve metrics were used to evaluate performance. The developed mobile application presented an acceptable performance with metrics higher than 75% for the recognition of three lesions, on the other hand, it yielded an unfavorable performance lower than 70% for identifying nicotinic stomatitis cases with the chosen dataset.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:56Z
dc.date.none.fl_str_mv 2021-02-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a381
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846
10.19053/01211129.v30.n55.2021.11846
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14295
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846
https://repositorio.uptc.edu.co/handle/001/14295
identifier_str_mv 10.19053/01211129.v30.n55.2021.11846
dc.language.none.fl_str_mv eng
spa
dc.language.iso.spa.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10233
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10234
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10785
dc.rights.en-US.fl_str_mv Copyright (c) 2021 Jormany Quintero-Rojas, M.Sc., Jesús David González
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf298
rights_invalid_str_mv Copyright (c) 2021 Jormany Quintero-Rojas, M.Sc., Jesús David González
http://purl.org/coar/access_right/c_abf298
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e11846
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e11846
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633868644155392
spelling 2021-02-072024-07-05T19:11:56Z2024-07-05T19:11:56Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1184610.19053/01211129.v30.n55.2021.11846https://repositorio.uptc.edu.co/handle/001/14295Image recognition and processing is a suitable tool in systems using machine learning methods. The addition of smartphones as complementary tools in the health area for diagnosis is a fact nowadays due to the advantages they present. Following the trend of providing tools for diagnosis, this research aimed to develop a prototype mobile application for the identification of oral lesions, including potentially malignant lesions, based on convolutional neural networks, as early detection of indications of possible types of cancer in the oral cavity. A mobile application was developed for the Android operating system that implemented the TensorFlow library and the Mobilenet V2 convolutional neural network model. The training of the model was performed by transfer learning with a database of 500 images distributed in five classes for recognition (Leukoplakia, Herpes Simplex Virus Type 1, Aphthous stomatitis, Nicotinic stomatitis, and No lesion). The 80% of the images were used for training and 20% for validation. It was obtained that the application presented at least 80% precision in the recognition of four class. The f1-score and area under curve metrics were used to evaluate performance. The developed mobile application presented an acceptable performance with metrics higher than 75% for the recognition of three lesions, on the other hand, it yielded an unfavorable performance lower than 70% for identifying nicotinic stomatitis cases with the chosen dataset.El reconocimiento y procesamiento de imágenes es una herramienta adecuada en los sistemas que usan métodos de aprendizaje automático. La adición de teléfonos inteligentes como herramientas complementarias en el área de la salud para el diagnóstico es un hecho hoy en día por las ventajas que presentan. Siguiendo la tendencia de proporcionar herramientas para el diagnóstico, esta investigación tuvo como objetivo desarrollar una aplicación móvil prototipo para la identificación de lesiones bucales, incluyendo lesiones potencialmente malignas, basado en redes neuronales convolucionales, como la detección temprana de indicios de posibles tipos de cáncer en la cavidad bucal. Se desarrolló una aplicación móvil para el sistema operativo Android que implementó la librería de TensorFlow y el modelo de redes neuronales convolucionales Mobilenet V2. El entrenamiento del modelo se realizó por transferencia de aprendizaje con una base de datos de 500 imágenes distribuidas en cinco clases para el reconocimiento (Leucoplasia, Herpes Simple Virus Tipo 1, Estomatitis aftosa, Estomatitis nicotínica y Sin lesión). Se utilizó el 80% de las imágenes para el entrenamiento y el 20% para la validación. Se obtuvo que la aplicación presentó al menos 80% de exactitud en el reconocimiento de cuatro clases. Se usaron las métricas de f1-valor y área bajo la curva para evaluar el desempeño. La aplicación móvil desarrollada presentó un comportamiento aceptable con métricas mayores al 75% para el reconocimiento de tres lesiones, por otro lado, arrojó un desempeño desfavorable menor al 70% para identificar los casos de estomatitis nicotínica con el conjunto de datos elegido.application/pdfapplication/pdfapplication/xmlengspaengspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10233https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10234https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11846/10785Copyright (c) 2021 Jormany Quintero-Rojas, M.Sc., Jesús David Gonzálezhttp://purl.org/coar/access_right/c_abf298http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 55 (2021): January-March 2021 (Continuous Publication); e11846Revista Facultad de Ingeniería; Vol. 30 Núm. 55 (2021): Enero-Marzo 2021 (Publicación Continua); e118462357-53280121-1129dentistrymedical technologypreventive medicineartificial intelligencemachine learningoral diagnosisoral disease identificationsmartphoneodontologíatecnología médicamedicina preventivainteligencia artificialaprendizaje automáticodiagnóstico bucalidentificación de enfermedades bucalesteléfonos inteligentesUse of Convolutional Neural Networks in Smartphones for the Identification of Oral Diseases Using a Small DatasetUso de redes neuronales convolucionales en teléfonos inteligentes para la identificación de enfermedades bucales empleando un pequeño conjunto de datosinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a381http://purl.org/coar/version/c_970fb48d4fbd8a85Quintero-Rojas, JormanyGonzález, Jesús David001/14295oai:repositorio.uptc.edu.co:001/142952025-07-18 11:53:44.37metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co