Driver-Assistant System Using Computer Vision and Machine Learning

Safety has been one of the key points in vehicle design, in this case one of its main objectives is to implement warning systems to notify the driver about inappropriate or atypical process in their driving process, trying to avoid accidents that affect their vehicle passengers, as well as inflictin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14290
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760
https://repositorio.uptc.edu.co/handle/001/14290
Palabra clave:
computer vision
Haar classifier
machine learning
road safety
traffic sign
aprendizaje máquina
clasificadores Haar
seguridad vial
señales de tránsito
visión por computadora
Rights
License
http://purl.org/coar/access_right/c_abf50
id REPOUPTC2_bd9983e73737080cac9fc60181d8fd43
oai_identifier_str oai:repositorio.uptc.edu.co:001/14290
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Driver-Assistant System Using Computer Vision and Machine Learning
dc.title.es-ES.fl_str_mv Sistema de asistencia a la conducción usando visión por computadora y aprendizaje máquina
title Driver-Assistant System Using Computer Vision and Machine Learning
spellingShingle Driver-Assistant System Using Computer Vision and Machine Learning
computer vision
Haar classifier
machine learning
road safety
traffic sign
aprendizaje máquina
clasificadores Haar
seguridad vial
señales de tránsito
visión por computadora
title_short Driver-Assistant System Using Computer Vision and Machine Learning
title_full Driver-Assistant System Using Computer Vision and Machine Learning
title_fullStr Driver-Assistant System Using Computer Vision and Machine Learning
title_full_unstemmed Driver-Assistant System Using Computer Vision and Machine Learning
title_sort Driver-Assistant System Using Computer Vision and Machine Learning
dc.subject.en-US.fl_str_mv computer vision
Haar classifier
machine learning
road safety
traffic sign
topic computer vision
Haar classifier
machine learning
road safety
traffic sign
aprendizaje máquina
clasificadores Haar
seguridad vial
señales de tránsito
visión por computadora
dc.subject.es-ES.fl_str_mv aprendizaje máquina
clasificadores Haar
seguridad vial
señales de tránsito
visión por computadora
description Safety has been one of the key points in vehicle design, in this case one of its main objectives is to implement warning systems to notify the driver about inappropriate or atypical process in their driving process, trying to avoid accidents that affect their vehicle passengers, as well as inflicting damage on third parties. Day by day, more systems are created to monitor the environment around the vehicle in order to ensure safe driving at all times. According to the World Health Organization, for 2016 there were 1.35 million deaths related to traffic accidents. This research presents the first driving assistance system developed for Colombia, the system detects and recognizes preventive and regulatory traffic signals and its precision is not affected by rotations and scale of the traffic signals present in an actual route, this is this way because the system is based on Haar classifiers. The system recognizes lane deviations, estimation of the curve direction and obstacle protruding along the way using computer vision algorithms, making it a low-cost computational system. Furthermore, this research provides the first resulting cascades for the detection of Colombian regulatory and preventive traffic signals. The system is tested in real environments on Colombian roads, obtaining an accuracy of over 90%. This research shows that computer vision-based methods are competitive against current proposals such as deep neural networks.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.none.fl_str_mv 2020-09-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a133
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760
10.19053/01211129.v29.n54.2020.11760
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14290
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760
https://repositorio.uptc.edu.co/handle/001/14290
identifier_str_mv 10.19053/01211129.v29.n54.2020.11760
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760/9626
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760/10014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf50
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf50
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11760
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11760
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633792037289984
spelling 2020-09-182024-07-05T19:11:55Z2024-07-05T19:11:55Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1176010.19053/01211129.v29.n54.2020.11760https://repositorio.uptc.edu.co/handle/001/14290Safety has been one of the key points in vehicle design, in this case one of its main objectives is to implement warning systems to notify the driver about inappropriate or atypical process in their driving process, trying to avoid accidents that affect their vehicle passengers, as well as inflicting damage on third parties. Day by day, more systems are created to monitor the environment around the vehicle in order to ensure safe driving at all times. According to the World Health Organization, for 2016 there were 1.35 million deaths related to traffic accidents. This research presents the first driving assistance system developed for Colombia, the system detects and recognizes preventive and regulatory traffic signals and its precision is not affected by rotations and scale of the traffic signals present in an actual route, this is this way because the system is based on Haar classifiers. The system recognizes lane deviations, estimation of the curve direction and obstacle protruding along the way using computer vision algorithms, making it a low-cost computational system. Furthermore, this research provides the first resulting cascades for the detection of Colombian regulatory and preventive traffic signals. The system is tested in real environments on Colombian roads, obtaining an accuracy of over 90%. This research shows that computer vision-based methods are competitive against current proposals such as deep neural networks.La seguridad ha sido uno de los puntos claves en el diseño vehicular, por lo que uno de los principales objetivos es implementar sistemas de alerta para notificar al conductor sobre algún proceso inadecuado o atípico en su conducción, con el fin de evitar accidentes que afecten a sus ocupantes, así como a terceros; un ejemplo, de esto se observa en el auge de los vehículos autónomos. De acuerdo con la Organización Mundial de la Salud, en el 2016 se presentaron 1.35 millones de muertes relacionadas con accidentes de tráfico, por ello, actualmente se crean más sistemas para monitorizar el ambiente alrededor del vehículo de modo que se garantice una conducción segura en todo momento. Esta investigación presenta el primer sistema de asistencia a la conducción desarrollado para Colombia, el sistema detecta y reconoce señales de tránsito preventivas y reglamentarias basado en clasificadores Haar, lo cual permite que su precisión no se afecte debido a las rotaciones y escala de las señales presentes en un viaje sobre un trayecto real. El sistema reconoce salidas de carril, estimación de la dirección de la curva y detección de obstáculos que sobresalen en la carretera utilizando algoritmos de visión por computadora convirtiéndolo en un sistema de bajo costo computacional. Además, esta investigación proporciona los primeros clasificadores en cascada resultantes para la detección de señales reglamentarias y preventivas colombianas. El sistema es probado en ambientes reales de carreteras colombianas obteniendo una precisión superior al 90%. La investigación demuestra que métodos basados en visión por computadora son competitivos frente a propuestas actuales como las redes neuronales profundas.application/pdfapplication/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760/9626https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11760/10014Copyright (c) 2020 Cristian Valencia-Payan, M.Sc., Julián Muñoz-Ordóñez, M.Sc., Leonairo Pencue-Fierrohttp://purl.org/coar/access_right/c_abf50http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11760Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e117602357-53280121-1129computer visionHaar classifiermachine learningroad safetytraffic signaprendizaje máquinaclasificadores Haarseguridad vialseñales de tránsitovisión por computadoraDriver-Assistant System Using Computer Vision and Machine LearningSistema de asistencia a la conducción usando visión por computadora y aprendizaje máquinainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a133http://purl.org/coar/version/c_970fb48d4fbd8a85Valencia-Payan, CristianMuñoz-Ordóñez, JuliánPencue-Fierro, Leonairo001/14290oai:repositorio.uptc.edu.co:001/142902025-07-18 11:53:14.391metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co