Comportamiento tribocorrosivo de recubrimientos de Tivn

Autores:
Ríos Rojas, Alejandra María
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/18060
Acceso en línea:
https://repositorio.uptc.edu.co/handle/001/18060
Palabra clave:
Rights
License
https://creativecommons.org/licenses/by-sa/4.0/
id REPOUPTC2_756f96411ba1750b1c58cb6e3c1e2662
oai_identifier_str oai:repositorio.uptc.edu.co:001/18060
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.none.fl_str_mv Comportamiento tribocorrosivo de recubrimientos de Tivn
title Comportamiento tribocorrosivo de recubrimientos de Tivn
spellingShingle Comportamiento tribocorrosivo de recubrimientos de Tivn
title_short Comportamiento tribocorrosivo de recubrimientos de Tivn
title_full Comportamiento tribocorrosivo de recubrimientos de Tivn
title_fullStr Comportamiento tribocorrosivo de recubrimientos de Tivn
title_full_unstemmed Comportamiento tribocorrosivo de recubrimientos de Tivn
title_sort Comportamiento tribocorrosivo de recubrimientos de Tivn
dc.creator.fl_str_mv Ríos Rojas, Alejandra María
dc.contributor.advisor.none.fl_str_mv Vera López, Enrique
Aperador Chaparro, Willian
dc.contributor.author.none.fl_str_mv Ríos Rojas, Alejandra María
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-09-01
dc.date.accessioned.none.fl_str_mv 2025-08-26T00:28:25Z
dc.date.available.none.fl_str_mv 2025-08-26T00:28:25Z
dc.type.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.version.none.fl_str_mv Versión aceptada
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/18060
dc.identifier.bibliographicCitation.none.fl_str_mv Soriano L., Abbate M., Pen H., Prieto P., Sanz J. The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations, Solid State Communications, Volume 102, Issue 4, 1997, Pages 291-296, ISSN 0038-1098. https://doi.org/10.1016/S0038-1098(96)00780-6.
Floroian L., Craciun D., Socol G., Dorcioman G., y col. Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films, Applied Surface Science, 2017. Volume 417, Pages 175-182, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2017.03.068.
Bauer S., Schmuki P., Von der Mark K., Park J., Engineering biocompatible implant surfaces: Part I: Materials and surfaces, Prog Mat Sci 58. 2013. Volume 58, Issue 3, Pages 261-326, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2012.09.001.
Kovacs P., Davidson J.A. Chemical and Electrochemical Aspects of the Biocompatibility of Titanium and its Alloys. ASTM. 1996. https://doi.org/10.1520/STP16077S.
Deeleard T., Buranawong A., Choeysuppaket A., Witit-anun N., Chaiyakun S., Limsuwan P. Structure and Composition of TiVN Thin Films Deposited by Reactive DC Magnetron Cosputtering. Procedia Engineering 32 P 1000 – 1005. 2011. https://doi.org/10.1016/j.proeng.2012.02.045.
Roldán M. A, Alcalá M.D, Ortega A., Real C. Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011. https://doi.org/10.3989/CYV.052011
Lim S. Recent developments in wear-mechanism maps. Tribol Int 31(1):87–97. 1998. ISSN 0301-679X, https://doi.org/10.1016/S0301-679X(98)00011-5.
Taylor M. B., A Study Of Aluminium Nitride And Titanium Vanadium Nitride Thin Films. 2006. https://core.ac.uk/works/6498396.
Knotek O. Burgmer W, Stoessel C. Arc-evaporated Ti-V-N thin films. Surface and Coatings Technology; 1992. Volumes 54–55, Part 1, Pages 249-254, ISSN 0257-8972, https://doi.org/10.1016/S0257-8972(09)90058-5.
Deeleard T., Chaiyakun S., Pokaipisit A., Limsuwan P. Effects of Vanadium Content on Structure and Chemical State of TiVN Films Prepared by Reactive DC Magnetron Co- Sputtering. Materials Sciences and Applications, 2013, 4, 556-563. https://doi.org/10.4236/MSA.2013.49068.
Laimer, J., “Developments in the deposition of hard coatings by plasma-based techniques”, Vaccum 40: 27-32. (1990). ISSN 0042-207X. https://doi.org/10.1016/0042- 207X(90)90112-C.
Stuart, R. V., “Vacuum Technology, Thin Films, and Sputtering an introduction”, Academic Press, 148 pp. (1983). ISBN 9780126747805. https://doi.org/10.1016/B978-0-12- 674780-5.50008-1.
Gil F.J y J.A.Planell, [et al]. “Aplicaciones Biomédicas del Titanio y sus Aleaciones”,Biomecánica. (1993), vol. 1, núm. 1, p. 34-42. http://hdl.handle.net/2099/6814. https://doi.org/10.5821/sibb.v1i1.1543
G. Lütjering, J. C. Williams, Titanium, Ed. Springer (2003). https://doi.org/10.1007/978- 3-540-73036-1_10.
ASTM F67 - 06. Standard Specification for Unalloyed Titanium for Surgical Implant Applications.
Tarín P. (febrero 1999). El titanio y sus aleaciones. ETSIA Madrid.
Leyens C., Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117. https://doi.org/10.1002/3527602119.
Wang R.R., Welsch G.E., Castro-Cedeno M. Interfacial Reactions of Cast Titanium with Mold Materials. Int J Prosthodont. (1998). https://pubmed.ncbi.nlm.nih.gov/9588989/
Leyens C.; Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117 https://doi.org/10.1002/3527602119.
Hardie D., Ouyang S. Effect of microstructure and heat treatment on fracture behaviour of smooth and precracked tensile specimens od Ti6Al4V. J Mater Sci Technol, 15, pp. 1049 – 1057. (1999). https://doi.org/10.1179/026708399101506779.
Baeslack W. A y col. Weld solidification and HAZ liquation in a metastable-beta titanium alloy-beta-21S. Mater Charact, 30 (2), pp. 147-154. (1993). https://doi.org/10.1016/1044- 5803(93)90018-Q.
Vieira A. C, Ribeiro A. R, Celis J. P, “Influence of pH and corrosión inhibitors on the tribocorrosion of titanium in artificial saliva”. Wear 261 (2006). https://doi.org/10.1016/j.wear.2006.03.031.
Kotomori J, Hisamori N., Yosuke O., “The corrosion/wear mechanism of Ti-6Al-4V”. Wear 263 (2007). https://doi.org/10.1016/j.wear.2006.11.025.
Nadim J. Hallab, Joshua J. Jacobs, “Biologic Effects of implant debris”. Bulletin of the NYU Hospital for Joint Diseases (2009).
Marcel Pourbaix, NACE, USA, 213 (1974).
Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT. Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet. Dent. (2001).85: 195-202. https://doi.org/10.1067/mpr.2001.113029.
Ramires I, Guastaldi AC. Ramires I, Guastaldi AC. Estudo do Biomaterial Ti-6Al-4V Empregandose técnicas Electroquimicas e XPS. Quim. Nova. 2002; 25:10-1 Quim. Nova. (2002). 25:10-1. https://doi.org/10.1590/S0100-40422002000100003.
Long M., Rack H.J., Titanium alloys in total joint replacement a materials science perspective. Biomaterials. (1998). 19:1621-39. https://doi.org/10.1016/S0142- 9612(97)00146-4.
Heimann R.B. Materials Science of Crystaline Bioceramics: A Review of Basic Properties and Applications. CMU. Journal, 1, pp. 23-46. (2002).
Simske S. J., Ayers R. A., Bateman T. A. Porous materials for bone engineering. Materials Science Forum, 250, pp. 151-182. (1997). https://doi.org/10.4028/www.scientific.net/MSF.250.151.
Ibris N., Mirza Rosca J.C. EIS study of Ti and its alloys in biological media. J. Electroanal, 526, pp. 53-62. (2002). https://doi.org/10.1016/S0022-0728(02)00814-8.
Santecchia E.,y col .Wear resistance investigation of titanium nitride-based coatings, Ceram. Int. Volume 41, Issue 9, Part A. (2015). Pages 10349-10379, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2015.04.152.
Elias, C.N., Lima, J.H.C., Valiev, R. et al. Biomedical applications of titanium and its alloys. JOM 60, 46–49 (2008). https://doi.org/10.1vill007/s11837-008-0031-1.
Villanueva, J., Trino, L., Thomas, J. et al. Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. J Bio Tribo Corros 3, 1 (2017). https://doi.org/10.1007/s40735-016-0060-1.
Keating J.F., McQueen M. M. Substitutes for autologous bone graft in orthopaedic trauma. The journal of bond & joint surgery (Br), 83-B (1), pp. 3-8. (2001). https://doi.org/10.1302/0301-620x.83b1.11952.
Vallet Regí M.; Munuera L. Biomateriales, aquí y ahora, p. 267 [27]. (2000). ISBN-13: 978-8481556759.
Flautre B., y col. Porous HA ceramic for bone replacement: Role of the pores and interconnections - experimental study in the rabbit. J Mater Sci Mater Med, 12, pp. 679- 682.
Comín M.; Peris J.L.; Prat J.M.; Decoz J.R.; Vera P.M.; Hoyos J.V. (1999). Biomecánica de la fractura ósea y técnicas de reparación. Valencia: IBV.
Blackwood D.J., (2000). Corrosion behaviour of porous titanium-graphite composites designed for surgical implants. Corrosion Science, 42, pp. 481-503.
Gil F. J. (2007). Comparison of the mechanical properties between tantalum and nickeltitanium foams implant materials for bone ingrowth applications. J. Alloys Compd, 439 (1- 2), pp. 67-73. https://doi.org/10.1016/j.jallcom.2006.08.069.
Wehmöller M.; Weihe S.; Rasche C.; Scherer P.; Eufinger H. (2004). CAD/CAMprefabricated titanium implants for large skull defects-clinical experience with 166 patients from 1994 to 2000, International Congress series, 1268, pp. 667-672.
Rodriguez Rius D. (1999). Obtención de capas de nitruro de titanio mediante tratamiento termoquímico en titanio y Ti6Al4V y caracterización de sus propiedades para aplicaciones biomédicas, U. Politècnica de Catalunya, Barcelona.
Rack H.J., Qazi J.I, Titanium alloys for biomedical applications, Materials Science and Engineering: C, Volume 26, Issue 8, 2006, Pages 1269-1277, ISSN 0928-4931, https://doi.org/10.1016/j.msec.2005.08.032.
Costigan M., Cary R.,Dobson S. "Vanadium pentoxide and other inorganic vanadium compounds". Concise International Chemical Assessment Document (2000) (CICAD) 29. https://apps.who.int/iris/bitstream/handle/10665/42365/9241530294.pdf?sequence=1.
Louloudakis D., Vernardou D.,y col. Electrochemical evaluation of vanadium pentoxide coatings grown by AACVD. Surf. Coat. Technol. (2015). https://doi.org/10.1016/j.solmat.2014.12.002
X.H. Zheng, D.G. Walmsley. Discrepancy between theory and measurement of superconducting vanadium. Physica C 515 (2015) 41–48.
Bautista F.M, Campelo J.M, Luna D., Y col. Vanadium oxides supported on TiO2- Sepiolite and Sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Catal. Today, 128 (2007) 183. https://doi.org/10.1016/j.apcata.2007.02.033.
Aperador W., Duque J., Delgado E,. Mechanical, Microstructural and Tribo- Electrochemistry Characterization in Aqueous Media of Coatings Vanadium / Vanadium Nitride Used as Functional Coating for Implants. Int. J. Electrochem. Sci., 11 (2016) 4688 – 4700, https://doi.org/10.20964/2016.06.58.
Urrutia A., Rincón C., Y col. Efecto De La Variación Del Flujo De Nitrógeno Sobre Las Propiedades Mecánicas Y Tribológicas De Películas Delgadas De Nitruro De Vanadio Depositadas Sobre Aceros M2. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales 2009; S1 (4): 1495-1501.
Fernandes F., Loureiro A., Y col. The effect of increasing V content on the structure, mechanicalproperties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering. Applied Surface Science 289 (2014) 114– 123. https://doi.org/10.1016/j.apsusc.2013.10.117.
Sangiovanni D.G., Hultman L., Chirita V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia 59 (2011) 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013.
Wei-Yu HoChien-Liang Lin, Ming-Der Chen, Woei-Yun Ho, Characteristics of TiVN and TiVCN Coatings by Cathodic Arc Deposition. Materials, Biotechnology and Environment (ICMMBE 2016). https://doi.org/10.2991/icmmbe-16.2016.111.
Deng B., Tao Y., Deliang G. Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings. Applied Surface Science 258 (2012) 9080–9086. https://doi.org/10.1016/j.apsusc.2012.06.001.
Knotek O, Barimani A, Bosserhoff B, Löffler F. Sturcture and properties of magnetronsputtered Ti-V-N coating. Thin solid films 1990;193/4:557-564. https://doi.org/10.1016/S0040-6090(05)80065-3.
Tao Fu, Xianghe Peng, Chen Wan, Zijun Lin, Xiaosheng Chen, Ning Hu, Zhongchang Wang. Molecular dynamics simulation of plasticity in VN(001) crystals under nanoindentation with a spherical indenter. Appl. Surf. Sci. 392 (2017) 942–949. https://doi.org/10.1016/j.apsusc.2016.09.130.
Liu et al. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Applied Surface Science 279 (2013) 159–166. https://doi.org/10.1016/j.apsusc.2013.04.062.
Li, N., Misra, A., Shao, S., & Wang, J. (2015). Experimental Quantification of Resolved Shear Stresses for Dislocation Motion in TiN. Nano Letters, 15(7), 4434–4439. https://doi.org/10.1021/acs.nanolett.5b00791.
Guemmaz M., Mosser A., Ahuja R., Parlebas J.C. Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: influence of lattice vacancies. https://doi.org/10.1016/S1466-6049(01)00151-9.
Gueddaoui H., Schmerber G., Abes M., Guemmaz M., Parlebas J.C. Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films. Catalysis Today 113 (2006) 270–274. https://doi.org/10.1016/j.cattod.2005.11.079.
Liao M. Y., Gotoh Y., Tsuji H., and Ishikawa J. Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target. J. Vac. Sci. Technol A 22, 146 (2004). https://doi.org/10.1116/1.1631473.
Ouyang J.H., Murakami T., Sasaki S. High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating. Wear 263 (2007) 1347–1353. ISSN 0043-1648. https://doi.org/10.1016/j.wear.2004.03.014.
Lewis D.B., Creasey S. y col. The effect of (TiqAl): V ratio on the structure and oxidation behaviour of TiAlNyVN nano-scale multilayer coatings. Surface and Coatings Technology 177 –178 (2004) 252–259. https://doi.org/10.1016/j.surfcoat.2003.09.041.
Sung K., Young J., Dongil K. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surf. Coat. Technol 187 (2004). https://doi.org/10.1016/j.surfcoat.2004.01.011.
Martev I.N., y col. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films. Journal of Physics: Conference Series 113 (2008) 012025. https://doi.org/10.1088/1742-6596/113/1/012025.
Saoula N., Djerourou S., Yahiaoui K., Henda K., Kesri R., Erasmus R. M. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. https://doi.org/10.1002/sia.3299.
Zeng K, Schmid-Fetzer R. Thermodynamic assessment and applications of Ti-V-N system. (2013). https://doi.org/10.1179/mst.1998.14.11.1083.
Du, Y, Schmid-Fetzer, R, & Ohtani, H. Thermodynamic assessment of the V-N system. 22(1), 0–58. https://doi.org/10.1016/s0364-5916(98)00013-3. [60]. Wang K., Kong X., Du J., Y Col. Thermodynamic description of the Ti–H system, Calphad, Volume 34, Issue 3, Pages 317-323 (2010). ISSN 0364-5916. https://doi.org/10.1016/j.calphad.2010.07.001.
Landolt D., Mischler S., Stemp M., Barril S. Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256 (2004) 517–524. https://doi.org/10.1016/S0043-1648(03)00561-1.
Bharat Bhusham, “Introduction to Tribology” 2nd Edition. John Wiley & Sons Ltd (2013).
H.P. Jost “Economic impact of Tribology”, National Bureau of Standard Special Publication, 423 (1974).
ASTM G40-05 (2005). “Standard Terminology Relating to Wear and Erosion”.
Zum Gahr K.H. “Microstructure and Wear of Materials” Eselvier Science Publishers B.V. (1987).
Williams J.A. “Wear and Wear Particles-Some Fundamentals”, Tribology International, 38 (2005) 863-870. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2005.03.007.
Martínez Pérez Francisco, “Tribología: Ciencia y Técnica para el Mantenimiento”, Limusa Noriega Editores (2002).
Horst Czichos, “Tribology: a Systems Approach to the Science and Technology of Friction, Lubrication and Wear”, Eselvier Scientific Publishing Company (1978).
Vieira A. C., Rocha L. A., Ariza E., Gomes J. R., and Celis J.-P., “Repassivation of commercially pure Ti in different saliva solutions under tribocorrosion condition,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), pp. 1–10, Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2154.
Rocha L. A., Ribeiro A. R., Vieira A. C., Ariza E., Gomes J. R., and Celis J.-P., “Tribocorrosion studies on commercially pure titanium for dental applications,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2271.
Mischler S., Pax G., “Tribological behaviour of titanium sliding against bone,” European Cells and Materials, vol. 3, no. 1, pp. 28–29, 2002.
Barril S., Mischler S., Landolt D., “Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt.% sodium chloride solution,” Wear, vol. 256, no. 9-10, pp. 963–972, 2004. https://doi.org/10.1016/j.wear.2003.11.003.
Contu F., Elsener B., Bohni H., “Stability and repassivation of metallic implants in serum bovine,” Eur. Cells Mater, vol. 1, no. 1, pp. 14–15, 2001. https://doi.org/10.1002/jbm.10329.
Ribeiro A. Ariza E, Rocha Luis. Tribocorrosion behaviour of titanium grade 2 in alternative linear regime of sliding in artificial saliva solutions. 2005. Material Science.
Mathew M. T. Tribocorrosion behaviour of TiCxOy thin films in bio-fluids. Electrochim.Acta (2010). 929 – 937. https://doi.org/10.1016/j.electacta.2010.08.067
Fernandes A.C., Vaz F., Ariza E.. Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy. Surf. Coat. Technol. 200 (2006) 6218–6224. https://doi.org/10.1016/j.surfcoat.2005.11.069.
m H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.
Alves A C, et al. Tribocorrosion behavior of anodic treated titanium surfaces intended for dental implants. 2013 J. Phys. D: Appl. Phys. 46. https://doi.org/10.1088/0022- 3727/46/40/404001
Stack M.M., Huang W., Wang G., Hodge C., Some views on the construction of biotribo- corrosion maps for Titanium alloys in Hank's solution: Particle concentration and applied loads effects, Tribol Int, Volume 44, Issue 12, 2011, Pages 1827-1837, ISSN 0301- 679X, https://doi.org/10.1016/j.triboint.2011.07.009.
W. Conshohocken, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1,” vol. 05, no. Reapproved 2010, pp. 1–5, 2017.
ASTM G133-22. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear.
ASTM F732-17. Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses.
Gómez B.M. Caracterización de las propiedades tribológicas de los recubrimientos duros. 2005.
Meza, J.M., C.A. Chaves y J.M. Vélez, 2006, Técnicas de indentación: medición de propiedades mecánicas en cerámicas, Dyna, Año 73, Nro. 149, pp. 81-93.
Askeland D.R., Wright W.J. Ciencia e ingeniería de materiales. 7a Edición. 2017. ISBN:9786075260624.
Oliver, W.C. y Pharr G. M. “An improved technique for determining hardness an elastic modulus using load and displacement sensing indentation experiments”, Journal of materials Research, Vol. 7, No. 6. 1992. https://doi.org/10.1557/JMR.1992.1564.
Chang Y., Chang H., y col. Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation, Surface and Coatings Technology, Volume 350, 2018, Pages 1071-1079, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2018.02.040.
Chang Y., Chiu W., Hung J. Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol, 2016. https://doi.org/10.1016/j.surfcoat.2016.02.047.
Montero C. et al. Effect of codeposition parameters on the hardness and adhesion of TiVN coatings. Ceram. Int. 2015. https://doi.org/10.1016/j.ceramint.2015.05.046.
Hasegawa H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.
Roldán M. A., Alcalá M.D., Ortega A., Real C., Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011.
ASTM G3-14 (2019). “Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing”.
Mohan P., Yedluri A., Ramesh N. y col. In-situ design of porous vanadium nitride@carbon nanobelts: A promising material for high-performance asymmetric supercapacitors, Applied Surface Science, Volume 575, 2022, 151734, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2021.151734.
Peña D., Pedraza S., Vásquez C. Evaluación de la corrosión del acero AISI-SAE 1020 en un ambiente multifásico de salmuera CO2-H2S. Ingeniería y Desarrollo [en linea]. 2010. ISSN: 0122-3461. Disponible en: https://www.redalyc.org/articulo.oa?id=85215207011.
Chotiros K., Yoshiki O., Carl J., Suteera T. y col. Electrochemical corrosion of titanium and titanium-based alloys, The Journal of Prosthetic Dentistry, Volume 85, Issue 2, 2001, Pages 195-202, ISSN 0022-3913, https://doi.org/10.1067/mpr.2001.113029.
Rodríguez A.G. Estudio de la interacción de bacterias implicadas en la formulación de placa dentro-bacteriana con superficies de titanio comercialmente puro in vitro y su asociación con la peri-implantitis. Tesi doctoral, UPC, Departament de Ciència dels Materials i Enginyeria Metalꞏlúrgica, 2009. ISBN 9788469312490. Disponible en: http://hdl.handle.net/2117/93382.
Marchetti E., May O., Girard J., y Col. Biomateriales en cirugía ortopédica, EMC - Técnicas Quirúrgicas - Ortopedia y Traumatología, Volume 2, Issue 3, 2010, Pages 1-24, ISSN 2211-033X, https://doi.org/10.1016/S2211-033X(10)70083-9.
Lackner, J.; Major, L.; Kot, M. (2011). Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(3), https://doi.org/10.2478/v10175-011-0042-x.
Glaser A., Surnev S., Ramsey M., Y col. The growth of epitaxial VN(111) nanolayer surfaces, Surface Science, Volume 601, Issue 21, 2007, Pages 4817-4823, ISSN 0039- 6028, https://doi.org/10.1016/j.susc.2007.07.032.
Yeung, W.Y.; Dub, S.N.; Wuhrer, R.; Milman, Yu.V. A nanoindentation study of magnetron co-sputtered nanocrystalline ternary nitride coatings. Science of Sintering, 38(3), 211 221. 2006. https://doi:10.2298/SOS0603211Y.
Mathew M.T, y col. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium?, Journal of the Mechanical Behavior of Biomedical Materials, Volume 8, 2012, Pages 71-85, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2011.11.004.
Stack M.M, Abdulrahman G.H. Mapping erosion-corrosion of carbon steel in oil exploration conditions: Some new approaches to characterizing mechanisms and synergies. Tribology International, Volume 43, Issue 7, 2010, Pages 1268-1277, ISSN 0301-679X,. https://doi.org/10.1016/j.triboint.2010.01.005.
Wang Y., Lee J., Duh J. Mechanical strengthening in self lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics, Surface and Coatings Technology, Volume 303, Part A, 2016, Pages 12-17, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2016.02.003.
ASTM G102 - 89. Standart Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, Volume 65, Issues 1–2, 1983, Pages 55-63, ISSN 0022-1759, https://doi.org/10.1016/0022-1759(83)90303-4.
Berridge M.V., Tan A.S. Characterization of the Cellular Reduction of 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction, Archives of Biochemistry and Biophysics, Volume 303, Issue 2, 1993, Pages 474-482, ISSN 0003-9861, https://doi.org/10.1006/abbi.1993.1311.
ASTM G119- 09. Standart Guide for determining Synergism Between Wear and corrosión.
Wilson S, Alpas A. Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear. 196 (1996) 270 - 278. https://doi.org/10.1016/0043- 1648(96)06923-2.
Santner E, Klaffke D, Meier zu Kijcker G. Comprehensive tribological characterization of thin TiN-based coatings. Wear. 190 (1995) 204-211. https://doi.org/10.1016/0043- 1648(95)06649-7.
url https://repositorio.uptc.edu.co/handle/001/18060
identifier_str_mv Soriano L., Abbate M., Pen H., Prieto P., Sanz J. The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations, Solid State Communications, Volume 102, Issue 4, 1997, Pages 291-296, ISSN 0038-1098. https://doi.org/10.1016/S0038-1098(96)00780-6.
Floroian L., Craciun D., Socol G., Dorcioman G., y col. Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films, Applied Surface Science, 2017. Volume 417, Pages 175-182, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2017.03.068.
Bauer S., Schmuki P., Von der Mark K., Park J., Engineering biocompatible implant surfaces: Part I: Materials and surfaces, Prog Mat Sci 58. 2013. Volume 58, Issue 3, Pages 261-326, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2012.09.001.
Kovacs P., Davidson J.A. Chemical and Electrochemical Aspects of the Biocompatibility of Titanium and its Alloys. ASTM. 1996. https://doi.org/10.1520/STP16077S.
Deeleard T., Buranawong A., Choeysuppaket A., Witit-anun N., Chaiyakun S., Limsuwan P. Structure and Composition of TiVN Thin Films Deposited by Reactive DC Magnetron Cosputtering. Procedia Engineering 32 P 1000 – 1005. 2011. https://doi.org/10.1016/j.proeng.2012.02.045.
Roldán M. A, Alcalá M.D, Ortega A., Real C. Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011. https://doi.org/10.3989/CYV.052011
Lim S. Recent developments in wear-mechanism maps. Tribol Int 31(1):87–97. 1998. ISSN 0301-679X, https://doi.org/10.1016/S0301-679X(98)00011-5.
Taylor M. B., A Study Of Aluminium Nitride And Titanium Vanadium Nitride Thin Films. 2006. https://core.ac.uk/works/6498396.
Knotek O. Burgmer W, Stoessel C. Arc-evaporated Ti-V-N thin films. Surface and Coatings Technology; 1992. Volumes 54–55, Part 1, Pages 249-254, ISSN 0257-8972, https://doi.org/10.1016/S0257-8972(09)90058-5.
Deeleard T., Chaiyakun S., Pokaipisit A., Limsuwan P. Effects of Vanadium Content on Structure and Chemical State of TiVN Films Prepared by Reactive DC Magnetron Co- Sputtering. Materials Sciences and Applications, 2013, 4, 556-563. https://doi.org/10.4236/MSA.2013.49068.
Laimer, J., “Developments in the deposition of hard coatings by plasma-based techniques”, Vaccum 40: 27-32. (1990). ISSN 0042-207X. https://doi.org/10.1016/0042- 207X(90)90112-C.
Stuart, R. V., “Vacuum Technology, Thin Films, and Sputtering an introduction”, Academic Press, 148 pp. (1983). ISBN 9780126747805. https://doi.org/10.1016/B978-0-12- 674780-5.50008-1.
Gil F.J y J.A.Planell, [et al]. “Aplicaciones Biomédicas del Titanio y sus Aleaciones”,Biomecánica. (1993), vol. 1, núm. 1, p. 34-42. http://hdl.handle.net/2099/6814. https://doi.org/10.5821/sibb.v1i1.1543
G. Lütjering, J. C. Williams, Titanium, Ed. Springer (2003). https://doi.org/10.1007/978- 3-540-73036-1_10.
ASTM F67 - 06. Standard Specification for Unalloyed Titanium for Surgical Implant Applications.
Tarín P. (febrero 1999). El titanio y sus aleaciones. ETSIA Madrid.
Leyens C., Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117. https://doi.org/10.1002/3527602119.
Wang R.R., Welsch G.E., Castro-Cedeno M. Interfacial Reactions of Cast Titanium with Mold Materials. Int J Prosthodont. (1998). https://pubmed.ncbi.nlm.nih.gov/9588989/
Leyens C.; Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117 https://doi.org/10.1002/3527602119.
Hardie D., Ouyang S. Effect of microstructure and heat treatment on fracture behaviour of smooth and precracked tensile specimens od Ti6Al4V. J Mater Sci Technol, 15, pp. 1049 – 1057. (1999). https://doi.org/10.1179/026708399101506779.
Baeslack W. A y col. Weld solidification and HAZ liquation in a metastable-beta titanium alloy-beta-21S. Mater Charact, 30 (2), pp. 147-154. (1993). https://doi.org/10.1016/1044- 5803(93)90018-Q.
Vieira A. C, Ribeiro A. R, Celis J. P, “Influence of pH and corrosión inhibitors on the tribocorrosion of titanium in artificial saliva”. Wear 261 (2006). https://doi.org/10.1016/j.wear.2006.03.031.
Kotomori J, Hisamori N., Yosuke O., “The corrosion/wear mechanism of Ti-6Al-4V”. Wear 263 (2007). https://doi.org/10.1016/j.wear.2006.11.025.
Nadim J. Hallab, Joshua J. Jacobs, “Biologic Effects of implant debris”. Bulletin of the NYU Hospital for Joint Diseases (2009).
Marcel Pourbaix, NACE, USA, 213 (1974).
Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT. Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet. Dent. (2001).85: 195-202. https://doi.org/10.1067/mpr.2001.113029.
Ramires I, Guastaldi AC. Ramires I, Guastaldi AC. Estudo do Biomaterial Ti-6Al-4V Empregandose técnicas Electroquimicas e XPS. Quim. Nova. 2002; 25:10-1 Quim. Nova. (2002). 25:10-1. https://doi.org/10.1590/S0100-40422002000100003.
Long M., Rack H.J., Titanium alloys in total joint replacement a materials science perspective. Biomaterials. (1998). 19:1621-39. https://doi.org/10.1016/S0142- 9612(97)00146-4.
Heimann R.B. Materials Science of Crystaline Bioceramics: A Review of Basic Properties and Applications. CMU. Journal, 1, pp. 23-46. (2002).
Simske S. J., Ayers R. A., Bateman T. A. Porous materials for bone engineering. Materials Science Forum, 250, pp. 151-182. (1997). https://doi.org/10.4028/www.scientific.net/MSF.250.151.
Ibris N., Mirza Rosca J.C. EIS study of Ti and its alloys in biological media. J. Electroanal, 526, pp. 53-62. (2002). https://doi.org/10.1016/S0022-0728(02)00814-8.
Santecchia E.,y col .Wear resistance investigation of titanium nitride-based coatings, Ceram. Int. Volume 41, Issue 9, Part A. (2015). Pages 10349-10379, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2015.04.152.
Elias, C.N., Lima, J.H.C., Valiev, R. et al. Biomedical applications of titanium and its alloys. JOM 60, 46–49 (2008). https://doi.org/10.1vill007/s11837-008-0031-1.
Villanueva, J., Trino, L., Thomas, J. et al. Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. J Bio Tribo Corros 3, 1 (2017). https://doi.org/10.1007/s40735-016-0060-1.
Keating J.F., McQueen M. M. Substitutes for autologous bone graft in orthopaedic trauma. The journal of bond & joint surgery (Br), 83-B (1), pp. 3-8. (2001). https://doi.org/10.1302/0301-620x.83b1.11952.
Vallet Regí M.; Munuera L. Biomateriales, aquí y ahora, p. 267 [27]. (2000). ISBN-13: 978-8481556759.
Flautre B., y col. Porous HA ceramic for bone replacement: Role of the pores and interconnections - experimental study in the rabbit. J Mater Sci Mater Med, 12, pp. 679- 682.
Comín M.; Peris J.L.; Prat J.M.; Decoz J.R.; Vera P.M.; Hoyos J.V. (1999). Biomecánica de la fractura ósea y técnicas de reparación. Valencia: IBV.
Blackwood D.J., (2000). Corrosion behaviour of porous titanium-graphite composites designed for surgical implants. Corrosion Science, 42, pp. 481-503.
Gil F. J. (2007). Comparison of the mechanical properties between tantalum and nickeltitanium foams implant materials for bone ingrowth applications. J. Alloys Compd, 439 (1- 2), pp. 67-73. https://doi.org/10.1016/j.jallcom.2006.08.069.
Wehmöller M.; Weihe S.; Rasche C.; Scherer P.; Eufinger H. (2004). CAD/CAMprefabricated titanium implants for large skull defects-clinical experience with 166 patients from 1994 to 2000, International Congress series, 1268, pp. 667-672.
Rodriguez Rius D. (1999). Obtención de capas de nitruro de titanio mediante tratamiento termoquímico en titanio y Ti6Al4V y caracterización de sus propiedades para aplicaciones biomédicas, U. Politècnica de Catalunya, Barcelona.
Rack H.J., Qazi J.I, Titanium alloys for biomedical applications, Materials Science and Engineering: C, Volume 26, Issue 8, 2006, Pages 1269-1277, ISSN 0928-4931, https://doi.org/10.1016/j.msec.2005.08.032.
Costigan M., Cary R.,Dobson S. "Vanadium pentoxide and other inorganic vanadium compounds". Concise International Chemical Assessment Document (2000) (CICAD) 29. https://apps.who.int/iris/bitstream/handle/10665/42365/9241530294.pdf?sequence=1.
Louloudakis D., Vernardou D.,y col. Electrochemical evaluation of vanadium pentoxide coatings grown by AACVD. Surf. Coat. Technol. (2015). https://doi.org/10.1016/j.solmat.2014.12.002
X.H. Zheng, D.G. Walmsley. Discrepancy between theory and measurement of superconducting vanadium. Physica C 515 (2015) 41–48.
Bautista F.M, Campelo J.M, Luna D., Y col. Vanadium oxides supported on TiO2- Sepiolite and Sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Catal. Today, 128 (2007) 183. https://doi.org/10.1016/j.apcata.2007.02.033.
Aperador W., Duque J., Delgado E,. Mechanical, Microstructural and Tribo- Electrochemistry Characterization in Aqueous Media of Coatings Vanadium / Vanadium Nitride Used as Functional Coating for Implants. Int. J. Electrochem. Sci., 11 (2016) 4688 – 4700, https://doi.org/10.20964/2016.06.58.
Urrutia A., Rincón C., Y col. Efecto De La Variación Del Flujo De Nitrógeno Sobre Las Propiedades Mecánicas Y Tribológicas De Películas Delgadas De Nitruro De Vanadio Depositadas Sobre Aceros M2. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales 2009; S1 (4): 1495-1501.
Fernandes F., Loureiro A., Y col. The effect of increasing V content on the structure, mechanicalproperties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering. Applied Surface Science 289 (2014) 114– 123. https://doi.org/10.1016/j.apsusc.2013.10.117.
Sangiovanni D.G., Hultman L., Chirita V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia 59 (2011) 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013.
Wei-Yu HoChien-Liang Lin, Ming-Der Chen, Woei-Yun Ho, Characteristics of TiVN and TiVCN Coatings by Cathodic Arc Deposition. Materials, Biotechnology and Environment (ICMMBE 2016). https://doi.org/10.2991/icmmbe-16.2016.111.
Deng B., Tao Y., Deliang G. Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings. Applied Surface Science 258 (2012) 9080–9086. https://doi.org/10.1016/j.apsusc.2012.06.001.
Knotek O, Barimani A, Bosserhoff B, Löffler F. Sturcture and properties of magnetronsputtered Ti-V-N coating. Thin solid films 1990;193/4:557-564. https://doi.org/10.1016/S0040-6090(05)80065-3.
Tao Fu, Xianghe Peng, Chen Wan, Zijun Lin, Xiaosheng Chen, Ning Hu, Zhongchang Wang. Molecular dynamics simulation of plasticity in VN(001) crystals under nanoindentation with a spherical indenter. Appl. Surf. Sci. 392 (2017) 942–949. https://doi.org/10.1016/j.apsusc.2016.09.130.
Liu et al. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Applied Surface Science 279 (2013) 159–166. https://doi.org/10.1016/j.apsusc.2013.04.062.
Li, N., Misra, A., Shao, S., & Wang, J. (2015). Experimental Quantification of Resolved Shear Stresses for Dislocation Motion in TiN. Nano Letters, 15(7), 4434–4439. https://doi.org/10.1021/acs.nanolett.5b00791.
Guemmaz M., Mosser A., Ahuja R., Parlebas J.C. Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: influence of lattice vacancies. https://doi.org/10.1016/S1466-6049(01)00151-9.
Gueddaoui H., Schmerber G., Abes M., Guemmaz M., Parlebas J.C. Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films. Catalysis Today 113 (2006) 270–274. https://doi.org/10.1016/j.cattod.2005.11.079.
Liao M. Y., Gotoh Y., Tsuji H., and Ishikawa J. Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target. J. Vac. Sci. Technol A 22, 146 (2004). https://doi.org/10.1116/1.1631473.
Ouyang J.H., Murakami T., Sasaki S. High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating. Wear 263 (2007) 1347–1353. ISSN 0043-1648. https://doi.org/10.1016/j.wear.2004.03.014.
Lewis D.B., Creasey S. y col. The effect of (TiqAl): V ratio on the structure and oxidation behaviour of TiAlNyVN nano-scale multilayer coatings. Surface and Coatings Technology 177 –178 (2004) 252–259. https://doi.org/10.1016/j.surfcoat.2003.09.041.
Sung K., Young J., Dongil K. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surf. Coat. Technol 187 (2004). https://doi.org/10.1016/j.surfcoat.2004.01.011.
Martev I.N., y col. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films. Journal of Physics: Conference Series 113 (2008) 012025. https://doi.org/10.1088/1742-6596/113/1/012025.
Saoula N., Djerourou S., Yahiaoui K., Henda K., Kesri R., Erasmus R. M. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. https://doi.org/10.1002/sia.3299.
Zeng K, Schmid-Fetzer R. Thermodynamic assessment and applications of Ti-V-N system. (2013). https://doi.org/10.1179/mst.1998.14.11.1083.
Du, Y, Schmid-Fetzer, R, & Ohtani, H. Thermodynamic assessment of the V-N system. 22(1), 0–58. https://doi.org/10.1016/s0364-5916(98)00013-3. [60]. Wang K., Kong X., Du J., Y Col. Thermodynamic description of the Ti–H system, Calphad, Volume 34, Issue 3, Pages 317-323 (2010). ISSN 0364-5916. https://doi.org/10.1016/j.calphad.2010.07.001.
Landolt D., Mischler S., Stemp M., Barril S. Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256 (2004) 517–524. https://doi.org/10.1016/S0043-1648(03)00561-1.
Bharat Bhusham, “Introduction to Tribology” 2nd Edition. John Wiley & Sons Ltd (2013).
H.P. Jost “Economic impact of Tribology”, National Bureau of Standard Special Publication, 423 (1974).
ASTM G40-05 (2005). “Standard Terminology Relating to Wear and Erosion”.
Zum Gahr K.H. “Microstructure and Wear of Materials” Eselvier Science Publishers B.V. (1987).
Williams J.A. “Wear and Wear Particles-Some Fundamentals”, Tribology International, 38 (2005) 863-870. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2005.03.007.
Martínez Pérez Francisco, “Tribología: Ciencia y Técnica para el Mantenimiento”, Limusa Noriega Editores (2002).
Horst Czichos, “Tribology: a Systems Approach to the Science and Technology of Friction, Lubrication and Wear”, Eselvier Scientific Publishing Company (1978).
Vieira A. C., Rocha L. A., Ariza E., Gomes J. R., and Celis J.-P., “Repassivation of commercially pure Ti in different saliva solutions under tribocorrosion condition,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), pp. 1–10, Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2154.
Rocha L. A., Ribeiro A. R., Vieira A. C., Ariza E., Gomes J. R., and Celis J.-P., “Tribocorrosion studies on commercially pure titanium for dental applications,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2271.
Mischler S., Pax G., “Tribological behaviour of titanium sliding against bone,” European Cells and Materials, vol. 3, no. 1, pp. 28–29, 2002.
Barril S., Mischler S., Landolt D., “Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt.% sodium chloride solution,” Wear, vol. 256, no. 9-10, pp. 963–972, 2004. https://doi.org/10.1016/j.wear.2003.11.003.
Contu F., Elsener B., Bohni H., “Stability and repassivation of metallic implants in serum bovine,” Eur. Cells Mater, vol. 1, no. 1, pp. 14–15, 2001. https://doi.org/10.1002/jbm.10329.
Ribeiro A. Ariza E, Rocha Luis. Tribocorrosion behaviour of titanium grade 2 in alternative linear regime of sliding in artificial saliva solutions. 2005. Material Science.
Mathew M. T. Tribocorrosion behaviour of TiCxOy thin films in bio-fluids. Electrochim.Acta (2010). 929 – 937. https://doi.org/10.1016/j.electacta.2010.08.067
Fernandes A.C., Vaz F., Ariza E.. Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy. Surf. Coat. Technol. 200 (2006) 6218–6224. https://doi.org/10.1016/j.surfcoat.2005.11.069.
m H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.
Alves A C, et al. Tribocorrosion behavior of anodic treated titanium surfaces intended for dental implants. 2013 J. Phys. D: Appl. Phys. 46. https://doi.org/10.1088/0022- 3727/46/40/404001
Stack M.M., Huang W., Wang G., Hodge C., Some views on the construction of biotribo- corrosion maps for Titanium alloys in Hank's solution: Particle concentration and applied loads effects, Tribol Int, Volume 44, Issue 12, 2011, Pages 1827-1837, ISSN 0301- 679X, https://doi.org/10.1016/j.triboint.2011.07.009.
W. Conshohocken, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1,” vol. 05, no. Reapproved 2010, pp. 1–5, 2017.
ASTM G133-22. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear.
ASTM F732-17. Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses.
Gómez B.M. Caracterización de las propiedades tribológicas de los recubrimientos duros. 2005.
Meza, J.M., C.A. Chaves y J.M. Vélez, 2006, Técnicas de indentación: medición de propiedades mecánicas en cerámicas, Dyna, Año 73, Nro. 149, pp. 81-93.
Askeland D.R., Wright W.J. Ciencia e ingeniería de materiales. 7a Edición. 2017. ISBN:9786075260624.
Oliver, W.C. y Pharr G. M. “An improved technique for determining hardness an elastic modulus using load and displacement sensing indentation experiments”, Journal of materials Research, Vol. 7, No. 6. 1992. https://doi.org/10.1557/JMR.1992.1564.
Chang Y., Chang H., y col. Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation, Surface and Coatings Technology, Volume 350, 2018, Pages 1071-1079, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2018.02.040.
Chang Y., Chiu W., Hung J. Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol, 2016. https://doi.org/10.1016/j.surfcoat.2016.02.047.
Montero C. et al. Effect of codeposition parameters on the hardness and adhesion of TiVN coatings. Ceram. Int. 2015. https://doi.org/10.1016/j.ceramint.2015.05.046.
Hasegawa H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.
Roldán M. A., Alcalá M.D., Ortega A., Real C., Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011.
ASTM G3-14 (2019). “Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing”.
Mohan P., Yedluri A., Ramesh N. y col. In-situ design of porous vanadium nitride@carbon nanobelts: A promising material for high-performance asymmetric supercapacitors, Applied Surface Science, Volume 575, 2022, 151734, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2021.151734.
Peña D., Pedraza S., Vásquez C. Evaluación de la corrosión del acero AISI-SAE 1020 en un ambiente multifásico de salmuera CO2-H2S. Ingeniería y Desarrollo [en linea]. 2010. ISSN: 0122-3461. Disponible en: https://www.redalyc.org/articulo.oa?id=85215207011.
Chotiros K., Yoshiki O., Carl J., Suteera T. y col. Electrochemical corrosion of titanium and titanium-based alloys, The Journal of Prosthetic Dentistry, Volume 85, Issue 2, 2001, Pages 195-202, ISSN 0022-3913, https://doi.org/10.1067/mpr.2001.113029.
Rodríguez A.G. Estudio de la interacción de bacterias implicadas en la formulación de placa dentro-bacteriana con superficies de titanio comercialmente puro in vitro y su asociación con la peri-implantitis. Tesi doctoral, UPC, Departament de Ciència dels Materials i Enginyeria Metalꞏlúrgica, 2009. ISBN 9788469312490. Disponible en: http://hdl.handle.net/2117/93382.
Marchetti E., May O., Girard J., y Col. Biomateriales en cirugía ortopédica, EMC - Técnicas Quirúrgicas - Ortopedia y Traumatología, Volume 2, Issue 3, 2010, Pages 1-24, ISSN 2211-033X, https://doi.org/10.1016/S2211-033X(10)70083-9.
Lackner, J.; Major, L.; Kot, M. (2011). Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(3), https://doi.org/10.2478/v10175-011-0042-x.
Glaser A., Surnev S., Ramsey M., Y col. The growth of epitaxial VN(111) nanolayer surfaces, Surface Science, Volume 601, Issue 21, 2007, Pages 4817-4823, ISSN 0039- 6028, https://doi.org/10.1016/j.susc.2007.07.032.
Yeung, W.Y.; Dub, S.N.; Wuhrer, R.; Milman, Yu.V. A nanoindentation study of magnetron co-sputtered nanocrystalline ternary nitride coatings. Science of Sintering, 38(3), 211 221. 2006. https://doi:10.2298/SOS0603211Y.
Mathew M.T, y col. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium?, Journal of the Mechanical Behavior of Biomedical Materials, Volume 8, 2012, Pages 71-85, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2011.11.004.
Stack M.M, Abdulrahman G.H. Mapping erosion-corrosion of carbon steel in oil exploration conditions: Some new approaches to characterizing mechanisms and synergies. Tribology International, Volume 43, Issue 7, 2010, Pages 1268-1277, ISSN 0301-679X,. https://doi.org/10.1016/j.triboint.2010.01.005.
Wang Y., Lee J., Duh J. Mechanical strengthening in self lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics, Surface and Coatings Technology, Volume 303, Part A, 2016, Pages 12-17, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2016.02.003.
ASTM G102 - 89. Standart Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, Volume 65, Issues 1–2, 1983, Pages 55-63, ISSN 0022-1759, https://doi.org/10.1016/0022-1759(83)90303-4.
Berridge M.V., Tan A.S. Characterization of the Cellular Reduction of 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction, Archives of Biochemistry and Biophysics, Volume 303, Issue 2, 1993, Pages 474-482, ISSN 0003-9861, https://doi.org/10.1006/abbi.1993.1311.
ASTM G119- 09. Standart Guide for determining Synergism Between Wear and corrosión.
Wilson S, Alpas A. Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear. 196 (1996) 270 - 278. https://doi.org/10.1016/0043- 1648(96)06923-2.
Santner E, Klaffke D, Meier zu Kijcker G. Comprehensive tribological characterization of thin TiN-based coatings. Wear. 190 (1995) 204-211. https://doi.org/10.1016/0043- 1648(95)06649-7.
dc.language.iso.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.format.extent.none.fl_str_mv 114 Hojas : Ilustraciones, Fotografias, Graficas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Pedagogica Tecnologíca de Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Tunja
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería y Ciencia de los Materiales
publisher.none.fl_str_mv Universidad Pedagogica Tecnologíca de Colombia
institution Universidad Pedagógica y Tecnológica de Colombia
bitstream.url.fl_str_mv https://repositorio.uptc.edu.co/bitstreams/26a074d4-97b6-46f5-bb9a-8133cbb2b1ea/download
https://repositorio.uptc.edu.co/bitstreams/2466383d-ea0b-47b5-bc96-81619015648a/download
https://repositorio.uptc.edu.co/bitstreams/f770c020-295e-476b-9cfb-d2123bb5ac7c/download
https://repositorio.uptc.edu.co/bitstreams/6a818d90-9184-4308-8480-c9f86ee21819/download
https://repositorio.uptc.edu.co/bitstreams/8f745fd3-b66c-437e-ab69-3094a09def39/download
https://repositorio.uptc.edu.co/bitstreams/c12e1f9b-77c1-4668-b5cb-22c71404cc84/download
bitstream.checksum.fl_str_mv 16abc0324d1d1b671c55ce0d18564deb
28d3642724f9a9ee9985be9bc9f513c0
ff4c8ff01d544500ea4bfea43e6108c1
fb54e91dccfbfd2d8f85850809054013
98bb03c3d1758589e44575c48cb33ec8
8b6adf1b9148f03826af1b76e06ec165
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1849966095828516864
spelling Vera López, EnriqueAperador Chaparro, WillianRíos Rojas, Alejandra María2025-08-26T00:28:25Z2025-08-26T00:28:25Z2023-09-01https://repositorio.uptc.edu.co/handle/001/18060Soriano L., Abbate M., Pen H., Prieto P., Sanz J. The electronic structure of TiN and VN: X-ray and electron spectra compared to band structure calculations, Solid State Communications, Volume 102, Issue 4, 1997, Pages 291-296, ISSN 0038-1098. https://doi.org/10.1016/S0038-1098(96)00780-6.Floroian L., Craciun D., Socol G., Dorcioman G., y col. Titanium implants’ surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films, Applied Surface Science, 2017. Volume 417, Pages 175-182, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2017.03.068.Bauer S., Schmuki P., Von der Mark K., Park J., Engineering biocompatible implant surfaces: Part I: Materials and surfaces, Prog Mat Sci 58. 2013. Volume 58, Issue 3, Pages 261-326, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2012.09.001.Kovacs P., Davidson J.A. Chemical and Electrochemical Aspects of the Biocompatibility of Titanium and its Alloys. ASTM. 1996. https://doi.org/10.1520/STP16077S.Deeleard T., Buranawong A., Choeysuppaket A., Witit-anun N., Chaiyakun S., Limsuwan P. Structure and Composition of TiVN Thin Films Deposited by Reactive DC Magnetron Cosputtering. Procedia Engineering 32 P 1000 – 1005. 2011. https://doi.org/10.1016/j.proeng.2012.02.045.Roldán M. A, Alcalá M.D, Ortega A., Real C. Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011. https://doi.org/10.3989/CYV.052011Lim S. Recent developments in wear-mechanism maps. Tribol Int 31(1):87–97. 1998. ISSN 0301-679X, https://doi.org/10.1016/S0301-679X(98)00011-5.Taylor M. B., A Study Of Aluminium Nitride And Titanium Vanadium Nitride Thin Films. 2006. https://core.ac.uk/works/6498396.Knotek O. Burgmer W, Stoessel C. Arc-evaporated Ti-V-N thin films. Surface and Coatings Technology; 1992. Volumes 54–55, Part 1, Pages 249-254, ISSN 0257-8972, https://doi.org/10.1016/S0257-8972(09)90058-5.Deeleard T., Chaiyakun S., Pokaipisit A., Limsuwan P. Effects of Vanadium Content on Structure and Chemical State of TiVN Films Prepared by Reactive DC Magnetron Co- Sputtering. Materials Sciences and Applications, 2013, 4, 556-563. https://doi.org/10.4236/MSA.2013.49068.Laimer, J., “Developments in the deposition of hard coatings by plasma-based techniques”, Vaccum 40: 27-32. (1990). ISSN 0042-207X. https://doi.org/10.1016/0042- 207X(90)90112-C.Stuart, R. V., “Vacuum Technology, Thin Films, and Sputtering an introduction”, Academic Press, 148 pp. (1983). ISBN 9780126747805. https://doi.org/10.1016/B978-0-12- 674780-5.50008-1.Gil F.J y J.A.Planell, [et al]. “Aplicaciones Biomédicas del Titanio y sus Aleaciones”,Biomecánica. (1993), vol. 1, núm. 1, p. 34-42. http://hdl.handle.net/2099/6814. https://doi.org/10.5821/sibb.v1i1.1543G. Lütjering, J. C. Williams, Titanium, Ed. Springer (2003). https://doi.org/10.1007/978- 3-540-73036-1_10.ASTM F67 - 06. Standard Specification for Unalloyed Titanium for Surgical Implant Applications.Tarín P. (febrero 1999). El titanio y sus aleaciones. ETSIA Madrid.Leyens C., Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117. https://doi.org/10.1002/3527602119.Wang R.R., Welsch G.E., Castro-Cedeno M. Interfacial Reactions of Cast Titanium with Mold Materials. Int J Prosthodont. (1998). https://pubmed.ncbi.nlm.nih.gov/9588989/Leyens C.; Peters M. Titanium and titanium alloys, fundamentals and applications. (2003). ISBN:9783527602117 https://doi.org/10.1002/3527602119.Hardie D., Ouyang S. Effect of microstructure and heat treatment on fracture behaviour of smooth and precracked tensile specimens od Ti6Al4V. J Mater Sci Technol, 15, pp. 1049 – 1057. (1999). https://doi.org/10.1179/026708399101506779.Baeslack W. A y col. Weld solidification and HAZ liquation in a metastable-beta titanium alloy-beta-21S. Mater Charact, 30 (2), pp. 147-154. (1993). https://doi.org/10.1016/1044- 5803(93)90018-Q.Vieira A. C, Ribeiro A. R, Celis J. P, “Influence of pH and corrosión inhibitors on the tribocorrosion of titanium in artificial saliva”. Wear 261 (2006). https://doi.org/10.1016/j.wear.2006.03.031.Kotomori J, Hisamori N., Yosuke O., “The corrosion/wear mechanism of Ti-6Al-4V”. Wear 263 (2007). https://doi.org/10.1016/j.wear.2006.11.025.Nadim J. Hallab, Joshua J. Jacobs, “Biologic Effects of implant debris”. Bulletin of the NYU Hospital for Joint Diseases (2009).Marcel Pourbaix, NACE, USA, 213 (1974).Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT. Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet. Dent. (2001).85: 195-202. https://doi.org/10.1067/mpr.2001.113029.Ramires I, Guastaldi AC. Ramires I, Guastaldi AC. Estudo do Biomaterial Ti-6Al-4V Empregandose técnicas Electroquimicas e XPS. Quim. Nova. 2002; 25:10-1 Quim. Nova. (2002). 25:10-1. https://doi.org/10.1590/S0100-40422002000100003.Long M., Rack H.J., Titanium alloys in total joint replacement a materials science perspective. Biomaterials. (1998). 19:1621-39. https://doi.org/10.1016/S0142- 9612(97)00146-4.Heimann R.B. Materials Science of Crystaline Bioceramics: A Review of Basic Properties and Applications. CMU. Journal, 1, pp. 23-46. (2002).Simske S. J., Ayers R. A., Bateman T. A. Porous materials for bone engineering. Materials Science Forum, 250, pp. 151-182. (1997). https://doi.org/10.4028/www.scientific.net/MSF.250.151.Ibris N., Mirza Rosca J.C. EIS study of Ti and its alloys in biological media. J. Electroanal, 526, pp. 53-62. (2002). https://doi.org/10.1016/S0022-0728(02)00814-8.Santecchia E.,y col .Wear resistance investigation of titanium nitride-based coatings, Ceram. Int. Volume 41, Issue 9, Part A. (2015). Pages 10349-10379, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2015.04.152.Elias, C.N., Lima, J.H.C., Valiev, R. et al. Biomedical applications of titanium and its alloys. JOM 60, 46–49 (2008). https://doi.org/10.1vill007/s11837-008-0031-1.Villanueva, J., Trino, L., Thomas, J. et al. Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. J Bio Tribo Corros 3, 1 (2017). https://doi.org/10.1007/s40735-016-0060-1.Keating J.F., McQueen M. M. Substitutes for autologous bone graft in orthopaedic trauma. The journal of bond & joint surgery (Br), 83-B (1), pp. 3-8. (2001). https://doi.org/10.1302/0301-620x.83b1.11952.Vallet Regí M.; Munuera L. Biomateriales, aquí y ahora, p. 267 [27]. (2000). ISBN-13: 978-8481556759.Flautre B., y col. Porous HA ceramic for bone replacement: Role of the pores and interconnections - experimental study in the rabbit. J Mater Sci Mater Med, 12, pp. 679- 682.Comín M.; Peris J.L.; Prat J.M.; Decoz J.R.; Vera P.M.; Hoyos J.V. (1999). Biomecánica de la fractura ósea y técnicas de reparación. Valencia: IBV.Blackwood D.J., (2000). Corrosion behaviour of porous titanium-graphite composites designed for surgical implants. Corrosion Science, 42, pp. 481-503.Gil F. J. (2007). Comparison of the mechanical properties between tantalum and nickeltitanium foams implant materials for bone ingrowth applications. J. Alloys Compd, 439 (1- 2), pp. 67-73. https://doi.org/10.1016/j.jallcom.2006.08.069.Wehmöller M.; Weihe S.; Rasche C.; Scherer P.; Eufinger H. (2004). CAD/CAMprefabricated titanium implants for large skull defects-clinical experience with 166 patients from 1994 to 2000, International Congress series, 1268, pp. 667-672.Rodriguez Rius D. (1999). Obtención de capas de nitruro de titanio mediante tratamiento termoquímico en titanio y Ti6Al4V y caracterización de sus propiedades para aplicaciones biomédicas, U. Politècnica de Catalunya, Barcelona.Rack H.J., Qazi J.I, Titanium alloys for biomedical applications, Materials Science and Engineering: C, Volume 26, Issue 8, 2006, Pages 1269-1277, ISSN 0928-4931, https://doi.org/10.1016/j.msec.2005.08.032.Costigan M., Cary R.,Dobson S. "Vanadium pentoxide and other inorganic vanadium compounds". Concise International Chemical Assessment Document (2000) (CICAD) 29. https://apps.who.int/iris/bitstream/handle/10665/42365/9241530294.pdf?sequence=1.Louloudakis D., Vernardou D.,y col. Electrochemical evaluation of vanadium pentoxide coatings grown by AACVD. Surf. Coat. Technol. (2015). https://doi.org/10.1016/j.solmat.2014.12.002X.H. Zheng, D.G. Walmsley. Discrepancy between theory and measurement of superconducting vanadium. Physica C 515 (2015) 41–48.Bautista F.M, Campelo J.M, Luna D., Y col. Vanadium oxides supported on TiO2- Sepiolite and Sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Catal. Today, 128 (2007) 183. https://doi.org/10.1016/j.apcata.2007.02.033.Aperador W., Duque J., Delgado E,. Mechanical, Microstructural and Tribo- Electrochemistry Characterization in Aqueous Media of Coatings Vanadium / Vanadium Nitride Used as Functional Coating for Implants. Int. J. Electrochem. Sci., 11 (2016) 4688 – 4700, https://doi.org/10.20964/2016.06.58.Urrutia A., Rincón C., Y col. Efecto De La Variación Del Flujo De Nitrógeno Sobre Las Propiedades Mecánicas Y Tribológicas De Películas Delgadas De Nitruro De Vanadio Depositadas Sobre Aceros M2. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales 2009; S1 (4): 1495-1501.Fernandes F., Loureiro A., Y col. The effect of increasing V content on the structure, mechanicalproperties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering. Applied Surface Science 289 (2014) 114– 123. https://doi.org/10.1016/j.apsusc.2013.10.117.Sangiovanni D.G., Hultman L., Chirita V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia 59 (2011) 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013.Wei-Yu HoChien-Liang Lin, Ming-Der Chen, Woei-Yun Ho, Characteristics of TiVN and TiVCN Coatings by Cathodic Arc Deposition. Materials, Biotechnology and Environment (ICMMBE 2016). https://doi.org/10.2991/icmmbe-16.2016.111.Deng B., Tao Y., Deliang G. Effects of vanadium ion implantation on microstructure, mechanical and tribological properties of TiN coatings. Applied Surface Science 258 (2012) 9080–9086. https://doi.org/10.1016/j.apsusc.2012.06.001.Knotek O, Barimani A, Bosserhoff B, Löffler F. Sturcture and properties of magnetronsputtered Ti-V-N coating. Thin solid films 1990;193/4:557-564. https://doi.org/10.1016/S0040-6090(05)80065-3.Tao Fu, Xianghe Peng, Chen Wan, Zijun Lin, Xiaosheng Chen, Ning Hu, Zhongchang Wang. Molecular dynamics simulation of plasticity in VN(001) crystals under nanoindentation with a spherical indenter. Appl. Surf. Sci. 392 (2017) 942–949. https://doi.org/10.1016/j.apsusc.2016.09.130.Liu et al. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Applied Surface Science 279 (2013) 159–166. https://doi.org/10.1016/j.apsusc.2013.04.062.Li, N., Misra, A., Shao, S., & Wang, J. (2015). Experimental Quantification of Resolved Shear Stresses for Dislocation Motion in TiN. Nano Letters, 15(7), 4434–4439. https://doi.org/10.1021/acs.nanolett.5b00791.Guemmaz M., Mosser A., Ahuja R., Parlebas J.C. Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: influence of lattice vacancies. https://doi.org/10.1016/S1466-6049(01)00151-9.Gueddaoui H., Schmerber G., Abes M., Guemmaz M., Parlebas J.C. Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films. Catalysis Today 113 (2006) 270–274. https://doi.org/10.1016/j.cattod.2005.11.079.Liao M. Y., Gotoh Y., Tsuji H., and Ishikawa J. Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target. J. Vac. Sci. Technol A 22, 146 (2004). https://doi.org/10.1116/1.1631473.Ouyang J.H., Murakami T., Sasaki S. High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating. Wear 263 (2007) 1347–1353. ISSN 0043-1648. https://doi.org/10.1016/j.wear.2004.03.014.Lewis D.B., Creasey S. y col. The effect of (TiqAl): V ratio on the structure and oxidation behaviour of TiAlNyVN nano-scale multilayer coatings. Surface and Coatings Technology 177 –178 (2004) 252–259. https://doi.org/10.1016/j.surfcoat.2003.09.041.Sung K., Young J., Dongil K. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surf. Coat. Technol 187 (2004). https://doi.org/10.1016/j.surfcoat.2004.01.011.Martev I.N., y col. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films. Journal of Physics: Conference Series 113 (2008) 012025. https://doi.org/10.1088/1742-6596/113/1/012025.Saoula N., Djerourou S., Yahiaoui K., Henda K., Kesri R., Erasmus R. M. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. https://doi.org/10.1002/sia.3299.Zeng K, Schmid-Fetzer R. Thermodynamic assessment and applications of Ti-V-N system. (2013). https://doi.org/10.1179/mst.1998.14.11.1083.Du, Y, Schmid-Fetzer, R, & Ohtani, H. Thermodynamic assessment of the V-N system. 22(1), 0–58. https://doi.org/10.1016/s0364-5916(98)00013-3. [60]. Wang K., Kong X., Du J., Y Col. Thermodynamic description of the Ti–H system, Calphad, Volume 34, Issue 3, Pages 317-323 (2010). ISSN 0364-5916. https://doi.org/10.1016/j.calphad.2010.07.001.Landolt D., Mischler S., Stemp M., Barril S. Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256 (2004) 517–524. https://doi.org/10.1016/S0043-1648(03)00561-1.Bharat Bhusham, “Introduction to Tribology” 2nd Edition. John Wiley & Sons Ltd (2013).H.P. Jost “Economic impact of Tribology”, National Bureau of Standard Special Publication, 423 (1974).ASTM G40-05 (2005). “Standard Terminology Relating to Wear and Erosion”.Zum Gahr K.H. “Microstructure and Wear of Materials” Eselvier Science Publishers B.V. (1987).Williams J.A. “Wear and Wear Particles-Some Fundamentals”, Tribology International, 38 (2005) 863-870. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2005.03.007.Martínez Pérez Francisco, “Tribología: Ciencia y Técnica para el Mantenimiento”, Limusa Noriega Editores (2002).Horst Czichos, “Tribology: a Systems Approach to the Science and Technology of Friction, Lubrication and Wear”, Eselvier Scientific Publishing Company (1978).Vieira A. C., Rocha L. A., Ariza E., Gomes J. R., and Celis J.-P., “Repassivation of commercially pure Ti in different saliva solutions under tribocorrosion condition,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), pp. 1–10, Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2154.Rocha L. A., Ribeiro A. R., Vieira A. C., Ariza E., Gomes J. R., and Celis J.-P., “Tribocorrosion studies on commercially pure titanium for dental applications,” in Proceedings of the European Corrosion Congress (EUROCORR ’05), Lisbon, Portugal, September 2005. http://hdl.handle.net/1822/2271.Mischler S., Pax G., “Tribological behaviour of titanium sliding against bone,” European Cells and Materials, vol. 3, no. 1, pp. 28–29, 2002.Barril S., Mischler S., Landolt D., “Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt.% sodium chloride solution,” Wear, vol. 256, no. 9-10, pp. 963–972, 2004. https://doi.org/10.1016/j.wear.2003.11.003.Contu F., Elsener B., Bohni H., “Stability and repassivation of metallic implants in serum bovine,” Eur. Cells Mater, vol. 1, no. 1, pp. 14–15, 2001. https://doi.org/10.1002/jbm.10329.Ribeiro A. Ariza E, Rocha Luis. Tribocorrosion behaviour of titanium grade 2 in alternative linear regime of sliding in artificial saliva solutions. 2005. Material Science.Mathew M. T. Tribocorrosion behaviour of TiCxOy thin films in bio-fluids. Electrochim.Acta (2010). 929 – 937. https://doi.org/10.1016/j.electacta.2010.08.067Fernandes A.C., Vaz F., Ariza E.. Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy. Surf. Coat. Technol. 200 (2006) 6218–6224. https://doi.org/10.1016/j.surfcoat.2005.11.069.m H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.Alves A C, et al. Tribocorrosion behavior of anodic treated titanium surfaces intended for dental implants. 2013 J. Phys. D: Appl. Phys. 46. https://doi.org/10.1088/0022- 3727/46/40/404001Stack M.M., Huang W., Wang G., Hodge C., Some views on the construction of biotribo- corrosion maps for Titanium alloys in Hank's solution: Particle concentration and applied loads effects, Tribol Int, Volume 44, Issue 12, 2011, Pages 1827-1837, ISSN 0301- 679X, https://doi.org/10.1016/j.triboint.2011.07.009.W. Conshohocken, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1,” vol. 05, no. Reapproved 2010, pp. 1–5, 2017.ASTM G133-22. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear.ASTM F732-17. Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses.Gómez B.M. Caracterización de las propiedades tribológicas de los recubrimientos duros. 2005.Meza, J.M., C.A. Chaves y J.M. Vélez, 2006, Técnicas de indentación: medición de propiedades mecánicas en cerámicas, Dyna, Año 73, Nro. 149, pp. 81-93.Askeland D.R., Wright W.J. Ciencia e ingeniería de materiales. 7a Edición. 2017. ISBN:9786075260624.Oliver, W.C. y Pharr G. M. “An improved technique for determining hardness an elastic modulus using load and displacement sensing indentation experiments”, Journal of materials Research, Vol. 7, No. 6. 1992. https://doi.org/10.1557/JMR.1992.1564.Chang Y., Chang H., y col. Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation, Surface and Coatings Technology, Volume 350, 2018, Pages 1071-1079, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2018.02.040.Chang Y., Chiu W., Hung J. Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol, 2016. https://doi.org/10.1016/j.surfcoat.2016.02.047.Montero C. et al. Effect of codeposition parameters on the hardness and adhesion of TiVN coatings. Ceram. Int. 2015. https://doi.org/10.1016/j.ceramint.2015.05.046.Hasegawa H., Kimura A., Suzuki T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and films, J. Vac. Sci. Technol. A 18 (3) (2000) 1038–1040. https://doi.org/10.1116/1.582296.Roldán M. A., Alcalá M.D., Ortega A., Real C., Síntesis y caracterización del nitruro ternario de titanio y vanadio (TixV1-xN). Instituto de Ciencia de Materiales de Sevilla. Boletín de la Sociedad Española de Cerámica y Vidrio. 2011.ASTM G3-14 (2019). “Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing”.Mohan P., Yedluri A., Ramesh N. y col. In-situ design of porous vanadium nitride@carbon nanobelts: A promising material for high-performance asymmetric supercapacitors, Applied Surface Science, Volume 575, 2022, 151734, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2021.151734.Peña D., Pedraza S., Vásquez C. Evaluación de la corrosión del acero AISI-SAE 1020 en un ambiente multifásico de salmuera CO2-H2S. Ingeniería y Desarrollo [en linea]. 2010. ISSN: 0122-3461. Disponible en: https://www.redalyc.org/articulo.oa?id=85215207011.Chotiros K., Yoshiki O., Carl J., Suteera T. y col. Electrochemical corrosion of titanium and titanium-based alloys, The Journal of Prosthetic Dentistry, Volume 85, Issue 2, 2001, Pages 195-202, ISSN 0022-3913, https://doi.org/10.1067/mpr.2001.113029.Rodríguez A.G. Estudio de la interacción de bacterias implicadas en la formulación de placa dentro-bacteriana con superficies de titanio comercialmente puro in vitro y su asociación con la peri-implantitis. Tesi doctoral, UPC, Departament de Ciència dels Materials i Enginyeria Metalꞏlúrgica, 2009. ISBN 9788469312490. Disponible en: http://hdl.handle.net/2117/93382.Marchetti E., May O., Girard J., y Col. Biomateriales en cirugía ortopédica, EMC - Técnicas Quirúrgicas - Ortopedia y Traumatología, Volume 2, Issue 3, 2010, Pages 1-24, ISSN 2211-033X, https://doi.org/10.1016/S2211-033X(10)70083-9.Lackner, J.; Major, L.; Kot, M. (2011). Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(3), https://doi.org/10.2478/v10175-011-0042-x.Glaser A., Surnev S., Ramsey M., Y col. The growth of epitaxial VN(111) nanolayer surfaces, Surface Science, Volume 601, Issue 21, 2007, Pages 4817-4823, ISSN 0039- 6028, https://doi.org/10.1016/j.susc.2007.07.032.Yeung, W.Y.; Dub, S.N.; Wuhrer, R.; Milman, Yu.V. A nanoindentation study of magnetron co-sputtered nanocrystalline ternary nitride coatings. Science of Sintering, 38(3), 211 221. 2006. https://doi:10.2298/SOS0603211Y.Mathew M.T, y col. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium?, Journal of the Mechanical Behavior of Biomedical Materials, Volume 8, 2012, Pages 71-85, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2011.11.004.Stack M.M, Abdulrahman G.H. Mapping erosion-corrosion of carbon steel in oil exploration conditions: Some new approaches to characterizing mechanisms and synergies. Tribology International, Volume 43, Issue 7, 2010, Pages 1268-1277, ISSN 0301-679X,. https://doi.org/10.1016/j.triboint.2010.01.005.Wang Y., Lee J., Duh J. Mechanical strengthening in self lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics, Surface and Coatings Technology, Volume 303, Part A, 2016, Pages 12-17, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2016.02.003.ASTM G102 - 89. Standart Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, Volume 65, Issues 1–2, 1983, Pages 55-63, ISSN 0022-1759, https://doi.org/10.1016/0022-1759(83)90303-4.Berridge M.V., Tan A.S. Characterization of the Cellular Reduction of 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction, Archives of Biochemistry and Biophysics, Volume 303, Issue 2, 1993, Pages 474-482, ISSN 0003-9861, https://doi.org/10.1006/abbi.1993.1311.ASTM G119- 09. Standart Guide for determining Synergism Between Wear and corrosión.Wilson S, Alpas A. Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear. 196 (1996) 270 - 278. https://doi.org/10.1016/0043- 1648(96)06923-2.Santner E, Klaffke D, Meier zu Kijcker G. Comprehensive tribological characterization of thin TiN-based coatings. Wear. 190 (1995) 204-211. https://doi.org/10.1016/0043- 1648(95)06649-7.application/pdf114 Hojas : Ilustraciones, Fotografias, Graficasapplication/pdfUniversidad Pedagogica Tecnologíca de ColombiaFacultad de IngenieríaTunjaDoctorado en Ingeniería y Ciencia de los Materialeshttps://creativecommons.org/licenses/by-sa/4.0/http://purl.org/coar/access_right/c_abf2Comportamiento tribocorrosivo de recubrimientos de TivnTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06Versión aceptadahttp://purl.org/redcol/resource_type/TDspaPublicationORIGINALPhD 010 AUTO.pdfAutorización publicaciónapplication/pdf598691https://repositorio.uptc.edu.co/bitstreams/26a074d4-97b6-46f5-bb9a-8133cbb2b1ea/download16abc0324d1d1b671c55ce0d18564debMD51trueAdministratorREADPhD 010 TESIS.pdfArchivo principalapplication/pdf6831737https://repositorio.uptc.edu.co/bitstreams/2466383d-ea0b-47b5-bc96-81619015648a/download28d3642724f9a9ee9985be9bc9f513c0MD52falseAnonymousREADTEXTPhD 010 AUTO.pdf.txtPhD 010 AUTO.pdf.txtExtracted texttext/plain4https://repositorio.uptc.edu.co/bitstreams/f770c020-295e-476b-9cfb-d2123bb5ac7c/downloadff4c8ff01d544500ea4bfea43e6108c1MD53falseAdministratorREADPhD 010 TESIS.pdf.txtPhD 010 TESIS.pdf.txtExtracted texttext/plain101879https://repositorio.uptc.edu.co/bitstreams/6a818d90-9184-4308-8480-c9f86ee21819/downloadfb54e91dccfbfd2d8f85850809054013MD55falseAnonymousREADTHUMBNAILPhD 010 AUTO.pdf.jpgPhD 010 AUTO.pdf.jpgGenerated Thumbnailimage/jpeg10457https://repositorio.uptc.edu.co/bitstreams/8f745fd3-b66c-437e-ab69-3094a09def39/download98bb03c3d1758589e44575c48cb33ec8MD54falseAdministratorREADPhD 010 TESIS.pdf.jpgPhD 010 TESIS.pdf.jpgGenerated Thumbnailimage/jpeg5800https://repositorio.uptc.edu.co/bitstreams/c12e1f9b-77c1-4668-b5cb-22c71404cc84/download8b6adf1b9148f03826af1b76e06ec165MD56falseAnonymousREAD001/18060oai:repositorio.uptc.edu.co:001/180602025-10-03 11:45:12.579restrictedhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co