Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review

The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6779
Fecha de publicación:
2022
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10384
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
https://repositorio.uptc.edu.co/handle/001/10384
Palabra clave:
prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
Rights
License
Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
id REPOUPTC2_4774dc44e748eb2c6e423855ea62d36b
oai_identifier_str oai:repositorio.uptc.edu.co:001/10384
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2022-02-152024-07-05T18:04:12Z2024-07-05T18:04:12Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1421210.19053/20278306.v12.n1.2022.14212https://repositorio.uptc.edu.co/handle/001/10384The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands.En la literatura científica actual se discute ampliamente acerca de la predicción de propiedades edáficas mediante información espectral. El objetivo de esta revisión fue encontrar algoritmos con el mayor potencial predictivo para las propiedades fisicoquímicas del suelo, basados en información espectral capturada con diferentes instrumentos. Se realizó una revisión sistemática en la cual se encontraron 121 artículos de los cuales se eligieron 19, que cumplieran con un coeficiente de determinación mayor a 0,80 o una raíz del error cuadrado medio cercana a 0. Se determinó que el rango espectral más utilizado corresponde al rango desde 350 hasta 2500 nm; los algoritmos mínimos cuadrados parciales, máquina de soporte vectorial y máquina de soporte vectorial ajustado son adecuadas para predecir pH, materia orgánica y carbono orgánico. Además, la regresión lineal solo es efectiva para predecir el carbonato de calcio, materia orgánica, humedad y contenido de agua mediante bandas individuales.application/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/11646https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/12562Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf280http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 1 (2022): Enero-Junio; 107-120Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 1 (2022): Enero-Junio; 107-1202389-94172027-8306prediction algorithmsmachine learningchemical analysisspectroscopyalgoritmos de predicciónaprendizaje de máquinaanálisis químicoespectroscopíaMachine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic reviewAlgoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemáticainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6779http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a363http://purl.org/coar/version/c_970fb48d4fbd8a85Vargas-Zapata, MateoMedina-Sierra, MarisolGaleano-Vasco, Luis FernandoCerón-Muñoz, Mario Fernando001/10384oai:repositorio.uptc.edu.co:001/103842025-07-18 11:51:36.74metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
dc.title.es-ES.fl_str_mv Algoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemática
title Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
spellingShingle Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
title_short Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_full Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_fullStr Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_full_unstemmed Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
title_sort Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
dc.subject.en-US.fl_str_mv prediction algorithms
machine learning
chemical analysis
spectroscopy
topic prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
dc.subject.es-ES.fl_str_mv algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
description The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:04:12Z
dc.date.available.none.fl_str_mv 2024-07-05T18:04:12Z
dc.date.none.fl_str_mv 2022-02-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6779
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a363
format http://purl.org/coar/resource_type/c_6779
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
10.19053/20278306.v12.n1.2022.14212
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10384
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
https://repositorio.uptc.edu.co/handle/001/10384
identifier_str_mv 10.19053/20278306.v12.n1.2022.14212
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/11646
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/12562
dc.rights.es-ES.fl_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf280
rights_invalid_str_mv Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
http://purl.org/coar/access_right/c_abf280
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 1 (2022): Enero-Junio; 107-120
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 1 (2022): Enero-Junio; 107-120
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633888121454592