Electronic control arm using electromyographic signals

The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, w...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14119
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554
https://repositorio.uptc.edu.co/handle/001/14119
Palabra clave:
electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
Rights
License
http://purl.org/coar/access_right/c_abf383
id REPOUPTC2_29a2a53a2c013d456da218a4b98ae37d
oai_identifier_str oai:repositorio.uptc.edu.co:001/14119
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2015-05-052024-07-05T19:11:20Z2024-07-05T19:11:20Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/355410.19053/01211129.3554https://repositorio.uptc.edu.co/handle/001/14119The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, we performed a signals preprocessing, to remove the less important information and to recognize the interest areas. Then the patterns were extracted and classified. The techniques used were: The wavelet analysis (AW), the principal components analysis (PCA), the Fourier transformed (FT), the discrete cosine transformed (DCT), the support vector machines (SVM) and the artificial neural networks (ANR). In this paper we demonstrated, that the methodology stated, allows to realize a process of classification with a superior performance to 95%. There were recorded more than four thousands signals.Los trabajos enfocados en la extracción de patrones en señales electromiográficas (SEMG) han venido creciendo debido a sus múltiples aplicaciones. En este artículo se presenta una aplicación en la cual se implementa un sistema electrónico para el registro de las SEMG de la extremidad superior en un sujeto, con el fin de controlar de forma remota un brazo electrónico. Se realizó una etapa de preprocesamiento de las señales registradas, para eliminar información poco relevante, y reconocimiento de zonas de interés, enseguida se extraen los patrones y se clasifican. Las técnicas utilizadas fueron: análisis wavelet (AW), análisis de componentes principales (ACP), transformada de fourier (TF), transformada del coseno discreta (TDC), energía, máquinas de soporte vectorial (MSV o SVM) y redes neuronales (RNA). En este artículo se demuestra que la metodología planteada permite realizar un proceso de clasificación con un rendimiento superior al 95%. Se registraron más de 4000 señales.application/pdftext/htmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/3164https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/4327Revista Facultad de Ingeniería; Vol. 24 No. 39 (2015); 71-84Revista Facultad de Ingeniería; Vol. 24 Núm. 39 (2015); 71-842357-53280121-1129electronic arm controlelectromyographyANRSVMpatterns extractionwavelet transformedBrazo electrónicoElectromiografíaExtracción de patronesMSVRNATransformada wavelet.Electronic control arm using electromyographic signalsControl de brazo electrónico usando señales electromiográficasinvestigationinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a466http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf383http://purl.org/coar/access_right/c_abf2García-Pinzón, Jorge AndrésMendoza, Luis EnriqueFlórez, Elkin Gregorio001/14119oai:repositorio.uptc.edu.co:001/141192025-07-18 11:53:51.41metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Electronic control arm using electromyographic signals
dc.title.es-ES.fl_str_mv Control de brazo electrónico usando señales electromiográficas
title Electronic control arm using electromyographic signals
spellingShingle Electronic control arm using electromyographic signals
electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
title_short Electronic control arm using electromyographic signals
title_full Electronic control arm using electromyographic signals
title_fullStr Electronic control arm using electromyographic signals
title_full_unstemmed Electronic control arm using electromyographic signals
title_sort Electronic control arm using electromyographic signals
dc.subject.en-US.fl_str_mv electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
topic electronic arm control
electromyography
ANR
SVM
patterns extraction
wavelet transformed
Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
dc.subject.es-ES.fl_str_mv Brazo electrónico
Electromiografía
Extracción de patrones
MSV
RNA
Transformada wavelet.
description The studies focused in pattern extractions of electromyography signals (SEMG) has been growing, due to their multiple applications. This paper presents an electronic system implementation for the SEMG recording of a subject upper extremity in order to remotely control an electronic arm. Initially, we performed a signals preprocessing, to remove the less important information and to recognize the interest areas. Then the patterns were extracted and classified. The techniques used were: The wavelet analysis (AW), the principal components analysis (PCA), the Fourier transformed (FT), the discrete cosine transformed (DCT), the support vector machines (SVM) and the artificial neural networks (ANR). In this paper we demonstrated, that the methodology stated, allows to realize a process of classification with a superior performance to 95%. There were recorded more than four thousands signals.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:11:20Z
dc.date.available.none.fl_str_mv 2024-07-05T19:11:20Z
dc.date.none.fl_str_mv 2015-05-05
dc.type.en-US.fl_str_mv investigation
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a466
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554
10.19053/01211129.3554
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14119
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554
https://repositorio.uptc.edu.co/handle/001/14119
identifier_str_mv 10.19053/01211129.3554
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/3164
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/3554/4327
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf383
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf383
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 24 No. 39 (2015); 71-84
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 24 Núm. 39 (2015); 71-84
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633887315099648