Detection of Homicide Trends in Colombia Using Machine Learning

The number of violent homicides in Latin America has grown considerably in recent decades, due to the expansion and rise of organized criminal groups in rural and urban areas of the main cities of countries such as Mexico, Colombia and Venezuela. Given their high homicide rate as a consequence of th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14283
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740
https://repositorio.uptc.edu.co/handle/001/14283
Palabra clave:
data mining
homicide
machine learning
random forest
homicidio
machine learning
minería de datos
random forest
Rights
License
http://purl.org/coar/access_right/c_abf302
id REPOUPTC2_add2cc592fede330b84af280c0b7f291
oai_identifier_str oai:repositorio.uptc.edu.co:001/14283
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Detection of Homicide Trends in Colombia Using Machine Learning
dc.title.es-ES.fl_str_mv Detección de tendencias de homicidios en Colombia usando Machine Learning
title Detection of Homicide Trends in Colombia Using Machine Learning
spellingShingle Detection of Homicide Trends in Colombia Using Machine Learning
data mining
homicide
machine learning
random forest
homicidio
machine learning
minería de datos
random forest
title_short Detection of Homicide Trends in Colombia Using Machine Learning
title_full Detection of Homicide Trends in Colombia Using Machine Learning
title_fullStr Detection of Homicide Trends in Colombia Using Machine Learning
title_full_unstemmed Detection of Homicide Trends in Colombia Using Machine Learning
title_sort Detection of Homicide Trends in Colombia Using Machine Learning
dc.subject.en-US.fl_str_mv data mining
homicide
machine learning
random forest
topic data mining
homicide
machine learning
random forest
homicidio
machine learning
minería de datos
random forest
dc.subject.es-ES.fl_str_mv homicidio
machine learning
minería de datos
random forest
description The number of violent homicides in Latin America has grown considerably in recent decades, due to the expansion and rise of organized criminal groups in rural and urban areas of the main cities of countries such as Mexico, Colombia and Venezuela. Given their high homicide rate as a consequence of the high crime rate, these countries have been classified among the most violent in the world. According to data reported by the Crime Observatory, the National Police and the Attorney General's Office of Colombia, in 2019 there were 1,032 murders in Bogotá. This data shows a homicide rate of 14.3 per 100,000 inhabitants. From this, it is estimated that between 1960 and 2019, around 226,215 homicides were generated, which is, on average, 3,834 deaths per year. In this work a random forest-based machine learning model is presented, which allows predicting violent homicide (VH) trends in Colombia for the next 5 years. The objective of the model is to serve as an instrument to facilitate decision-making in organizations such as the Prosecutor’s Office and the National Police. The model was evaluated with a dataset obtained from the Criminal, Contraventional and Operational Statistical Information System (SIEDCO in Spanish) of the Prosecutor's Office, which has 2,662,402 records of crimes committed in Colombia from 1960 to 2019.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:55Z
dc.date.none.fl_str_mv 2019-10-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a385
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740
10.19053/01211129.v29.n54.2020.11740
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14283
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740
https://repositorio.uptc.edu.co/handle/001/14283
identifier_str_mv 10.19053/01211129.v29.n54.2020.11740
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740/9603
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740/10006
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf302
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf302
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11740
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e11740
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633868801441792
spelling 2019-10-292024-07-05T19:11:55Z2024-07-05T19:11:55Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1174010.19053/01211129.v29.n54.2020.11740https://repositorio.uptc.edu.co/handle/001/14283The number of violent homicides in Latin America has grown considerably in recent decades, due to the expansion and rise of organized criminal groups in rural and urban areas of the main cities of countries such as Mexico, Colombia and Venezuela. Given their high homicide rate as a consequence of the high crime rate, these countries have been classified among the most violent in the world. According to data reported by the Crime Observatory, the National Police and the Attorney General's Office of Colombia, in 2019 there were 1,032 murders in Bogotá. This data shows a homicide rate of 14.3 per 100,000 inhabitants. From this, it is estimated that between 1960 and 2019, around 226,215 homicides were generated, which is, on average, 3,834 deaths per year. In this work a random forest-based machine learning model is presented, which allows predicting violent homicide (VH) trends in Colombia for the next 5 years. The objective of the model is to serve as an instrument to facilitate decision-making in organizations such as the Prosecutor’s Office and the National Police. The model was evaluated with a dataset obtained from the Criminal, Contraventional and Operational Statistical Information System (SIEDCO in Spanish) of the Prosecutor's Office, which has 2,662,402 records of crimes committed in Colombia from 1960 to 2019.En las últimas décadas, el número de homicidios violentos en América Latina ha crecido considerablemente debido a la ampliación y auge de grupos criminales organizados en zonas rurales y urbanas de las principales ciudades de países como México, Colombia y Venezuela. Con base en el alto índice de homicidio de estos países, consecuencia de la alta criminalidad, éstos han sido clasificados dentro de los más violentos a nivel mundial. Según datos reportados por el Observatorio del Delito de la Policía Nacional y la Fiscalía General de la Nación de Colombia, en 2019 se presentaron 1.032 asesinatos en Bogotá. Estos datos arrojan una tasa de 14,3 homicidios por cada 100.000 habitantes. A partir de esto, se estima que entre 1960 y 2019 se han generado alrededor de 226.215 homicidios, unas 3,834 muertes por año, en promedio. En este trabajo se presenta un modelo de machine learning basado en random forest, el cual permite predecir las tendencias de homicidio violento (HV) en Colombia para los próximos 5 años. El proyecto tiene como objetivo servir de instrumento para facilitar la toma de decisiones en organismos como la Fiscalía General de la Nación y la Policía Nacional. El modelo fue evaluado con un conjunto de datos generado a partir del Sistema de Información Estadístico Delincuencial, Contravencional y Operativo (SIEDCO) de la Fiscalía, el cual cuenta con 2.662.402 registros de delitos realizados en Colombia desde el año 1960 hasta 2019.application/pdfapplication/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740/9603https://revistas.uptc.edu.co/index.php/ingenieria/article/view/11740/10006Copyright (c) 2020 Hugo-Armando Ordoñez-Eraso; César-Jesús Pardo-Calvache; Carlos-Alberto Cobos-Lozadahttp://purl.org/coar/access_right/c_abf302http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 29 No. 54 (2020): Continuos Publication; e11740Revista Facultad de Ingeniería; Vol. 29 Núm. 54 (2020): Publicación Continua; e117402357-53280121-1129data mininghomicidemachine learningrandom foresthomicidiomachine learningminería de datosrandom forestDetection of Homicide Trends in Colombia Using Machine LearningDetección de tendencias de homicidios en Colombia usando Machine Learninginfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a385http://purl.org/coar/version/c_970fb48d4fbd8a85Ordoñez-Eraso, Hugo ArmandoPardo-Calvache, César JesúsCobos-Lozada, Carlos Alberto001/14283oai:repositorio.uptc.edu.co:001/142832025-07-18 11:53:51.11metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co