Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps

This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients (MFCC), Self-Organizing Maps (SOM), and K-means clustering algorithm. SOM models are known as artificial neural networks than can be trained in an unsupervised or supervised manner. Both...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14156
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300
https://repositorio.uptc.edu.co/handle/001/14156
Palabra clave:
acoustic lung signals
computer-aided decision making
self-organizing maps
mapas auto-organizados
señales acústicas de pulmón
sistemas de apoyo a decisión
Rights
License
http://purl.org/coar/access_right/c_abf218
id REPOUPTC2_840210eccf2f81ef0688f24b3acb9af8
oai_identifier_str oai:repositorio.uptc.edu.co:001/14156
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2016-09-012024-07-05T19:11:30Z2024-07-05T19:11:30Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/530010.19053/01211129.v25.n43.2016.5300https://repositorio.uptc.edu.co/handle/001/14156This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients (MFCC), Self-Organizing Maps (SOM), and K-means clustering algorithm. SOM models are known as artificial neural networks than can be trained in an unsupervised or supervised manner. Both approaches were used in this work to compare the utility of this tool in lung signals studies. Results showed that with a supervised training, the classification reached rates of 85 % in accuracy. Unsupervised training was used for clustering tasks, and three clusters was the most adequate number for both supervised and unsupervised training. In general, SOM models can be used in lung signals as a strategy to diagnose systems, finding number of clusters in data, and making classifications for computer-aided decision making systems.En este trabajo se realizó un análisis de anormalidades en señales acústicas de pulmón. La metodología incluyó el uso de coeficientes cepstrales de la escala Mel (MFCC), Mapas Auto-Organizados (SOM) y el algoritmo de agrupamiento K-means. Los modelos obtenidos con los mapas son conocidos como redes neuronales artificiales, que pueden ser entrenados en una forma supervisada o no supervisada. Ambos tipos de entrenamiento fueron usados para comparar el uso de este tipo de herramientas computacionales en estudios de señales respiratorias. Los resultados mostraron un 85 % de acierto en la clasificación, cuando fue implementado un entrenamiento supervisado. Al realizar tareas de agrupamiento con entrenamiento no supervisado fue encontrado que el número de grupos más adecuado es de tres. En general, los modelos SOM pueden ser usados en este tipo de señales como una estrategia útil en sistemas de diagnóstico, encontrando información en los datos y realizando clasificación para sistemas de apoyo a decisión.application/pdftext/htmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300/4428https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300/5063Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 73-82Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 73-822357-53280121-1129acoustic lung signalscomputer-aided decision makingself-organizing mapsmapas auto-organizadosseñales acústicas de pulmónsistemas de apoyo a decisiónAcoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing mapsAnálisis de señales acústicas de pulmón basado en coeficientes cepstrales de la escala Mel y mapas auto-organizadosinvestigationinvestigacióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a301http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf218http://purl.org/coar/access_right/c_abf2Orjuela-Cañón, Álvaro DavidPosada-Quintero, Hugo Fernando001/14156oai:repositorio.uptc.edu.co:001/141562025-07-18 11:53:44.08metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
dc.title.es-ES.fl_str_mv Análisis de señales acústicas de pulmón basado en coeficientes cepstrales de la escala Mel y mapas auto-organizados
title Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
spellingShingle Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
acoustic lung signals
computer-aided decision making
self-organizing maps
mapas auto-organizados
señales acústicas de pulmón
sistemas de apoyo a decisión
title_short Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
title_full Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
title_fullStr Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
title_full_unstemmed Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
title_sort Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
dc.subject.en-US.fl_str_mv acoustic lung signals
computer-aided decision making
self-organizing maps
topic acoustic lung signals
computer-aided decision making
self-organizing maps
mapas auto-organizados
señales acústicas de pulmón
sistemas de apoyo a decisión
dc.subject.es-ES.fl_str_mv mapas auto-organizados
señales acústicas de pulmón
sistemas de apoyo a decisión
description This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients (MFCC), Self-Organizing Maps (SOM), and K-means clustering algorithm. SOM models are known as artificial neural networks than can be trained in an unsupervised or supervised manner. Both approaches were used in this work to compare the utility of this tool in lung signals studies. Results showed that with a supervised training, the classification reached rates of 85 % in accuracy. Unsupervised training was used for clustering tasks, and three clusters was the most adequate number for both supervised and unsupervised training. In general, SOM models can be used in lung signals as a strategy to diagnose systems, finding number of clusters in data, and making classifications for computer-aided decision making systems.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.none.fl_str_mv 2016-09-01
dc.type.en-US.fl_str_mv investigation
dc.type.es-ES.fl_str_mv investigación
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a301
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300
10.19053/01211129.v25.n43.2016.5300
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14156
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300
https://repositorio.uptc.edu.co/handle/001/14156
identifier_str_mv 10.19053/01211129.v25.n43.2016.5300
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300/4428
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300/5063
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf218
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf218
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 73-82
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 73-82
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633840916660224