Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)

The development and use of nanosatellites have increased in recent years. Space programs were exclusive to governments with significant capital. Now, nanosatellites have changed the orbital ecosystem and have allowed new regions and a wide range of industries to position themselves in the so-called...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14372
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732
https://repositorio.uptc.edu.co/handle/001/14372
Palabra clave:
CSP
test
integration
IMU
space mission
software
validation
CSP
IMU
integración
software
misión espacial
test
validación
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_9d0f4a3449cae778283f7efaec8f6216
oai_identifier_str oai:repositorio.uptc.edu.co:001/14372
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
dc.title.es-ES.fl_str_mv Integración de software de un sensor IMU a una plataforma CubeSat basada en una red CSP (Protocolo Espacial CubeSat)
title Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
spellingShingle Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
CSP
test
integration
IMU
space mission
software
validation
CSP
IMU
integración
software
misión espacial
test
validación
title_short Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
title_full Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
title_fullStr Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
title_full_unstemmed Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
title_sort Software Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)
dc.subject.en-US.fl_str_mv CSP
test
integration
IMU
space mission
software
validation
topic CSP
test
integration
IMU
space mission
software
validation
CSP
IMU
integración
software
misión espacial
test
validación
dc.subject.es-ES.fl_str_mv CSP
IMU
integración
software
misión espacial
test
validación
description The development and use of nanosatellites have increased in recent years. Space programs were exclusive to governments with significant capital. Now, nanosatellites have changed the orbital ecosystem and have allowed new regions and a wide range of industries to position themselves in the so-called new space, a growing sector that democratizes the commercialization of space thanks to a smaller, more agile, and affordable technology. Nanosatellites have similar capabilities to their conventional counterparts but are commonly used for highly specific missions such as Earth observation, telecommunications, and meteorology. The complex development of a nanosatellite requires solving different engineering problems to assembly and integrate all hardware and software components into a small space. It requires the monitoring, control, and operation of the satellite’s features from the ground segment. One major challenge is the development of satellite mission control software for both space and ground segments in limited-time scheduled missions. This article describes the integration process of an EPSON M-G364PDCA Inertial Measurement Unit (IMU) to a CubeSat platform nanosatellite based on the Danish company GomSpace devices and a CSP protocol. The result is a hardware implementation and software development by the Colombian Air Force (FAC) team as part of the FACSAT-2 program. The integration of these components into the space and ground segment contributes to solve one challenge in the development of control software for space missions, as described above, and becomes the first approach for Colombian space nanosatellites software development. In addition, this research presents the Colombian Air Force configuration for space mission subsystems on the CSP network, the software development for the main on-board computer based on a NanoMind A3200 to setup the IMU —controlled and monitored from the ground segment through a CSP terminal on a Linux server—, and setup telemetry data from space to be sent periodically to the ground segment and stored locally in a MongoDB database for its subsequent visualization and analysis.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:11Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:11Z
dc.date.none.fl_str_mv 2023-06-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a198
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732
10.19053/01211129.v32.n64.2023.15732
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14372
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732
https://repositorio.uptc.edu.co/handle/001/14372
identifier_str_mv 10.19053/01211129.v32.n64.2023.15732
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732/13311
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732/13451
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf115
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf115
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 32 No. 64 (2023): April-June 2023 (Continuous Publication); e15732
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 32 Núm. 64 (2023): Abril-Junio 2023 (Publicación Continua); e15732
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633812105986048
spelling 2023-06-302024-07-05T19:12:11Z2024-07-05T19:12:11Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1573210.19053/01211129.v32.n64.2023.15732https://repositorio.uptc.edu.co/handle/001/14372The development and use of nanosatellites have increased in recent years. Space programs were exclusive to governments with significant capital. Now, nanosatellites have changed the orbital ecosystem and have allowed new regions and a wide range of industries to position themselves in the so-called new space, a growing sector that democratizes the commercialization of space thanks to a smaller, more agile, and affordable technology. Nanosatellites have similar capabilities to their conventional counterparts but are commonly used for highly specific missions such as Earth observation, telecommunications, and meteorology. The complex development of a nanosatellite requires solving different engineering problems to assembly and integrate all hardware and software components into a small space. It requires the monitoring, control, and operation of the satellite’s features from the ground segment. One major challenge is the development of satellite mission control software for both space and ground segments in limited-time scheduled missions. This article describes the integration process of an EPSON M-G364PDCA Inertial Measurement Unit (IMU) to a CubeSat platform nanosatellite based on the Danish company GomSpace devices and a CSP protocol. The result is a hardware implementation and software development by the Colombian Air Force (FAC) team as part of the FACSAT-2 program. The integration of these components into the space and ground segment contributes to solve one challenge in the development of control software for space missions, as described above, and becomes the first approach for Colombian space nanosatellites software development. In addition, this research presents the Colombian Air Force configuration for space mission subsystems on the CSP network, the software development for the main on-board computer based on a NanoMind A3200 to setup the IMU —controlled and monitored from the ground segment through a CSP terminal on a Linux server—, and setup telemetry data from space to be sent periodically to the ground segment and stored locally in a MongoDB database for its subsequent visualization and analysis.El desarrollo y uso de nanosatélites ha incrementado en los últimos años. Los programas espaciales eran territorio exclusivo de un puñado de gobiernos con un importante capital. Ahora los nanosatélites han cambiado el ecosistema orbital y han permitido que nuevas regiones y una amplia gama de industrias se posicionen en el llamado nuevo espacio, un sector en crecimiento que democratiza la comercialización del espacio gracias a una tecnología más pequeña, ágil y asequible. Los nanosatélites tienen capacidades similares a sus contrapartes convencionales, pero generalmente se usan para misiones muy específicas, como la observación de la Tierra, las telecomunicaciones y la meteorología. El complejo desarrollo de un nanosatélite demanda resolver diferentes problemas de ingeniería para ensamblar e integrar todos los componentes en un pequeño espacio a nivel de hardware y software, que permita el monitoreo, control y operación de las características del satélite desde el segmento tierra. Un reto importante es el desarrollo de software de control de misiones satelitales para los segmentos espacial y terrestre en misiones programadas con tiempo limitado. Este artículo describe el proceso de integración de la Unidad de Medición Inercial (IMU) EPSON M-G364PDCA en un nanosatélite de plataforma CubeSat basado en los dispositivos de la compañía danesa GomSpace y el protocolo CSP. El equipo de la Fuerza Aérea Colombiana presenta una implementación de hardware y desarrollo de software como parte del desarrollo del programa FACSAT-2. La integración de estos componentes en el segmento espacial y terrestre contribuye a resolver uno de los retos importantes en el desarrollo del software de control de misión para misiones espaciales descrito anteriormente, y se convierte en el primer enfoque para el desarrollo de software propio para nanosatélites espaciales. Además, la presente investigación en la Fuerza Aérea Colombiana garantiza una perspectiva diferente a partir de la configuración de los subsistemas que forman parte de la misión espacial en la red CSP, el desarrollo del software para la computadora principal a bordo —basado en un NanoMind A3200 que permite configurar, controlar y monitorear la IMU desde el segmento terrestre a través de un terminal CSP en un servidor Linux— y configurar los datos de telemetría desde el espacio para enviarlos periódicamente al segmento terrestre y almacenarlos localmente en una base de datos MongoDB para su posterior visualización y análisis.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732/13311https://revistas.uptc.edu.co/index.php/ingenieria/article/view/15732/13451Copyright (c) 2023 Sergio-Fernando Barrera-Molano, Javier-Enrique Méndez-Gómez, Dib-Ziyari Salek-Chaveshttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf115http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 32 No. 64 (2023): April-June 2023 (Continuous Publication); e15732Revista Facultad de Ingeniería; Vol. 32 Núm. 64 (2023): Abril-Junio 2023 (Publicación Continua); e157322357-53280121-1129CSPtestintegrationIMUspace missionsoftwarevalidationCSPIMUintegraciónsoftwaremisión espacialtestvalidaciónSoftware Integration of an IMU Sensor to a CubeSat Platform Based on CSP (CubeSat Space Protocol)Integración de software de un sensor IMU a una plataforma CubeSat basada en una red CSP (Protocolo Espacial CubeSat)info:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a198http://purl.org/coar/version/c_970fb48d4fbd8a85Barrera-Molano, Sergio-FernandoMéndez-Gómez, Javier-EnriqueSalek-Chaves, Dib-Ziyari001/14372oai:repositorio.uptc.edu.co:001/143722025-07-18 11:53:37.374metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co