Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)

The objective of the present work is to realize predictions of the typeof change peso-dollar being used Artificial Neuronal Networks (ANR´s),for which, the investigation was based to determine the existing relationbetween the obtained results and the effective types of change in the datesof study, t...

Full description

Autores:
Luis Alberto Zapata Garrido
Hugo Fabián Díaz Mojica
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/4792
Acceso en línea:
http://rcientificas.uninorte.edu.co/index.php/pensamiento/article/view/3476
http://hdl.handle.net/10584/4792
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUNORT2_79ddde4463ea34f8ad8d38bc046e3e79
oai_identifier_str oai:manglar.uninorte.edu.co:10584/4792
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
spelling Luis Alberto Zapata GarridoHugo Fabián Díaz MojicaColombia2013-08-31T23:15:00Z2013-08-31T23:15:00Z2011-12-01http://rcientificas.uninorte.edu.co/index.php/pensamiento/article/view/3476http://hdl.handle.net/10584/4792The objective of the present work is to realize predictions of the typeof change peso-dollar being used Artificial Neuronal Networks (ANR´s),for which, the investigation was based to determine the existing relationbetween the obtained results and the effective types of change in the datesof study, to determine the type of neuronal network that adapts more to theprediction of types of change and to analyze the behavior of the variablesof the ANR in the process of prediction of the types of change. In order toobtain this, using software Easy-N-extra, we selected information of twelveeconomic variables of the year 2005 that served as entrance to a system ofneuronal networks, in that the exit was the type of change. Once realizedthe training of the network and established the values of the variables ofentrance for the prediction process, the values of the type of change forthe first month of year 2006 were obtained; of this form, eighteen testswere realized, using different combinations from variables. The obtainedresults show to low allowable errors between the predictions and the realresults.El objetivo de este trabajo es realizar predicciones del tipo de cambiopeso-dólar utilizando Redes Neuronales Artificiales (RNA´s), para lo cual lainvestigación se basó en determinar la relación existente entre los resultadosobtenidos y los tipos de cambio vigentes en las fechas de estudio, determinarel tipo de red neuronal que más se adapta a la predicción de tipos de cambioy analizar el comportamiento de las variables de la RNA en el proceso depredicción de los tipos de cambio. Para lograr esto, utilizando el softwareEasy-NN-plus, seleccionamos información de doce variables económicasde 2005 que sirvieron como entrada a un sistema de redes neuronales, en elque la salida era el tipo de cambio. Una vez realizado el entrenamiento dela red y establecidos los valores de las variables de entrada para el procesode predicción, se obtuvieron los valores del tipo de cambio para el primermes de 2006; de esta forma, se realizaron dieciocho pruebas, utilizandodiferentes combinaciones de variables. Los resultados obtenidos muestranmárgenes de error bajos entre las predicciones y los resultados reales.application/pdfspaRevista científica Pensamiento y GestiónRevista científica Pensamiento y Gestión; No 24: Ene-Jun 2008instname:Universidad del Nortereponame:Repositorio Digital de la Universidad del NortePrediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)Predicción del tipo de cambio peso-dólar utilizando Redes Neuronales Artificiales (RNA)articlepublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/access_right/c_abf210584/4792oai:172.16.14.36:10584/47922015-10-07 01:48:44.908Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.co
dc.title.none.fl_str_mv Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
Predicción del tipo de cambio peso-dólar utilizando Redes Neuronales Artificiales (RNA)
title Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
spellingShingle Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
title_short Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
title_full Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
title_fullStr Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
title_full_unstemmed Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
title_sort Prediction of exchange rate peso-dollar using Artificial Neuronal Networks (ANR´s)
dc.creator.fl_str_mv Luis Alberto Zapata Garrido
Hugo Fabián Díaz Mojica
dc.contributor.author.none.fl_str_mv Luis Alberto Zapata Garrido
Hugo Fabián Díaz Mojica
description The objective of the present work is to realize predictions of the typeof change peso-dollar being used Artificial Neuronal Networks (ANR´s),for which, the investigation was based to determine the existing relationbetween the obtained results and the effective types of change in the datesof study, to determine the type of neuronal network that adapts more to theprediction of types of change and to analyze the behavior of the variablesof the ANR in the process of prediction of the types of change. In order toobtain this, using software Easy-N-extra, we selected information of twelveeconomic variables of the year 2005 that served as entrance to a system ofneuronal networks, in that the exit was the type of change. Once realizedthe training of the network and established the values of the variables ofentrance for the prediction process, the values of the type of change forthe first month of year 2006 were obtained; of this form, eighteen testswere realized, using different combinations from variables. The obtainedresults show to low allowable errors between the predictions and the realresults.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011-12-01
dc.date.accessioned.none.fl_str_mv 2013-08-31T23:15:00Z
dc.date.available.none.fl_str_mv 2013-08-31T23:15:00Z
dc.type.none.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.hasVersion.none.fl_str_mv publishedVersion
dc.identifier.other.none.fl_str_mv http://rcientificas.uninorte.edu.co/index.php/pensamiento/article/view/3476
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/4792
url http://rcientificas.uninorte.edu.co/index.php/pensamiento/article/view/3476
http://hdl.handle.net/10584/4792
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv Revista científica Pensamiento y Gestión; No 24: Ene-Jun 2008
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.none.fl_str_mv Revista científica Pensamiento y Gestión
publisher.none.fl_str_mv Revista científica Pensamiento y Gestión
dc.source.none.fl_str_mv instname:Universidad del Norte
reponame:Repositorio Digital de la Universidad del Norte
instname_str Universidad del Norte
institution Universidad del Norte
reponame_str Repositorio Digital de la Universidad del Norte
collection Repositorio Digital de la Universidad del Norte
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1834108937125756928