Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks

The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number higher...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15327
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241
https://repositorio.uptc.edu.co/handle/001/15327
Palabra clave:
Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_84d112e245b4b875151619a9a60f2cf8
oai_identifier_str oai:repositorio.uptc.edu.co:001/15327
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-01-292024-07-08T14:24:04Z2024-07-08T14:24:04Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1324110.19053/01217488.v13.n1.2022.13241https://repositorio.uptc.edu.co/handle/001/15327The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number higher than 4000. In the present study, a Neural Network was developed from the approach of the Bayesian Regularization Backpropagation method to estimate the coefficient of friction. A set of 200,000 input data (inputs) was established for the relative roughness (ε/D) and the Reynolds Number (Re) and 200,000 output data (outputs) for the friction coefficient. The neuronal architecture that performed best corresponded to two hidden layers with 25 neurons each (2-25-25-1). Network performance was evaluated using mean square error, regression analysis, and the cross-entropy function. The neural model obtained presented a mean square error of 7.42E-13 and a relative error equal to 0.0035 % for the training data. Finally, the Bayesian Regularization backpropagation network demonstrated the ability to calculate the coefficient of friction for turbulent flows with an approximation of 10E-7 concerning the Colebrook-White equation.El modelo propuesto por Colebrook-White para el cálculo del coeficiente de fricción ha sido aceptado universalmente estableciendo una función trascendental implícita. Esta ecuación determina el coeficiente de fricción para flujos completamente desarrollados, es decir, para flujos turbulentos con un Número de Reynolds superior a 4000. En el presente estudio se desarrolló una Red Neuronal a partir del enfoque del método de Retropropagación de Regularización Bayesiana para estimar el coeficiente de fricción. Se estableció un conjunto de 200,000 datos de entrada (inputs) para la rugosidad relativa (ε/D) y el Número de Reynolds (Re) y 200,000 datos de salida (outputs) para el coeficiente de fricción. La arquitectura neuronal que mejor se desempeñó correspondió a dos capas ocultas con 25 neuronas cada una (2-25-25-1). Se evaluó el rendimiento de la red utilizando el error medio cuadrático, el análisis de regresión y la función de entropía cruzada. El modelo neuronal obtenido presentó un error medio cuadrático de 7.42E-13 y un error relativo igual a 0.0035 % para los datos de entrenamiento. Finalmente, la red de retropropagación de Regularización Bayesiana demostró la capacidad de calcular el coeficiente de fricción para flujos turbulentos con una aproximación de 10E-7 con respecto a la ecuación de Colebrook-White.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241/12517Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-23Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-232462-76580121-7488Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal ArtificialArtificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & WhiteModeling of the friction factor in pressure pipes using Bayesian Learning Neural NetworksModelado del factor de fricción en tuberías a presión Utilizando Redes Neuronales de Aprendizaje Bayesianoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Ladino Moreno, Edgar OrlandoGarcía Ubaque, Cesar AugustoGarcía-Vaca, María Camila001/15327oai:repositorio.uptc.edu.co:001/153272025-07-18 10:56:46.274metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
dc.title.es-ES.fl_str_mv Modelado del factor de fricción en tuberías a presión Utilizando Redes Neuronales de Aprendizaje Bayesiano
title Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
spellingShingle Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
title_short Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_full Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_fullStr Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_full_unstemmed Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
title_sort Modeling of the friction factor in pressure pipes using Bayesian Learning Neural Networks
dc.subject.es-ES.fl_str_mv Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
topic Coeficiente fricción, Colebrook-White, Regularización Bayesiana, Red Neuronal Artificial
Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
dc.subject.en-US.fl_str_mv Artificial Neural Network, Bayesian Regularization, Coefficient of friction, Colebrook & White
description The model proposed by Colebrook-White for calculating the coefficient of friction has been universally accepted by establishing an implicit transcendental function. This equation determines the friction coefficient for fully developed flows, that is, for turbulent flows with a Reynolds Number higher than 4000. In the present study, a Neural Network was developed from the approach of the Bayesian Regularization Backpropagation method to estimate the coefficient of friction. A set of 200,000 input data (inputs) was established for the relative roughness (ε/D) and the Reynolds Number (Re) and 200,000 output data (outputs) for the friction coefficient. The neuronal architecture that performed best corresponded to two hidden layers with 25 neurons each (2-25-25-1). Network performance was evaluated using mean square error, regression analysis, and the cross-entropy function. The neural model obtained presented a mean square error of 7.42E-13 and a relative error equal to 0.0035 % for the training data. Finally, the Bayesian Regularization backpropagation network demonstrated the ability to calculate the coefficient of friction for turbulent flows with an approximation of 10E-7 concerning the Colebrook-White equation.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:04Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:04Z
dc.date.none.fl_str_mv 2022-01-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241
10.19053/01217488.v13.n1.2022.13241
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15327
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241
https://repositorio.uptc.edu.co/handle/001/15327
identifier_str_mv 10.19053/01217488.v13.n1.2022.13241
dc.language.none.fl_str_mv spa
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/13241/12517
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 13 No. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-23
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 13 Núm. 1 (2022): Vol. 13 Núm. 1 (2022): Vol 13, Núm.1 (2022): Enero-Junio; 9-23
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633896690417665