Fractographic classification in metallic materials by using 3D processing and computer vision techniques

Failure analysis aims at collecting information about how and why a failure is produced. The first step in this process is a visual inspection on the flaw surface that will reveal the features, marks, and texture, which characterize each type of fracture. This is generally carried out by personnel w...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14157
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301
https://repositorio.uptc.edu.co/handle/001/14157
Palabra clave:
Artificial Neural Network
brittle fracture
ductile fracture
fracture due to fatigue
Support Vector Machine
3D data
datos 3D
fractura dúctil
fractura frágil
fractura por fatiga
Máquinas de Vectores de Soporte
Red Neuronal Artificial
Rights
License
http://purl.org/coar/access_right/c_abf417
id REPOUPTC2_385cd9515724033ad34216852369b741
oai_identifier_str oai:repositorio.uptc.edu.co:001/14157
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Fractographic classification in metallic materials by using 3D processing and computer vision techniques
dc.title.es-ES.fl_str_mv Clasificación fractográfica de materiales metálicos usando técnicas 3D de procesamiento y visualización en computador
title Fractographic classification in metallic materials by using 3D processing and computer vision techniques
spellingShingle Fractographic classification in metallic materials by using 3D processing and computer vision techniques
Artificial Neural Network
brittle fracture
ductile fracture
fracture due to fatigue
Support Vector Machine
3D data
datos 3D
fractura dúctil
fractura frágil
fractura por fatiga
Máquinas de Vectores de Soporte
Red Neuronal Artificial
title_short Fractographic classification in metallic materials by using 3D processing and computer vision techniques
title_full Fractographic classification in metallic materials by using 3D processing and computer vision techniques
title_fullStr Fractographic classification in metallic materials by using 3D processing and computer vision techniques
title_full_unstemmed Fractographic classification in metallic materials by using 3D processing and computer vision techniques
title_sort Fractographic classification in metallic materials by using 3D processing and computer vision techniques
dc.subject.en-US.fl_str_mv Artificial Neural Network
brittle fracture
ductile fracture
fracture due to fatigue
Support Vector Machine
3D data
topic Artificial Neural Network
brittle fracture
ductile fracture
fracture due to fatigue
Support Vector Machine
3D data
datos 3D
fractura dúctil
fractura frágil
fractura por fatiga
Máquinas de Vectores de Soporte
Red Neuronal Artificial
dc.subject.es-ES.fl_str_mv datos 3D
fractura dúctil
fractura frágil
fractura por fatiga
Máquinas de Vectores de Soporte
Red Neuronal Artificial
description Failure analysis aims at collecting information about how and why a failure is produced. The first step in this process is a visual inspection on the flaw surface that will reveal the features, marks, and texture, which characterize each type of fracture. This is generally carried out by personnel with no experience that usually lack the knowledge to do it. This paper proposes a classification method for three kinds of fractures in crystalline materials: brittle, fatigue, and ductile. The method uses 3D vision, and it is expected to support failure analysis. The features used in this work were: i) Haralick’s features and ii) the fractal dimension. These features were applied to 3D images obtained from a confocal laser scanning microscopy Zeiss LSM 700. For the classification, we evaluated two classifiers: Artificial Neural Networks and Support Vector Machine. The performance evaluation was made by extracting four marginal relations from the confusion matrix: accuracy, sensitivity, specificity, and precision, plus three evaluation methods: Receiver Operating Characteristic space, the Individual Classification Success Index, and the Jaccard’s coefficient. Despite the classification percentage obtained by an expert is better than the one obtained with the algorithm, the algorithm achieves a classification percentage near or exceeding the 60 % accuracy for the analyzed failure modes. The results presented here provide a good approach to address future research on texture analysis using 3D data.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:30Z
dc.date.none.fl_str_mv 2016-09-01
dc.type.en-US.fl_str_mv investigation
dc.type.es-ES.fl_str_mv investigación
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a500
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301
10.19053/01211129.v25.n43.2016.5301
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14157
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301
https://repositorio.uptc.edu.co/handle/001/14157
identifier_str_mv 10.19053/01211129.v25.n43.2016.5301
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301/4429
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301/5064
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf417
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf417
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 83-96
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 83-96
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633897155985408
spelling 2016-09-012024-07-05T19:11:30Z2024-07-05T19:11:30Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/530110.19053/01211129.v25.n43.2016.5301https://repositorio.uptc.edu.co/handle/001/14157Failure analysis aims at collecting information about how and why a failure is produced. The first step in this process is a visual inspection on the flaw surface that will reveal the features, marks, and texture, which characterize each type of fracture. This is generally carried out by personnel with no experience that usually lack the knowledge to do it. This paper proposes a classification method for three kinds of fractures in crystalline materials: brittle, fatigue, and ductile. The method uses 3D vision, and it is expected to support failure analysis. The features used in this work were: i) Haralick’s features and ii) the fractal dimension. These features were applied to 3D images obtained from a confocal laser scanning microscopy Zeiss LSM 700. For the classification, we evaluated two classifiers: Artificial Neural Networks and Support Vector Machine. The performance evaluation was made by extracting four marginal relations from the confusion matrix: accuracy, sensitivity, specificity, and precision, plus three evaluation methods: Receiver Operating Characteristic space, the Individual Classification Success Index, and the Jaccard’s coefficient. Despite the classification percentage obtained by an expert is better than the one obtained with the algorithm, the algorithm achieves a classification percentage near or exceeding the 60 % accuracy for the analyzed failure modes. The results presented here provide a good approach to address future research on texture analysis using 3D data.El análisis de falla tiene como objetivo recolectar información sobre cómo y porqué una falla es generada. El primer paso en este proceso consiste en una inspección visual en la superficie de la falla que revelará las características, marcas y textura que distinguen cada tipo de fractura. Esta inspección es generalmente llevada a cabo por personal que que usualmente no cuenta con el suficiente conocimiento o experiencia necesaria. Este artículo propone un método de clasificación para tres modos de fracturas en materiales cristalinos: súbita frágil, progresiva por fatiga y súbita dúctil. El método propuesto usa visión en 3D, y busca ser un apoyo en el análisis de falla. Las características usadas en este estudio fueron i) las características de Haralick y ii) la dimensión fractal. La adquisición de imágenes 3D se realizó con un microscopio confocal de escaneo laser Zeiss LSM 700. Para llevar a cabo la clasificación, dos clasificadores fueron evaluados: Redes de Neuronas Artificiales y Máquinas de Vectores de Soporte. La evaluación de desempeño se logró extrayendo cuatro relaciones marginales de la matriz de confusión: exactitud, sensibilidad, especificidad y precisión, y los siguientes tres métodos de evaluación: Característica Operativa del Receptor o espacio ROC, el iíndice individual de éxito en la clasificación ICSI y el coeficiente de Jaccard. A pesar que el porcentaje de clasificación obtenida por un experto es mejor que la obtenida por el algoritmo, este último logra obtener porcentajes de clasificación cerca o superior al 60% en exactitud para los tres modos de falla analizados. Los resultados que aquí se presentan representan un buen acercamiento para estructurar investigaciones futuras en análisis de textura usando datos 3D.application/pdftext/htmlengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301/4429https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5301/5064Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 83-96Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 83-962357-53280121-1129Artificial Neural Networkbrittle fractureductile fracturefracture due to fatigueSupport Vector Machine3D datadatos 3Dfractura dúctilfractura frágilfractura por fatigaMáquinas de Vectores de SoporteRed Neuronal ArtificialFractographic classification in metallic materials by using 3D processing and computer vision techniquesClasificación fractográfica de materiales metálicos usando técnicas 3D de procesamiento y visualización en computadorinvestigationinvestigacióninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a500http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf417http://purl.org/coar/access_right/c_abf2Bastidas-Rodríguez, Maria XimenaPrieto-Ortíz, Flavio A.Espejo-Mora, Édgar001/14157oai:repositorio.uptc.edu.co:001/141572025-07-18 11:53:58.289metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co