Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators

In this research, efficient and practical implementation methods for data assimilation will be proposed using covariance matrix estimators, like Ledoit and Wolf (LW), and using an hybrid method based on modified Cholesky decomposition. The main idea is explote the rank-deficiency of the ensemble cov...

Full description

Autores:
Guzmán Reyes, Luis Gabriel
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
eng
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/13331
Acceso en línea:
http://hdl.handle.net/10584/13331
Palabra clave:
Métodos de simulación
Energía eólica -- Métodos de simulación
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id REPOUNORT2_38b18765bad89118437b06cc68bf3c0a
oai_identifier_str oai:manglar.uninorte.edu.co:10584/13331
network_acronym_str REPOUNORT2
network_name_str Repositorio Uninorte
repository_id_str
dc.title.en_US.fl_str_mv Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
title Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
spellingShingle Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
Métodos de simulación
Energía eólica -- Métodos de simulación
title_short Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
title_full Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
title_fullStr Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
title_full_unstemmed Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
title_sort Data assimilation methods for highly non-linear models via efficient and practical covariance matrix estimators
dc.creator.fl_str_mv Guzmán Reyes, Luis Gabriel
dc.contributor.advisor.none.fl_str_mv Jabba Molinares, Daladier
Niño Ruiz, Elías David
dc.contributor.author.none.fl_str_mv Guzmán Reyes, Luis Gabriel
dc.subject.lemb.none.fl_str_mv Métodos de simulación
Energía eólica -- Métodos de simulación
topic Métodos de simulación
Energía eólica -- Métodos de simulación
description In this research, efficient and practical implementation methods for data assimilation will be proposed using covariance matrix estimators, like Ledoit and Wolf (LW), and using an hybrid method based on modified Cholesky decomposition. The main idea is explote the rank-deficiency of the ensemble covariance matrix, and some properties of the trace of a matrix, in order to develop a tractable implementation of a covariance matrix estimator in high-dimensional probability spaces, such as those found in the context of operational data assimilation. In this manner, the ensemble covariance matrix is replaced by a well-conditioned, full-rank estimator wherein the impact of spurious correlations can be mitigated during assimilation steps. The work was organized as follow, first, an efficient and practical implementation of the ensemble Kalman filter (EnKF) via the distribution-free Ledoit and Wolf (LW) covariance matrix estimator is proposed (EnKF-LW). Second, the intrinsic needed of adjoint models in the four-dimensional context is avoided using an efficient and practical implementation of a Four-Dimensional Variational Ensemble Kalman Filter (4D-EnKF) via a modified Cholesky decomposition (4D-EnKF-MC). Last a framework for wind energy potential estimation is proposed using Four-Dimensional Variational (4D-Var) data assimilation. Experimental tests are performed by using an Atmospheric General Circulation Model. The results reveal that EnKF-RBLW by employing Gaussian relaxation on prior ensemble members during assimilation steps and that the proposed 4D-EnKF-MC method outperforms traditional filter formulations (4D-ENKF) in terms of L--2 error norms and RMSE values.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2025-05-27T20:42:36Z
dc.date.available.none.fl_str_mv 2025-05-27T20:42:36Z
dc.type.es_ES.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.es_ES.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.content.es_ES.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10584/13331
url http://hdl.handle.net/10584/13331
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.format.extent.es_ES.fl_str_mv 91 páginas
dc.publisher.es_ES.fl_str_mv Universidad del Norte
dc.publisher.program.es_ES.fl_str_mv Doctorado en Ingeniería de Sistemas y Computación
dc.publisher.department.es_ES.fl_str_mv Departamento de ingeniería de sistemas
dc.publisher.place.es_ES.fl_str_mv Barranquilla, Colombia
institution Universidad del Norte
bitstream.url.fl_str_mv https://manglar.uninorte.edu.co/bitstream/10584/13331/1/Resumen%20Tesis%20Doctorado.pdf
https://manglar.uninorte.edu.co/bitstream/10584/13331/2/license.txt
bitstream.checksum.fl_str_mv 3c064a386bf4dcbf9f4466cdbb36e4dd
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad del Norte
repository.mail.fl_str_mv mauribe@uninorte.edu.co
_version_ 1834108932783603712
spelling Jabba Molinares, DaladierNiño Ruiz, Elías DavidGuzmán Reyes, Luis Gabriel2025-05-27T20:42:36Z2025-05-27T20:42:36Z2020http://hdl.handle.net/10584/13331In this research, efficient and practical implementation methods for data assimilation will be proposed using covariance matrix estimators, like Ledoit and Wolf (LW), and using an hybrid method based on modified Cholesky decomposition. The main idea is explote the rank-deficiency of the ensemble covariance matrix, and some properties of the trace of a matrix, in order to develop a tractable implementation of a covariance matrix estimator in high-dimensional probability spaces, such as those found in the context of operational data assimilation. In this manner, the ensemble covariance matrix is replaced by a well-conditioned, full-rank estimator wherein the impact of spurious correlations can be mitigated during assimilation steps. The work was organized as follow, first, an efficient and practical implementation of the ensemble Kalman filter (EnKF) via the distribution-free Ledoit and Wolf (LW) covariance matrix estimator is proposed (EnKF-LW). Second, the intrinsic needed of adjoint models in the four-dimensional context is avoided using an efficient and practical implementation of a Four-Dimensional Variational Ensemble Kalman Filter (4D-EnKF) via a modified Cholesky decomposition (4D-EnKF-MC). Last a framework for wind energy potential estimation is proposed using Four-Dimensional Variational (4D-Var) data assimilation. Experimental tests are performed by using an Atmospheric General Circulation Model. The results reveal that EnKF-RBLW by employing Gaussian relaxation on prior ensemble members during assimilation steps and that the proposed 4D-EnKF-MC method outperforms traditional filter formulations (4D-ENKF) in terms of L--2 error norms and RMSE values.DoctoradoDoctor en Ingeniería de Sistemas y Computaciónapplication/pdf91 páginasengUniversidad del NorteDoctorado en Ingeniería de Sistemas y ComputaciónDepartamento de ingeniería de sistemasBarranquilla, ColombiaData assimilation methods for highly non-linear models via efficient and practical covariance matrix estimatorsTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisTexthttp://purl.org/coar/version/c_71e4c1898caa6e32https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Métodos de simulaciónEnergía eólica -- Métodos de simulaciónEstudiantesDoctoradoORIGINALResumen Tesis Doctorado.pdfResumen Tesis Doctorado.pdfapplication/pdf878895https://manglar.uninorte.edu.co/bitstream/10584/13331/1/Resumen%20Tesis%20Doctorado.pdf3c064a386bf4dcbf9f4466cdbb36e4ddMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://manglar.uninorte.edu.co/bitstream/10584/13331/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210584/13331oai:manglar.uninorte.edu.co:10584/133312025-05-27 15:42:36.412Repositorio Digital de la Universidad del Nortemauribe@uninorte.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=