Early flood warning system for the Arauca river based on artificial intelligence techniques

This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitat...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6573
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10401
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274
https://repositorio.uptc.edu.co/handle/001/10401
Palabra clave:
flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
Rights
License
Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
id REPOUPTC2_5b20d5086093494cc56b9e0a9b1e0f4e
oai_identifier_str oai:repositorio.uptc.edu.co:001/10401
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-08-152024-07-05T18:04:14Z2024-07-05T18:04:14Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1527410.19053/20278306.v12.n2.2022.15274https://repositorio.uptc.edu.co/handle/001/10401This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitation, level and flow. This information model supplies the data to the mathematical model corresponding to the river channel, which is obtained from three kinds of trends: linear, power and potential relationships. This model is compared with an observer based on intelligent techniques such as neural networks and ANFIS, which make the difference of their outputs and a residue is obtained that is in charge of supplying the information that provides the current state of the river level under study, which in turn generates alerts that are addressed by government entities dedicated to risk management.En este artículo se establece el diseño de un sistema de alertas tempranas de inundación en el río Arauca, municipio de Arauca, Colombia. La información del estudio se extrae del IDEAM y es procesada obteniendo un modelo a través de las variables intervinientes, como: precipitación, nivel y caudal. Este modelo de información suministra la data al modelo matemático para el cauce del río, que se obtiene a partir de tres clases de tendencias: lineal, potencia y relaciones potenciales. El modelo del cauce se compara con un observador basado en técnicas inteligentes, redes neuronales y ANFIS en este caso, que al hacer la diferencia de sus salidas genera un residuo encargado de suministrar la información que proporciona el estado actual de nivel del río bajo estudio. Esta información permite generar las alertas que son atendidas por las entidades del gobierno dedicadas a la gestión del riesgo.application/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/12487https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/13218Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf74http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 2 (2022): Julio-Diciembre; 315-326Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 2 (2022): Julio-Diciembre; 315-3262389-94172027-8306flood;water level;mathematical model;early warningsinundación;nivel de agua;modelo matemático;alerta tempranaEarly flood warning system for the Arauca river based on artificial intelligence techniquesSistema de alerta temprana de inundaciones para el río Arauca basado en técnicas de inteligencia artificialinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6573http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a157http://purl.org/coar/version/c_970fb48d4fbd8a85Cárdenas-Rodríguez, SorangelaVides-Herrera, Carlos ArturoPardo-García, Aldo001/10401oai:repositorio.uptc.edu.co:001/104012025-07-18 11:51:10.148metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Early flood warning system for the Arauca river based on artificial intelligence techniques
dc.title.es-ES.fl_str_mv Sistema de alerta temprana de inundaciones para el río Arauca basado en técnicas de inteligencia artificial
title Early flood warning system for the Arauca river based on artificial intelligence techniques
spellingShingle Early flood warning system for the Arauca river based on artificial intelligence techniques
flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
title_short Early flood warning system for the Arauca river based on artificial intelligence techniques
title_full Early flood warning system for the Arauca river based on artificial intelligence techniques
title_fullStr Early flood warning system for the Arauca river based on artificial intelligence techniques
title_full_unstemmed Early flood warning system for the Arauca river based on artificial intelligence techniques
title_sort Early flood warning system for the Arauca river based on artificial intelligence techniques
dc.subject.en-US.fl_str_mv flood;
water level;
mathematical model;
early warnings
topic flood;
water level;
mathematical model;
early warnings
inundación;
nivel de agua;
modelo matemático;
alerta temprana
dc.subject.es-ES.fl_str_mv inundación;
nivel de agua;
modelo matemático;
alerta temprana
description This article establishes the design of an early warning system for flooding in the Arauca River, in the municipality of Arauca, Colombia. The information corresponding to this study is extracted from the IDEAM and is processed obtaining a model through the variables that intervene such as precipitation, level and flow. This information model supplies the data to the mathematical model corresponding to the river channel, which is obtained from three kinds of trends: linear, power and potential relationships. This model is compared with an observer based on intelligent techniques such as neural networks and ANFIS, which make the difference of their outputs and a residue is obtained that is in charge of supplying the information that provides the current state of the river level under study, which in turn generates alerts that are addressed by government entities dedicated to risk management.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:04:14Z
dc.date.available.none.fl_str_mv 2024-07-05T18:04:14Z
dc.date.none.fl_str_mv 2022-08-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6573
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a157
format http://purl.org/coar/resource_type/c_6573
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274
10.19053/20278306.v12.n2.2022.15274
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10401
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274
https://repositorio.uptc.edu.co/handle/001/10401
identifier_str_mv 10.19053/20278306.v12.n2.2022.15274
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/12487
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/15274/13218
dc.rights.es-ES.fl_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf74
rights_invalid_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
http://purl.org/coar/access_right/c_abf74
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 2 (2022): Julio-Diciembre; 315-326
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 2 (2022): Julio-Diciembre; 315-326
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633805589086208