Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads

This document presents the results of a proof of concept for describing with more detail the social and complementary infrastructure around the tertiary roads of the Taminango region in the department of Nariño, Colombia. A dataset with samples of free satellite images from Google Maps and OpenStree...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14323
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816
https://repositorio.uptc.edu.co/handle/001/14323
Palabra clave:
tertiary roads
satellite images
deep learning
remotely piloted aircraft
community participation
augmented reality
vías terciarias
imágenes satelitales
aprendizaje profundo
aeronaves remotamente pilotadas
participación comunitaria
realidad aumentada
Rights
License
http://creativecommons.org/licenses/by/4.0
id REPOUPTC2_66d38f52ed4bfd7c31af40f7819f6d13
oai_identifier_str oai:repositorio.uptc.edu.co:001/14323
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
dc.title.es-ES.fl_str_mv Análisis de imágenes satelitales usando técnicas de aprendizaje profundo y aeronaves remotamente pilotadas para la descripción a detalle de las vías terciarias
title Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
spellingShingle Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
tertiary roads
satellite images
deep learning
remotely piloted aircraft
community participation
augmented reality
vías terciarias
imágenes satelitales
aprendizaje profundo
aeronaves remotamente pilotadas
participación comunitaria
realidad aumentada
title_short Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
title_full Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
title_fullStr Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
title_full_unstemmed Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
title_sort Analysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary Roads
dc.subject.en-US.fl_str_mv tertiary roads
satellite images
deep learning
remotely piloted aircraft
community participation
augmented reality
topic tertiary roads
satellite images
deep learning
remotely piloted aircraft
community participation
augmented reality
vías terciarias
imágenes satelitales
aprendizaje profundo
aeronaves remotamente pilotadas
participación comunitaria
realidad aumentada
dc.subject.es-ES.fl_str_mv vías terciarias
imágenes satelitales
aprendizaje profundo
aeronaves remotamente pilotadas
participación comunitaria
realidad aumentada
description This document presents the results of a proof of concept for describing with more detail the social and complementary infrastructure around the tertiary roads of the Taminango region in the department of Nariño, Colombia. A dataset with samples of free satellite images from Google Maps and OpenStreetMaps was obtained. Then, a supervised deep learning algorithm with FCN (Fully Convolutional Network) topology is applied for the points of interest labeling process and the identification of the state of the roads using Keras and TensorFlow. Subsequently, a system consisting of a desktop application and a mobile application that integrates the functionalities of the trained algorithm through an intuitive interface and simple logic that stimulates interaction with the consultant is proposed. The desktop application includes a GUI designed in Python for tagging points of interest. The mobile application was developed with Flutter and comprises a database with documentation of the routes and road network in the region. It includes an augmented reality system in Vuforia Engine and Unity with virtual content developed in Blender and SolidWorks; A 3D model of the map of the region has been recreated for easier interaction and visualization of the points of interest and the status of the studied roads. In addition, complementary information was collected through remotely piloted aircraft for data acquisition in environments difficult to access, and through the community participation for the description and identification of areas not visible on official maps or statistics. This study addresses a method for the classification and identification of state of tertiary road network of the studied region, as well as labeling points of interest for the efficient management of resources for the development of new infrastructure there.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:59Z
dc.date.none.fl_str_mv 2021-12-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a368
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816
10.19053/01211129.v30.n58.2021.13816
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14323
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816
https://repositorio.uptc.edu.co/handle/001/14323
identifier_str_mv 10.19053/01211129.v30.n58.2021.13816
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816/11220
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816/11302
dc.rights.en-US.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf285
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf285
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13816
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e13816
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633864040906752
spelling 2021-12-082024-07-05T19:11:59Z2024-07-05T19:11:59Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/1381610.19053/01211129.v30.n58.2021.13816https://repositorio.uptc.edu.co/handle/001/14323This document presents the results of a proof of concept for describing with more detail the social and complementary infrastructure around the tertiary roads of the Taminango region in the department of Nariño, Colombia. A dataset with samples of free satellite images from Google Maps and OpenStreetMaps was obtained. Then, a supervised deep learning algorithm with FCN (Fully Convolutional Network) topology is applied for the points of interest labeling process and the identification of the state of the roads using Keras and TensorFlow. Subsequently, a system consisting of a desktop application and a mobile application that integrates the functionalities of the trained algorithm through an intuitive interface and simple logic that stimulates interaction with the consultant is proposed. The desktop application includes a GUI designed in Python for tagging points of interest. The mobile application was developed with Flutter and comprises a database with documentation of the routes and road network in the region. It includes an augmented reality system in Vuforia Engine and Unity with virtual content developed in Blender and SolidWorks; A 3D model of the map of the region has been recreated for easier interaction and visualization of the points of interest and the status of the studied roads. In addition, complementary information was collected through remotely piloted aircraft for data acquisition in environments difficult to access, and through the community participation for the description and identification of areas not visible on official maps or statistics. This study addresses a method for the classification and identification of state of tertiary road network of the studied region, as well as labeling points of interest for the efficient management of resources for the development of new infrastructure there.Este documento presenta los resultados de una prueba de concepto para la descripción con mayor detalle de la infraestructura social y complementaria alrededor de las vías terciarias de la región de Taminango, en el departamento de Nariño. Inicialmente, se obtuvo un conjunto de datos con muestras de imágenes satelitales de información libre de Google Maps y OpenStreetMaps. Seguidamente, se aplicaron algoritmos de aprendizaje profundo supervisado con topología de red FCN (Fully Convolutional Network) para el proceso de etiquetado de los puntos de interés y la identificación del estado de las vías mediante el uso de Keras y TensorFlow. Posteriormente, se propone un sistema compuesto por una aplicación de escritorio y una aplicación móvil que integre las funcionalidades del algoritmo entrenado a través de una interfaz intuitiva y de lógica simple que estimule la interacción con el consultor. La aplicación de escritorio contempla una GUI diseñada en Python para el etiquetado de puntos de interés. Por su parte, la aplicación móvil fue desarrollada con Flutter y comprende una base de datos con documentación de las rutas y red vial de la región. Incluye un sistema de realidad aumentada en Vuforia Engine y Unity con contenido virtual desarrollado en Blender y SolidWorks; se ha recreado un modelo 3D del mapa de la región para la interacción y visualización con mayor facilidad de los puntos de interés y el estado de las vías de estudio. Además, se recolectó información complementaria a través de aeronaves remotamente pilotadas, para la adquisición de datos en entornos de difícil acceso, y de la participación comunitaria para la descripción e identificación de áreas no visibles en mapas oficiales o estadísticas. En este estudio se aborda un método para la clasificación e identificación del estado de la red vial terciaria de la región, así como también se presenta el etiquetado de puntos de interés para el manejo eficiente de los recursos destinados al desarrollo de nueva infraestructura en la región.application/pdftext/xmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816/11220https://revistas.uptc.edu.co/index.php/ingenieria/article/view/13816/11302Copyright (c) 2021 Maria-Camila Moreno-Vergara, Brayan-Daniel Sarmiento-Iscala, Fabián-Enrique Casares-Pavia, Yerson-Duvan Angulo-Rodríguez, Danilo-José Morales-Arenaleshttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf285http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 30 No. 58 (2021): October-December 2021 (Continuous Publication); e13816Revista Facultad de Ingeniería; Vol. 30 Núm. 58 (2021): Octubre-Diciembre 2021 (Publicación Continua) ; e138162357-53280121-1129tertiary roadssatellite imagesdeep learningremotely piloted aircraftcommunity participationaugmented realityvías terciariasimágenes satelitalesaprendizaje profundoaeronaves remotamente pilotadasparticipación comunitariarealidad aumentadaAnalysis of Satellite Images Using Deep Learning Techniques and Remotely Piloted Aircraft for a Detailed Description of Tertiary RoadsAnálisis de imágenes satelitales usando técnicas de aprendizaje profundo y aeronaves remotamente pilotadas para la descripción a detalle de las vías terciariasinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a368http://purl.org/coar/version/c_970fb48d4fbd8a85Moreno-Vergara, Maria CamilaSarmiento-Iscala, Brayan DanielCasares-Pavia, Fabián EnriqueAngulo-Rodríguez, Yerson DuvanMorales-Arenales, Danilo José001/14323oai:repositorio.uptc.edu.co:001/143232025-07-18 11:53:44.312metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co