Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS

Using machine learning for data management is an extraordinary opportunity to move towards a leadership model based on information, which drives the organization towards success in each initiative. However, when incorporating these technologies, a company presents problems associated with the econom...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
eng
OAI Identifier:
oai:repositorio.uptc.edu.co:001/14386
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777
https://repositorio.uptc.edu.co/handle/001/14386
Palabra clave:
classification techniques
C4.5 algorithm
middle coupled architecture
PostgreSQL DBMS
técnicas de clasificación
algoritmo C4.5
arquitectura medianamente acoplada
PostgreSQL
Rights
License
Copyright (c) 2023 Ricardo Timarán-Pereira, Anivar Chaves-Torres, Hugo Ordoñez-Erazo
id REPOUPTC2_0c5aa8d406768a79bef76e6f5bdf5f65
oai_identifier_str oai:repositorio.uptc.edu.co:001/14386
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
dc.title.en-US.fl_str_mv Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
dc.title.es-ES.fl_str_mv Algoritmo de árboles de decisión medianamente acoplado a PostgreSQL
title Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
spellingShingle Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
classification techniques
C4.5 algorithm
middle coupled architecture
PostgreSQL DBMS
técnicas de clasificación
algoritmo C4.5
arquitectura medianamente acoplada
PostgreSQL
title_short Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
title_full Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
title_fullStr Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
title_full_unstemmed Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
title_sort Decision Tree Algorithm Moderately Coupled to PostgreSQL DBMS
dc.subject.en-US.fl_str_mv classification techniques
C4.5 algorithm
middle coupled architecture
PostgreSQL DBMS
topic classification techniques
C4.5 algorithm
middle coupled architecture
PostgreSQL DBMS
técnicas de clasificación
algoritmo C4.5
arquitectura medianamente acoplada
PostgreSQL
dc.subject.es-ES.fl_str_mv técnicas de clasificación
algoritmo C4.5
arquitectura medianamente acoplada
PostgreSQL
description Using machine learning for data management is an extraordinary opportunity to move towards a leadership model based on information, which drives the organization towards success in each initiative. However, when incorporating these technologies, a company presents problems associated with the economic and administrative costs generated in this process since these are usually quite high, limiting their implementation in MSMEs. This paper proposes to integrate supervised machine learning techniques into PostgreSQL DBMS in a moderately coupled architecture to provide it with the capabilities of discovering knowledge in databases. Classification and regression algorithms were coupled by developing extensions using one of the procedural languages supported by PostgreSQL. Initially, the C4.5 decision tree classification algorithm was implemented using the PL/pgSQL procedural language. The main advantage of this strategy is that it considers the scalability, administration, and data manipulation of the DBMS. Since PostgreSQL is an open-source manager, organizations such as MSMEs will have a free tool that allows them to perform predictive analysis in order to improve their decision-making processes by anticipating future consumer behavior and making rational decisions based on their findings.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:12:12Z
dc.date.available.none.fl_str_mv 2024-07-05T19:12:12Z
dc.date.none.fl_str_mv 2023-11-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a458
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/14386
url https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777
https://repositorio.uptc.edu.co/handle/001/14386
dc.language.none.fl_str_mv eng
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777/13615
dc.rights.en-US.fl_str_mv Copyright (c) 2023 Ricardo Timarán-Pereira, Anivar Chaves-Torres, Hugo Ordoñez-Erazo
http://creativecommons.org/licenses/by/4.0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf375
rights_invalid_str_mv Copyright (c) 2023 Ricardo Timarán-Pereira, Anivar Chaves-Torres, Hugo Ordoñez-Erazo
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf375
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.en-US.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista Facultad de Ingeniería; Vol. 32 No. 66 (2023): October-December 2023 (Continuous Publication); e16777
dc.source.es-ES.fl_str_mv Revista Facultad de Ingeniería; Vol. 32 Núm. 66 (2023): Octubre-Diciembre 2023 (Publicación Continua) ; e16777
dc.source.none.fl_str_mv 2357-5328
0121-1129
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633886225629184
spelling 2023-11-212024-07-05T19:12:12Z2024-07-05T19:12:12Zhttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777https://repositorio.uptc.edu.co/handle/001/14386Using machine learning for data management is an extraordinary opportunity to move towards a leadership model based on information, which drives the organization towards success in each initiative. However, when incorporating these technologies, a company presents problems associated with the economic and administrative costs generated in this process since these are usually quite high, limiting their implementation in MSMEs. This paper proposes to integrate supervised machine learning techniques into PostgreSQL DBMS in a moderately coupled architecture to provide it with the capabilities of discovering knowledge in databases. Classification and regression algorithms were coupled by developing extensions using one of the procedural languages supported by PostgreSQL. Initially, the C4.5 decision tree classification algorithm was implemented using the PL/pgSQL procedural language. The main advantage of this strategy is that it considers the scalability, administration, and data manipulation of the DBMS. Since PostgreSQL is an open-source manager, organizations such as MSMEs will have a free tool that allows them to perform predictive analysis in order to improve their decision-making processes by anticipating future consumer behavior and making rational decisions based on their findings.El uso de Aprendizaje Automático para la gestión de datos es una oportunidad extraordinaria para avanzar hacia un modelo de liderazgo basado en la información, que impulse a la organización hacia el éxito en cada una de sus iniciativas. Sin embargo, una empresa, en el momento de incorporar estas tecnologías presenta problemáticas asociadas con los costos económicos y administrativos generados en este proceso, ya que estos suelen ser bastante elevados, que limita principalmente a las MiPymes, su implementación. En este artículo se presenta la propuesta de integrar al SGBD PostgreSQL, técnicas supervisadas de aprendizaje automático, en una arquitectura medianamente acoplada, con el fin de dotar a este gestor con las capacidades de descubrir conocimiento en las bases de datos. Se acoplarán algoritmos de clasificación y regresión mediante el desarrollo de extensiones utilizando uno de los lenguajes procedurales soportados por PostgreSQL. Inicialmente, se implementará el algoritmo de clasificación por árboles de decisión C4.5 usando el lenguaje procedural PL/pgSQL. La principal ventaja de esta estrategia es que se tiene en cuenta la escalabilidad, administración y manipulación de datos del SGBD. Al ser PostgreSQL un gestor de código abierto, organizaciones tales como MiPymes, contarán con una herramienta libre que les permita realizar análisis predictivo con el fin mejorar sus procesos de toma de decisiones al poder anticiparse a los futuros comportamientos del consumidor y tomar decisiones racionales basadas en sus hallazgos.application/pdfengengUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/16777/13615Copyright (c) 2023 Ricardo Timarán-Pereira, Anivar Chaves-Torres, Hugo Ordoñez-Erazohttp://creativecommons.org/licenses/by/4.0http://purl.org/coar/access_right/c_abf375http://purl.org/coar/access_right/c_abf2Revista Facultad de Ingeniería; Vol. 32 No. 66 (2023): October-December 2023 (Continuous Publication); e16777Revista Facultad de Ingeniería; Vol. 32 Núm. 66 (2023): Octubre-Diciembre 2023 (Publicación Continua) ; e167772357-53280121-1129classification techniquesC4.5 algorithmmiddle coupled architecturePostgreSQL DBMStécnicas de clasificaciónalgoritmo C4.5arquitectura medianamente acopladaPostgreSQLDecision Tree Algorithm Moderately Coupled to PostgreSQL DBMSAlgoritmo de árboles de decisión medianamente acoplado a PostgreSQLinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a458http://purl.org/coar/version/c_970fb48d4fbd8a85Timarán-Pereira, RicardoChaves-Torres, AnivarOrdoñez-Erazo, Hugo001/14386oai:repositorio.uptc.edu.co:001/143862025-07-18 11:53:51.378metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co