Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review
The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different...
- Autores:
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_6779
- Fecha de publicación:
- 2022
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/10384
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212
https://repositorio.uptc.edu.co/handle/001/10384
- Palabra clave:
- prediction algorithms
machine learning
chemical analysis
spectroscopy
algoritmos de predicción
aprendizaje de máquina
análisis químico
espectroscopía
- Rights
- License
- Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación
id |
REPOUPTC2_4774dc44e748eb2c6e423855ea62d36b |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/10384 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2022-02-152024-07-05T18:04:12Z2024-07-05T18:04:12Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1421210.19053/20278306.v12.n1.2022.14212https://repositorio.uptc.edu.co/handle/001/10384The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands.En la literatura científica actual se discute ampliamente acerca de la predicción de propiedades edáficas mediante información espectral. El objetivo de esta revisión fue encontrar algoritmos con el mayor potencial predictivo para las propiedades fisicoquímicas del suelo, basados en información espectral capturada con diferentes instrumentos. Se realizó una revisión sistemática en la cual se encontraron 121 artículos de los cuales se eligieron 19, que cumplieran con un coeficiente de determinación mayor a 0,80 o una raíz del error cuadrado medio cercana a 0. Se determinó que el rango espectral más utilizado corresponde al rango desde 350 hasta 2500 nm; los algoritmos mínimos cuadrados parciales, máquina de soporte vectorial y máquina de soporte vectorial ajustado son adecuadas para predecir pH, materia orgánica y carbono orgánico. Además, la regresión lineal solo es efectiva para predecir el carbonato de calcio, materia orgánica, humedad y contenido de agua mediante bandas individuales.application/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/11646https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/12562Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf280http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 1 (2022): Enero-Junio; 107-120Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 1 (2022): Enero-Junio; 107-1202389-94172027-8306prediction algorithmsmachine learningchemical analysisspectroscopyalgoritmos de predicciónaprendizaje de máquinaanálisis químicoespectroscopíaMachine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic reviewAlgoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemáticainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6779http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a363http://purl.org/coar/version/c_970fb48d4fbd8a85Vargas-Zapata, MateoMedina-Sierra, MarisolGaleano-Vasco, Luis FernandoCerón-Muñoz, Mario Fernando001/10384oai:repositorio.uptc.edu.co:001/103842025-07-18 11:51:36.74metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
dc.title.es-ES.fl_str_mv |
Algoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemática |
title |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
spellingShingle |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review prediction algorithms machine learning chemical analysis spectroscopy algoritmos de predicción aprendizaje de máquina análisis químico espectroscopía |
title_short |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
title_full |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
title_fullStr |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
title_full_unstemmed |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
title_sort |
Machine learning algorithms for prediction of physicochemical soil properties by spectral information: a systematic review |
dc.subject.en-US.fl_str_mv |
prediction algorithms machine learning chemical analysis spectroscopy |
topic |
prediction algorithms machine learning chemical analysis spectroscopy algoritmos de predicción aprendizaje de máquina análisis químico espectroscopía |
dc.subject.es-ES.fl_str_mv |
algoritmos de predicción aprendizaje de máquina análisis químico espectroscopía |
description |
The prediction of soil properties through spectral information is widely discussed in the current scientific literature. The objective of this review was to find algorithms with the highest predictive potential for soil physicochemical properties based on spectral information captured with different instruments. A systematic review was carried out in which 121 articles were found, and 19 of them were chosen which met a determination coefficient greater than 0.80 or a root mean square error close to 0. It was determined that the most used spectral range corresponds to the range from 350 to 2500 nm; the partial least squares, support vector machine, and adjusted support vector machine algorithms are suitable for predicting pH, organic matter, and organic carbon. Furthermore, linear regression is only effective in predicting calcium carbonate, organic matter, moisture, and water content using individual bands. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T18:04:12Z |
dc.date.available.none.fl_str_mv |
2024-07-05T18:04:12Z |
dc.date.none.fl_str_mv |
2022-02-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6779 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a363 |
format |
http://purl.org/coar/resource_type/c_6779 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212 10.19053/20278306.v12.n1.2022.14212 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/10384 |
url |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212 https://repositorio.uptc.edu.co/handle/001/10384 |
identifier_str_mv |
10.19053/20278306.v12.n1.2022.14212 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/11646 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/14212/12562 |
dc.rights.es-ES.fl_str_mv |
Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf280 |
rights_invalid_str_mv |
Derechos de autor 2022 Revista de Investigación, Desarrollo e Innovación http://purl.org/coar/access_right/c_abf280 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 12 No. 1 (2022): Enero-Junio; 107-120 |
dc.source.es-ES.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 12 Núm. 1 (2022): Enero-Junio; 107-120 |
dc.source.none.fl_str_mv |
2389-9417 2027-8306 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633888121454592 |