Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width

A numerical investigation on the nonlinear optical rectification, second and third harmonic generation coefficients in asymmetric double n-type δ-doped GaAs quantum well is performed in order to identify the influence of non-resonant intense laser radiation, doping concentration and the change in we...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5984
Acceso en línea:
http://hdl.handle.net/11407/5984
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_fb4277ae2a4d8c8835d5cbf6ad1ae2f1
oai_identifier_str oai:repository.udem.edu.co:11407/5984
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
spellingShingle Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title_short Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title_full Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title_fullStr Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title_full_unstemmed Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
title_sort Nonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well width
description A numerical investigation on the nonlinear optical rectification, second and third harmonic generation coefficients in asymmetric double n-type δ-doped GaAs quantum well is performed in order to identify the influence of non-resonant intense laser radiation, doping concentration and the change in well widths. The energy eigenvalues and the corresponding eigenfunctions are determined by using effective-mass and parabolic band approximations. The working analytical expressions for the optical coefficients are derived from the iterative solving of compact-density matrix description of dielectric susceptibility. The obtained results reveal that the position and amplitude of the nonlinear optical rectification, second and third harmonic generation coefficients can be altered by modifying the external field as well as the compositional and geometrical setups. © 2020, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:25Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:25Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 21905444
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5984
dc.identifier.doi.none.fl_str_mv 10.1140/epjp/s13360-020-00465-x
identifier_str_mv 21905444
10.1140/epjp/s13360-020-00465-x
url http://hdl.handle.net/11407/5984
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085696904&doi=10.1140%2fepjp%2fs13360-020-00465-x&partnerID=40&md5=7d65dcf030a545ef390904e45a785588
dc.relation.citationvolume.none.fl_str_mv 135
dc.relation.citationissue.none.fl_str_mv 6
dc.relation.references.none.fl_str_mv Rosencher, E., Bois, P., Nagle, J., Costard, E., Delaitre, S., (1989) Appl. Phys. Lett., 55, pp. 1597-1599
Bitz, A., Marsi, M., Tuncel, E., Gürtler, S., Staehli, J.L., Vartanian, B.J., Shaw, M.J., van der Meer, A.F.G., (1997) Phys. Rev. B, 56, pp. 10428-10434
D’Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., (1997) Phys. Stat. Sol. (A), 164, pp. 383-386
Sirtori, C., Capasso, F., Sivco, D.L., Cho, A.Y., (1992) Phys. Rev. Lett., 68, pp. 1010-1013
Rosencher, E., Bois, P., (1991) Phys. Rev. B, 44, pp. 11315-11327
Hassanabadi, H., Liu, G., Lu, L., (2012) Solid State Commun., 152, pp. 1761-1766
Mou, S., Guo, K., Xiao, B., (2014) Superlattices Microstruct., 65, pp. 309-318
Karimi, M.J., Vafaei, H., (2015) Superlattices Microstruct., 78, pp. 1-11
Karimi, M.J., Keshavarz, A., Rezaei, G., (2011) J. Comput. Theor. Nanosci., 8, pp. 1340-1345
Li, K., Gu, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381
Martínez-Orozco, J.C., Mora-Ramos, M.E., Duque, C.A., (2012) J. Lumin., 132, pp. 449-456
Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Phys. E Low-dimens. Syst. Nanostruct., 113, pp. 86-91
Sari, H., Ungan, F., Kasapoglu, E., Sakiroglu, S., Sokmen, I., (2019) Philos. Mag., 99, pp. 2444-2456
Ozturk, O., Ozturk, E., Elagoz, S., (2019) Phys. Scr., 94, p. 115809
Panda, B.K., Panda, S., (2013) Superlattices Microstruct., 61, pp. 124-133
Ungan, F., Sari, H., Kasapoglu, E., Yesilgul, U., Sakiroglu, S., Sokmen, I., (2019) J. Nanosci. Nanotechnol., 19, pp. 4167-4171
Sakiroglu, S., Ungan, F., Yesilgul, U., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sokmen, I., (2012) Phys. Lett. A, 376, pp. 1875-1880
Aytekin, O., Turgut, S., Tomak, M., (2012) Phys. E Low-dimens. Syst. Nanostruct., 44, pp. 1612-1616
Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Kasapoglu, E., Duque, C.A., (2015) Superlattices Microstruct., 81, pp. 26-33
Yesilgul, U., Sari, H., Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Sokmen, I., (2017) Chem. Phys., 485-486, pp. 81-87
Restrepo, R.L., González-Pereira, J.P., Kasapoglu, E., Morales, A.L., Duque, C.A., (2018) Opt. Mater., 86, pp. 590-599
Pal, S., Ghosh, M., (2016) Opt. Quantum Electron., 48, p. 372
Ganguly, J., Ghosh, M., (2016) Phys. Status Solidi B, 253, pp. 1093-1103
Saha, S., Ghosh, M., (2016) J. Phys. Chem. Solids, 90, pp. 69-79
Baskoutas, S., Paspalakis, E., Terzis, A.F., (2006) Phys. Rev. B, 74, p. 153306
Liu, G., Guo, K., Wu, Q., Wu, J.H., (2013) Superlattices Microstruct., 53, pp. 173-183
Liu, C.H., Guo, K.-X., Chen, C.Y., Ma, B.K., (2002) Phys. E, 15, pp. 217-228
Zhang, C.J., Guo, K.X., (2006) Phys. B, 383, pp. 183-187
Li, N., Guo, K.X., Shao, S., (2011) Superlattices Microstruct., 49, pp. 468-476
Yu, Y.B., Guo, K.X., Zhu, S.N., (2005) Phys. E, 27, pp. 62-66
Li, N., Guo, K.X., Liu, G.H., (2012) Superlattices Microstruct., 52, pp. 41-49
Ioriatti, L., (1990) Phys. Rev. B, 41, pp. 8340-8344
Gavrila, M., Kaminski, J.Z., (1984) Phys. Rev. Lett., 52, pp. 613-616
Ehlotzky, F., (1988) Phys. Lett. A, 126, pp. 524-527
Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G., da Silva Jr, E.F., (2009) J. Appl. Phys., 105, p. 123111
Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515
Shao, S., Guo, K.-X., Zhang, Z.-H., Li, N., Peng, C., (2011) Solid State Commun., 151, pp. 289-292
Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86
Sari, H., Kasapoglu, E., Sakiroglu, S., Yesilgul, U., Ungan, F., Sökmen, I., (2017) Phys. E, 90, pp. 214-217
Ungan, F., Mora-Ramos, M.E., Kasapoglu, E., Sari, H., Sökmen, I., (2019) Optics, 180, pp. 387-393
Rodríguez-Magdaleno, K.A., Martínez-Orozco, J.C., Rodríguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., (2014) J. Lumin., 147, pp. 77-84
Ungan, F., Ozturk, E., Ergun, Y., Sokmen, I., (2007) Superlattices Microstruct., 41, pp. 22-28
Ozturk, O., Ozturk, E., Elagoz, S., (2018) J. Mol. Struct., 1156, pp. 726-732
Aydinoglu, H.S., Sakiroglu, S., Sari, H., Ungan, F., Sökmen, I., (2018) Philos. Mag., 98, pp. 2151-2163
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv European Physical Journal Plus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159175003930624
spelling 20202021-02-05T14:58:25Z2021-02-05T14:58:25Z21905444http://hdl.handle.net/11407/598410.1140/epjp/s13360-020-00465-xA numerical investigation on the nonlinear optical rectification, second and third harmonic generation coefficients in asymmetric double n-type δ-doped GaAs quantum well is performed in order to identify the influence of non-resonant intense laser radiation, doping concentration and the change in well widths. The energy eigenvalues and the corresponding eigenfunctions are determined by using effective-mass and parabolic band approximations. The working analytical expressions for the optical coefficients are derived from the iterative solving of compact-density matrix description of dielectric susceptibility. The obtained results reveal that the position and amplitude of the nonlinear optical rectification, second and third harmonic generation coefficients can be altered by modifying the external field as well as the compositional and geometrical setups. © 2020, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.engSpringerFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085696904&doi=10.1140%2fepjp%2fs13360-020-00465-x&partnerID=40&md5=7d65dcf030a545ef390904e45a7855881356Rosencher, E., Bois, P., Nagle, J., Costard, E., Delaitre, S., (1989) Appl. Phys. Lett., 55, pp. 1597-1599Bitz, A., Marsi, M., Tuncel, E., Gürtler, S., Staehli, J.L., Vartanian, B.J., Shaw, M.J., van der Meer, A.F.G., (1997) Phys. Rev. B, 56, pp. 10428-10434D’Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., (1997) Phys. Stat. Sol. (A), 164, pp. 383-386Sirtori, C., Capasso, F., Sivco, D.L., Cho, A.Y., (1992) Phys. Rev. Lett., 68, pp. 1010-1013Rosencher, E., Bois, P., (1991) Phys. Rev. B, 44, pp. 11315-11327Hassanabadi, H., Liu, G., Lu, L., (2012) Solid State Commun., 152, pp. 1761-1766Mou, S., Guo, K., Xiao, B., (2014) Superlattices Microstruct., 65, pp. 309-318Karimi, M.J., Vafaei, H., (2015) Superlattices Microstruct., 78, pp. 1-11Karimi, M.J., Keshavarz, A., Rezaei, G., (2011) J. Comput. Theor. Nanosci., 8, pp. 1340-1345Li, K., Gu, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381Martínez-Orozco, J.C., Mora-Ramos, M.E., Duque, C.A., (2012) J. Lumin., 132, pp. 449-456Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Phys. E Low-dimens. Syst. Nanostruct., 113, pp. 86-91Sari, H., Ungan, F., Kasapoglu, E., Sakiroglu, S., Sokmen, I., (2019) Philos. Mag., 99, pp. 2444-2456Ozturk, O., Ozturk, E., Elagoz, S., (2019) Phys. Scr., 94, p. 115809Panda, B.K., Panda, S., (2013) Superlattices Microstruct., 61, pp. 124-133Ungan, F., Sari, H., Kasapoglu, E., Yesilgul, U., Sakiroglu, S., Sokmen, I., (2019) J. Nanosci. Nanotechnol., 19, pp. 4167-4171Sakiroglu, S., Ungan, F., Yesilgul, U., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sokmen, I., (2012) Phys. Lett. A, 376, pp. 1875-1880Aytekin, O., Turgut, S., Tomak, M., (2012) Phys. E Low-dimens. Syst. Nanostruct., 44, pp. 1612-1616Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Kasapoglu, E., Duque, C.A., (2015) Superlattices Microstruct., 81, pp. 26-33Yesilgul, U., Sari, H., Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Sokmen, I., (2017) Chem. Phys., 485-486, pp. 81-87Restrepo, R.L., González-Pereira, J.P., Kasapoglu, E., Morales, A.L., Duque, C.A., (2018) Opt. Mater., 86, pp. 590-599Pal, S., Ghosh, M., (2016) Opt. Quantum Electron., 48, p. 372Ganguly, J., Ghosh, M., (2016) Phys. Status Solidi B, 253, pp. 1093-1103Saha, S., Ghosh, M., (2016) J. Phys. Chem. Solids, 90, pp. 69-79Baskoutas, S., Paspalakis, E., Terzis, A.F., (2006) Phys. Rev. B, 74, p. 153306Liu, G., Guo, K., Wu, Q., Wu, J.H., (2013) Superlattices Microstruct., 53, pp. 173-183Liu, C.H., Guo, K.-X., Chen, C.Y., Ma, B.K., (2002) Phys. E, 15, pp. 217-228Zhang, C.J., Guo, K.X., (2006) Phys. B, 383, pp. 183-187Li, N., Guo, K.X., Shao, S., (2011) Superlattices Microstruct., 49, pp. 468-476Yu, Y.B., Guo, K.X., Zhu, S.N., (2005) Phys. E, 27, pp. 62-66Li, N., Guo, K.X., Liu, G.H., (2012) Superlattices Microstruct., 52, pp. 41-49Ioriatti, L., (1990) Phys. Rev. B, 41, pp. 8340-8344Gavrila, M., Kaminski, J.Z., (1984) Phys. Rev. Lett., 52, pp. 613-616Ehlotzky, F., (1988) Phys. Lett. A, 126, pp. 524-527Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G., da Silva Jr, E.F., (2009) J. Appl. Phys., 105, p. 123111Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515Shao, S., Guo, K.-X., Zhang, Z.-H., Li, N., Peng, C., (2011) Solid State Commun., 151, pp. 289-292Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86Sari, H., Kasapoglu, E., Sakiroglu, S., Yesilgul, U., Ungan, F., Sökmen, I., (2017) Phys. E, 90, pp. 214-217Ungan, F., Mora-Ramos, M.E., Kasapoglu, E., Sari, H., Sökmen, I., (2019) Optics, 180, pp. 387-393Rodríguez-Magdaleno, K.A., Martínez-Orozco, J.C., Rodríguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., (2014) J. Lumin., 147, pp. 77-84Ungan, F., Ozturk, E., Ergun, Y., Sokmen, I., (2007) Superlattices Microstruct., 41, pp. 22-28Ozturk, O., Ozturk, E., Elagoz, S., (2018) J. Mol. Struct., 1156, pp. 726-732Aydinoglu, H.S., Sakiroglu, S., Sari, H., Ungan, F., Sökmen, I., (2018) Philos. Mag., 98, pp. 2151-2163European Physical Journal PlusNonlinear optical properties of n-type asymmetric double δ -doped quantum wells: role of high-frequency laser radiation, doping concentration and well widthArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Durmuslar, A.S., Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Piri Reis University, Istanbul, 34940, TurkeyMora-Ramos, M.E., Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaUngan, F., Department of Optical Engineering, Faculty of Technology, Sivas Cumhuriyet University, Sivas, Turkeyhttp://purl.org/coar/access_right/c_16ecDurmuslar A.S.Mora-Ramos M.E.Ungan F.11407/5984oai:repository.udem.edu.co:11407/59842021-02-05 09:58:25.132Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co