Constructions of Bh sets in various dimensions
Let A ⊂ Z+ and h be positive integer.We say that A is a Bh set if any integern can be written in at most one-ways as the sum of h elements of A, The fundamental problem is to determine the cardinal maximum of a set Bh contained in the integer interval [1, n] := {1, 2, 3, . . . , n}. Not many constru...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15318
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12732
https://repositorio.uptc.edu.co/handle/001/15318
- Palabra clave:
- Conjunto $B_h$, Conjunto $B_2$, Extensión de campo
$B_h$ Set, $B_2$ Set, Field extension
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUPTC2_1d48aaf5350d5cf48592e94fe622e45d |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/15318 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2021-09-072024-07-08T14:24:03Z2024-07-08T14:24:03Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1273210.19053/01217488.v12.n2.2021.12732https://repositorio.uptc.edu.co/handle/001/15318Let A ⊂ Z+ and h be positive integer.We say that A is a Bh set if any integern can be written in at most one-ways as the sum of h elements of A, The fundamental problem is to determine the cardinal maximum of a set Bh contained in the integer interval [1, n] := {1, 2, 3, . . . , n}. Not many constructions of integer sets Bh are known, among them are Singer [13], Bose-Chowla [3] and Gómez-Trujillo [7]. The Bh set concept can be extended to arbitrary groups. In this article, the generalized constructions on the groups that come from a field are presented and new construction of a set Bh+s in h + 1 dimensions is obtained.Un conjunto Bh es un subconjunto A de números enteros con la propiedad que todas las sumas de h elementos son distintas, salvo permutaciones de los sumandos. El problema fundamental consiste en determinar el máximo cardinal de un conjunto Bh contenido en el intervalo entero [1, n] := {1, 2, 3, . . . , n}. Se conocen pocas construcciones de conjuntos Bh enteros, entre ellas se tienen la de Singer [13], Bose-Chowla [3] y Gómez-Trujillo [7]. El concepto de conjunto Bh se puede extender a grupos arbitrarios. En este articulo se presentan las construcciones generalizadas a los grupos que provienen de un cuerpo y se obtiene una nueva construcción de un conjunto Bh+s en h + 1 dimensiones.application/pdfspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12732/11165Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-DiciembreCiencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre2462-76580121-7488Conjunto $B_h$, Conjunto $B_2$, Extensión de campo$B_h$ Set, $B_2$ Set, Field extensionConstructions of Bh sets in various dimensionsConstrucción de conjuntos Bh en varias dimensionesinfo:eu-repo/semantics/articleTextohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Caicedo Bravo, Nidia YadiraMartos Ojeda, Carlos AndresTrujillo Solarte, Carlos Alberto001/15318oai:repositorio.uptc.edu.co:001/153182025-07-18 10:56:40.209metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Constructions of Bh sets in various dimensions |
dc.title.es-ES.fl_str_mv |
Construcción de conjuntos Bh en varias dimensiones |
title |
Constructions of Bh sets in various dimensions |
spellingShingle |
Constructions of Bh sets in various dimensions Conjunto $B_h$, Conjunto $B_2$, Extensión de campo $B_h$ Set, $B_2$ Set, Field extension |
title_short |
Constructions of Bh sets in various dimensions |
title_full |
Constructions of Bh sets in various dimensions |
title_fullStr |
Constructions of Bh sets in various dimensions |
title_full_unstemmed |
Constructions of Bh sets in various dimensions |
title_sort |
Constructions of Bh sets in various dimensions |
dc.subject.es-ES.fl_str_mv |
Conjunto $B_h$, Conjunto $B_2$, Extensión de campo |
topic |
Conjunto $B_h$, Conjunto $B_2$, Extensión de campo $B_h$ Set, $B_2$ Set, Field extension |
dc.subject.en-US.fl_str_mv |
$B_h$ Set, $B_2$ Set, Field extension |
description |
Let A ⊂ Z+ and h be positive integer.We say that A is a Bh set if any integern can be written in at most one-ways as the sum of h elements of A, The fundamental problem is to determine the cardinal maximum of a set Bh contained in the integer interval [1, n] := {1, 2, 3, . . . , n}. Not many constructions of integer sets Bh are known, among them are Singer [13], Bose-Chowla [3] and Gómez-Trujillo [7]. The Bh set concept can be extended to arbitrary groups. In this article, the generalized constructions on the groups that come from a field are presented and new construction of a set Bh+s in h + 1 dimensions is obtained. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T14:24:03Z |
dc.date.available.none.fl_str_mv |
2024-07-08T14:24:03Z |
dc.date.none.fl_str_mv |
2021-09-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.es-ES.fl_str_mv |
Texto |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12732 10.19053/01217488.v12.n2.2021.12732 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/15318 |
url |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12732 https://repositorio.uptc.edu.co/handle/001/15318 |
identifier_str_mv |
10.19053/01217488.v12.n2.2021.12732 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/12732/11165 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Ciencia En Desarrollo; Vol. 12 No. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre |
dc.source.es-ES.fl_str_mv |
Ciencia en Desarrollo; Vol. 12 Núm. 2 (2021): Vol 12, Núm.2 (2021): Julio-Diciembre |
dc.source.none.fl_str_mv |
2462-7658 0121-7488 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633849842139136 |