Machine Learning-based system to predict the performance of exploration algorithms for mobile robots

The thesis presented here proposes a Machine Learning based method with optimized neural networks that evaluates exploration algorithms for mobile robots based on the prediction of a performance metric. Two applications around the prediction of the performance of exploration algorithms are implement...

Full description

Autores:
Caballero Tovar, Liesle Yail
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/13310
Acceso en línea:
http://hdl.handle.net/10584/13310
Palabra clave:
Aprendizaje de máquinas
Robots móviles
Algoritmos
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_490eef8144d5a8f87e056ee4e480994f
oai_identifier_str oai:manglar.uninorte.edu.co:10584/13310
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.en_US.fl_str_mv Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
title Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
spellingShingle Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
Aprendizaje de máquinas
Robots móviles
Algoritmos
title_short Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
title_full Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
title_fullStr Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
title_full_unstemmed Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
title_sort Machine Learning-based system to predict the performance of exploration algorithms for mobile robots
dc.creator.fl_str_mv Caballero Tovar, Liesle Yail
dc.contributor.advisor.none.fl_str_mv Percybrooks Bolívar, Winston Spencer
dc.contributor.author.none.fl_str_mv Caballero Tovar, Liesle Yail
dc.subject.lemb.none.fl_str_mv Aprendizaje de máquinas
Robots móviles
Algoritmos
topic Aprendizaje de máquinas
Robots móviles
Algoritmos
description The thesis presented here proposes a Machine Learning based method with optimized neural networks that evaluates exploration algorithms for mobile robots based on the prediction of a performance metric. Two applications around the prediction of the performance of exploration algorithms are implemented here. The first consists of a system that compares and selects the most appropriate exploration algorithm according to the experimental environment, without implementing or simulating additional experiments when other different experimental conditions are required to evaluate. The second application deals with the problem of determining a useful energy budget for a mobile robot in a given environment without having to carry out experimental measures for every possible exploration task. The method of prediction using Machine Learning with optimization strategies Hill Climbing-Random Restart or Tabu List shows an improvement in predictor performance. With these optimization strategies the percentage relative absolute error for Random Walk, Random Walk Without Step Back and Q_Learning exploration algorithms, it was reduced by 92.47%, 90.41% and 87.38% respectively. An experimental energy consumption was measured and compared with the prediction of our model. A success rate of 96.09% was obtained, suggesting an adequate energy predictor, which could be useful for energy budgeting in actual mobile robot applications. Many recent applications of Machine Learning focus on the use of big datasets for training, however, there are many interesting problems, where the available datasets are small. Our method based on Machine Learning techniques has generated excellent results for small databases in general.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2025-05-26T21:34:15Z
dc.date.available.none.fl_str_mv 2025-05-26T21:34:15Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/13310
url http://hdl.handle.net/10584/13310
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 104 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería Eléctrica y Electrónica
dc.publisher.department.es_ES.fl_str_mv Departamento de eléctrica y electrónica
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/13310/1/Resumen%20Tesis%20Doctorado.pdf
https://manglar.uninorte.edu.co/bitstream/10584/13310/2/license.txt
bitstream.checksum.fl_str_mv 8d128a7958eeb610b22f23d6a8a743c6
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1834108947887292416
spelling Percybrooks Bolívar, Winston SpencerCaballero Tovar, Liesle Yail2025-05-26T21:34:15Z2025-05-26T21:34:15Z2021http://hdl.handle.net/10584/13310The thesis presented here proposes a Machine Learning based method with optimized neural networks that evaluates exploration algorithms for mobile robots based on the prediction of a performance metric. Two applications around the prediction of the performance of exploration algorithms are implemented here. The first consists of a system that compares and selects the most appropriate exploration algorithm according to the experimental environment, without implementing or simulating additional experiments when other different experimental conditions are required to evaluate. The second application deals with the problem of determining a useful energy budget for a mobile robot in a given environment without having to carry out experimental measures for every possible exploration task. The method of prediction using Machine Learning with optimization strategies Hill Climbing-Random Restart or Tabu List shows an improvement in predictor performance. With these optimization strategies the percentage relative absolute error for Random Walk, Random Walk Without Step Back and Q_Learning exploration algorithms, it was reduced by 92.47%, 90.41% and 87.38% respectively. An experimental energy consumption was measured and compared with the prediction of our model. A success rate of 96.09% was obtained, suggesting an adequate energy predictor, which could be useful for energy budgeting in actual mobile robot applications. Many recent applications of Machine Learning focus on the use of big datasets for training, however, there are many interesting problems, where the available datasets are small. Our method based on Machine Learning techniques has generated excellent results for small databases in general.DoctoradoDoctor en Ingeniería Eléctrica y Electrónicaapplication/pdf104 páginasengUniversidad del NorteDoctorado en Ingeniería Eléctrica y ElectrónicaDepartamento de eléctrica y electrónicaBarranquilla, ColombiaMachine Learning-based system to predict the performance of exploration algorithms for mobile robotsTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aprendizaje de máquinasRobots móvilesAlgoritmosEstudiantesDoctoradoORIGINALResumen Tesis Doctorado.pdfResumen Tesis Doctorado.pdfapplication/pdf305994https://manglar.uninorte.edu.co/bitstream/10584/13310/1/Resumen%20Tesis%20Doctorado.pdf8d128a7958eeb610b22f23d6a8a743c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/13310/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/13310oai:manglar.uninorte.edu.co:10584/133102025-05-26 16:34:15.345Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=