Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado
Figuras, tablas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22417
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22417
- Palabra clave:
- 570 - Biología
1. Ciencias Naturales
Microorganismos
Bioinformática
Biotecnología
Oxford nanopore
Butanol
Biología
Microbiología
- Rights
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUCALDA_f9e80729bcbd6dbd3d3cb014f8df6451 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22417 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
title |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
spellingShingle |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado 570 - Biología 1. Ciencias Naturales Microorganismos Bioinformática Biotecnología Oxford nanopore Butanol Biología Microbiología |
title_short |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
title_full |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
title_fullStr |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
title_full_unstemmed |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
title_sort |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado |
dc.contributor.none.fl_str_mv |
ORJUELA RODRÍGUEZ, MARCELA MORALES EDWIN, DAVID |
dc.subject.none.fl_str_mv |
570 - Biología 1. Ciencias Naturales Microorganismos Bioinformática Biotecnología Oxford nanopore Butanol Biología Microbiología |
topic |
570 - Biología 1. Ciencias Naturales Microorganismos Bioinformática Biotecnología Oxford nanopore Butanol Biología Microbiología |
description |
Figuras, tablas |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06-13T18:46:22Z 2025-06-13T18:46:22Z 2025-06-13 |
dc.type.none.fl_str_mv |
Informe de investigación http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/report |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22417 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22417 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Abendroth, C., Latorre-Pérez, A., Porcar, M., Simeonov, C., Luschnig, O., Vilanova, C., & Pascual, J. (2020). Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Systematic https://doi.org/10.1016/j.syapm.2019.126024 and Applied Microbiology, 43(1). Abo, B. O., Gao, M., Wu, C., Zhu, W., & Wang, Q. (2019). A review on characteristics of food waste and their use in butanol production. In Reviews on Environmental Health (Vol. 34, Issue 4, pp. 447–457). Walter de Gruyter GmbH. https://doi.org/10.1515/reveh-2019-0037 Ahamefule, C. S., Osilo, C., Ahamefule, B. C., Madueke, S. N., & Moneke, A. N. (2024). Simultaneous production of biofuel from agricultural wastes and bioremediation of the waste substrates: A review. In Current Research in Microbial https://doi.org/10.1016/j.crmicr.2024.100305 Sciences (Vol. 7). Elsevier Ltd. Al-Shorgani, N. K. N., Isa, M. H. M., Yusoff, W. M. W., Kalil, M. S., & Hamid, A. A. (2016). Isolation of a Clostridium acetobutylicum strain and characterization of its fermentation performance on agricultural wastes. Renewable Energy, 86, 459–465. https://doi.org/10.1016/j.renene.2015.08.051 Ammer-Herrmenau, C., Antweiler, K. L., Asendorf, T., Beyer, G., Buchholz, S. M., Cameron, S., Capurso, G., Damm, M., Dang, L., Frost, F., Ellenrieder, V., & Neesse, A. (2023). Original research Gut microbiota predicts severity and reveals novel metabolic signatures in acute pancreatitis. Gut, 73(3), 485–495. https://doi.org/10.1136/gutjnl-2023-330987 Ammer-Herrmenau, C., Pfisterer, N., van den Berg, T., Gavrilova, I., Amanzada, A., Singh, S. K., Khalil Alaa and Alili, R., Belda, E., Clement, K., El Wahed, A. A., Gady, E. E., Haubrock, M., Beissbarth, T., Ellenrieder, V., & Neesse, A. (2021). Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford https://doi.org/10.1128/mSystems.00750-21 Nanopore Technologies. MSYSTEMS, 6(4). Baker, J. L. (2022). Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples. MSYSTEMS, 7(5). https://doi.org/10.1128/msystems.00491-22 Balachandran, K. R. S., Sankara Subramanianan, S. H., Dhassiah, M. P., Rengarajan, A., Chandrasekaran, M., Rangamaran, V. R., & Gopal, D. (2023). Microbial community structure and exploration of bioremediation enzymes: functional metagenomics insight into Arabian Sea sediments. MOLECULAR GENETICS AND GENOMICS, 298(3), 627–651. https://doi.org/10.1007/s00438-023 01995-6 Benoit, G., James, R., Raguideau, S., Alabone, G., Goodall, T., Chikhi, R., & Quince, C. (2025). High quality assembly https://doi.org/10.1101/2025.04.22.649928 from nanopore reads with nanoMDBG. Benoit, G., Raguideau, S., James, R., Phillippy, A. M., Chikhi, R., & Quince, C. (2024). High-quality metagenome assembly from long accurate reads with metaMDBG. Nature Biotechnology, 42(9), 1378 1383. https://doi.org/10.1038/s41587-023-01983-6 Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. In Journal of Industrial Microbiology & Biotechnology (Vol. 27). www.nature.com/jim Bloemen, B., Gand, M., Vanneste, K., Marchal, K., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2023). Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance https://doi.org/10.1038/s41598-023-46771-z surveillance. Scientific Reports, 13(1). Brandt, C., Bongcam-Rudloff, E., & Müller, B. (2020). Abundance tracking by long-read nanopore sequencing of complex microbial communities in samples from 20 different biogas/wastewater plants. Applied Sciences (Switzerland), 10(21), 1–14. https://doi.org/10.3390/app10217518 Buttler, J., & Drown, D. (2022). Accuracy and completeness of long read metagenomic assemblies. https://doi.org/10.1101/2022.11.23.517703 Chen, Z., Grim, C. J., Ramachandran, P., & Meng, J. (2024). Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing. Microbiology Spectrum, 12(6). https://doi.org/10.1128/spectrum.00117-24 Child, H. T., Wierzbicki, L., Joslin, G. R., & Tennant, R. K. (2024). Comparative evaluation of soil DNA extraction long read metagenomic sequencing. Access Microbiology, 6(9). https://doi.org/10.1099/acmi.0.000868.v3 Chinwendu, A. O., Catherine, A. O. B., & Uwem Okon, E. (2020). Metagenomics in-sight into the microbial structural diversity of anaerobic digester utilising fruit waste as substrate. Journal of Microbiology, Biotechnology and Food Sciences, 9(5), 965–969. https://doi.org/10.15414/jmbfs.2020.9.5.965-969 Chu, C. F., Ebie, Y., Xu, K. Q., Li, Y. Y., & Inamori, Y. (2010). Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 35(15), 8253–8261. https://doi.org/10.1016/j.ijhydene.2009.12.021 Ciuffreda, L., Rodríguez-Pérez, H., & Flores, C. (2021). Nanopore sequencing and its application to the study of microbial communities. In Computational and Structural Biotechnology Journal (Vol. 19, pp. 1497 1511). Elsevier B.V. https://doi.org/10.1016/j.csbj.2021.02.020 Cortez-Cervantes, J., Moreno-Andrade, I., Escalante, A. E., de los Cobos-Vasconcelos, D., & Carrillo Reyes, J. (2024). Identifying reliable microbial indicators in anaerobic digestion of organic solid waste: Insights from a meta-analysis. Journal of Environmental Chemical Engineering, 12(5). https://doi.org/10.1016/j.jece.2024.113392 Cusco, A., Perez, D., Vines, J., Fabregas, N., & Francino, O. (2021). Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces. BMC GENOMICS, 22(1). https://doi.org/10.1186/s12864-021-07607-0 Cusco, A., Perez, D., Viñes, J., & Francino, O. (2020). Long-Read Metagenomics to Retrieve High-Quality Metagenome-Assembled Genomes from Canine Feces. https://doi.org/10.21203/rs.3.rs-60068/v1 De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing https://doi.org/10.1093/bioinformatics/bty149 data. Bioinformatics, 34(15), 2666–2669. Departamento Nacional de Planeación. (2016). Pérdida y desperdicio de alimentos en Colombia: Diagnóstico desde la oferta. https://colaboracion.dnp.gov.co/CDT/Prensa/Publicaciones/Pérdida%20y%20desperdicio%20de%20ali mentos%20en%20colombia.pdf Favale, N., Costa, S., Summa, D., Sabbioni, S., Mamolini, E., Tamburini, E., & Scapoli, C. (2025). Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes. Current https://doi.org/10.1016/j.crmicr.2025.100383 Research in Microbial Sciences, 8. Feng, X., Cheng, H., Portik, D. et al. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods 19, 671–674 (2022). https://doi.org/10.1038/s41592-022-01478-3 Gand, M., Bloemen, B., Vanneste, K., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2023). Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing https://doi.org/10.1186/s12864-023-09537-5 to detect bacteria. BMC Genomics, 24(1). Grohmann, A., Vainshtein, Y., Euchner, E., Grumaz, C., Bryniok, D., Rabus, R., & Sohn, K. (2018). Genetic repertoires of anaerobic microbiomes driving generation of biogas. Biotechnology for Biofuels, 11(1). https://doi.org/10.1186/s13068-018-1258-x Gweon, H. S., Shaw, L. P., Swann, J., De Maio, N., Abuoun, M., Niehus, R., Hubbard, A. T. M., Bowes, M. J., Bailey, M. J., Peto, T. E. A., Hoosdally, S. J., Walker, A. S., Sebra, R. P., Crook, D. W., Anjum, M. F., Read, D. S., Stoesser, N., Abuoun, M., Anjum, M., … Woodford, N. (2019). The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental Microbiomes, 14(1). https://doi.org/10.1186/s40793-019-0347-1 Hegde, S., Lodge, J. S., & Trabold, T. A. (2018). Characteristics of food processing wastes and their use in sustainable alcohol production. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 510–523). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.07.012 Herbert, J., Thompson, S., Beckett, A. H., & Robson, S. C. (2025). Impact of microbiological molecular methodologies on adaptive sampling using nanopore sequencing in metagenomic studies. Environmental Microbiome, 20(1). https://doi.org/10.1186/s40793-025-00704-7 Huang, H., Liu, H., & Gan, Y. R. (2010). Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. In Biotechnology Advances (Vol. 28, Issue 5, pp. 651–657). https://doi.org/10.1016/j.biotechadv.2010.05.015 Khanna, S., Goyal, A., & Moholkar, V. S. (2013). Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel, 112, 557–561. https://doi.org/10.1016/j.fuel.2011.10.071 Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of sequences. https://doi.org/10.1101/gr.210641.116 Genome Research, 26(12), 1721–1729. Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020 00971-x Kolmogorov, M., Rayko, M., Yuan, J., Polevikov, E., & Pevzner, P. (2019). metaFlye: scalable long-read metagenome assembly using repeat graphs. https://doi.org/10.1101/637637 Kumar, G., & Bhadury, P. (2024). Dataset of metagenomic profiles of human gut microbiome from frozen fecal samples sequenced using Illumina and ONT chemistries. Data in Brief, 57. https://doi.org/10.1016/j.dib.2024.110961 Lanfear, R., Schalamun, M., Kainer, D., Wang, W., & Schwessinger, B. (2019). MinIONQC: Fast and simple quality control for MinION sequencing data. Bioinformatics, 35(3), 523–525. https://doi.org/10.1093/bioinformatics/bty654 Latorre-Pérez, A., Villalba-Bermell, P., Pascual, J., & Vilanova, C. (2020). Assembly methods for nanopore-based metagenomic sequencing: a comparative study. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70491-3 Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598 021-00178-w Leggett, R. M., & Clark, M. D. (2017). A world of opportunities with nanopore sequencing. Journal of Experimental Botany, 68(20), 5419–5429. https://doi.org/10.1093/jxb/erx278 Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 Li, S., Huang, L., Ke, C., Pang, Z., & Liu, L. (2020). Pathway dissection, regulation, engineering and application: Lessons learned from biobutanol production by solventogenic clostridia. In Biotechnology for Biofuels (Vol. 13, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13068-020-01674-3 Li, Y., Tang, W., Chen, Y., Liu, J., & Lee, C. fon F. (2019). Potential of acetone-butanol-ethanol (ABE) as a biofuel. In Fuel (Vol. 242, pp. 673–686). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.01.063 Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. In Fermentation (Vol. 9, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/fermentation9090847 Liu, Y., Ghaffari, M. H., Ma, T., & Tu, Y. (2024). Impact of database choice and confidence score on the performance of taxonomic classification using Kraken2. ABIOTECH. https://doi.org/10.1007/s42994-024 00178-0 Loman, N. J., Quick, J., & Simpson, J. T. (2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods, 12(8), 733–735. https://doi.org/10.1038/nmeth.3454 Maiti, S., Sarma, S. J., Brar, S. K., Le Bihan, Y., Drogui, P., Buelna, G., & Verma, M. (2016). Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food and Bioproducts Processing, 98, 217–226. https://doi.org/10.1016/j.fbp.2016.01.002 Manter, D. K., Reardon, C. L., Ashworth, A. J., Ibekwe, A. M., Lehman, R. M., Maul, J. E., Miller, D. N., Creed, T., Ewing, P. M., Park, S., Ducey, T. F., Tyler, H. L., Veum, K. S., Weyers, S. L., & Knaebel, D. B. (2024). Unveiling errors in soil microbial community sequencing: a case for reference soils and improved diagnostics for nanopore sequencing. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024 06594-8 Marquet, M., Zöllkau, J., Pastuschek, J., Viehweger, A., Schleußner, E., Makarewicz, O., Pletz, M. W., Ehricht, R., & Brandt, C. (2022). Evaluation of microbiome enrichment and host DNA depletion in human vaginal samples using Oxford Nanopore’s adaptive sequencing. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08003-8 Martin, S., Heavens, D., Lan, Y., Horsfield, S., Clark, M. D., & Leggett, R. M. (2022). Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples. Genome Biology, 23(1). https://doi.org/10.1186/s13059-021-02582-x Menzel, D., & Hüttemann, M. (2000). The mitochondrial genome of Saprolegnia ferax: organization and gene content. Journal of Molecular Evolution, 51(5), 411–423. https://doi.org/10.1007/s002390010117 McIntyre, A. B. R., Ounit, R., Afshinnekoo, E., Prill, R. J., Hénaff, E., Alexander, N., Minot, S. S., Danko, D., Foox, J., Ahsanuddin, S., Tighe, S., Hasan, N. A., Subramanian, P., Moffat, K., Levy, S., Lonardi, S., Greenfield, N., Colwell, R. R., Rosen, G. L., & Mason, C. E. (2017). Comprehensive benchmarking and ensemble approaches for metagenomic https://doi.org/10.1186/s13059-017-1299-7 classifiers. Genome Biology, 18(1). Mikheenko, A., Saveliev, V., & Gurevich, A. (2016). MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697 Moon, H. G., Jang, Y. S., Cho, C., Lee, J., Binkley, R., & Lee, S. Y. (2016). One hundred years of clostridial butanol fermentation. FEMS Microbiology Letters, 363(3). https://doi.org/10.1093/femsle/fnw001 Moss, E. L., Maghini, D. G., & Bhatt, A. S. (2020). Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nature Biotechnology, 38(6), 701–707. https://doi.org/10.1038/s41587-020 0422-6 Nabila, D. S., Chan, R., Syamsuri, R. R. P., Nurlilasari, P., Wan-Mohtar, W. A. A. Q. I., Ozturk, A. B., Rossiana, N., & Doni, F. (2024). Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development. In Current Research in Microbial Sciences (Vol. 7). Elsevier Ltd. https://doi.org/10.1016/j.crmicr.2024.100250 Nicholls, S. M., Quick, J. C., Tang, S., & Loman, N. J. (2019). Ultra-deep, long-read nanopore sequencing of mock microbial community standards. GigaScience, 8(5). https://doi.org/10.1093/gigascience/giz043 Nicholls, S. M., Quick, J. C., Tang, S., & Loman, N. J. (2019). Ultra-deep, long-read nanopore sequencing of a mock microbial community. Nature Communications, 10, 4359. https://doi.org/10.1038/s41467-019 12223-8 Oehlenschläger, K., Hengsbach, J. N., Volkmar, M., & Ulber, R. (2025). From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation. In Applied microbiology and biotechnology (Vol. 109, Issue 1, p. 47). https://doi.org/10.1007/s00253-025-13428-y Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2021). Food loss and waste. https://www.fao.org/platform-food-loss-waste/resources/multimedia/video/fao-food-policy-series-food loss-and-waste/en Overholt, W. A., Hölzer, M., Geesink, P., Diezel, C., Marz, M., & Küsel, K. (2020). Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environmental Microbiology, 22(9), 4000–4013. https://doi.org/10.1111/1462-2920.15186 Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 Pimentel, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76. https://doi.org/10.1007/s11053-005-4679-8 Quick-DNATM HMW MagBead Kit. (2025). Quick-DNA TM HMW MagBead Kit High molecular weight DNA isolation for any downstream application. Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., ... & Carroll, M. W. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589), 228–232. https://doi.org/10.1038/nature16996 Safar, H. A., Alatar, F., & Mustafa, A. S. (2024). Three Rounds of Read Correction Significantly Improve Eukaryotic Detection in https://doi.org/10.3390/microorganisms12020247 ONT Reads. Microorganisms, 12(2). Sanderson, N. D., Street, T. L., Foster, D., Swann, J., Atkins, B. L., Brent, A. J., McNally, M. A., Oakley, S., Taylor, A., Peto, T. E. A., Crook, D. W., & Eyre, D. W. (2018). Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-5094 y Sanguanchaipaiwong, V., & Leksawasdi, N. (2018). Butanol production by Clostridium beijerinckii from pineapple waste juice. Energy Procedia, 153, 231–236. https://doi.org/10.1016/j.egypro.2018.10.006 Sauer, M. (2016). Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiology Letters, 363(13). https://doi.org/10.1093/femsle/fnw134 Sauvage, T., Cormier, A., & Delphine, P. (2023). A comparison of Oxford nanopore library strategies for bacterial genomics. BMC Genomics, 24(1). https://doi.org/10.1186/s12864-023-09729-z Sereika, M., Kirkegaard, R. H., Karst, S. M., Michaelsen, T. Y., Sørensen, E. A., Wollenberg, R. D., & Albertsen, M. (2022). Oxford Nanopore R10.4 long-read sequencing enables the generation of near finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nature Methods, 19(7), 823–826. https://doi.org/10.1038/s41592-022-01539-7 Simon, S. A., Schmidt, K., Griesdorn, L., Soares, A. R., Bornemann, T. L. V., & Probst, A. J. (2023). Dancing the Nanopore limbo – Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics, 24(1). https://doi.org/10.1186/s12864-023-09853-w Srivastava, A., & Mishra, A. (2022). Food waste valorization for handling environmental problems: a review. Environmental Sustainability, 5(4), 401–421. https://doi.org/10.1007/s42398-022-00245-6 Sun, B., Guo, J., Jin, H., Jin, Z., Sun, Y., Mao, Y., Xie, F., He, Y., Sun, Z., Ivanov, I., & Tian, H. (2024). MetaCONNET: A metagenomic polishing tool for long-read assemblies. PLoS ONE, 19(12 December). https://doi.org/10.1371/journal.pone.0313515 Sun, Y., Cheng, Z., Li, X., Yang, Q., Zhao, B., Wu, Z., & Xia, Y. (2023). Genome enrichment of rare and unknown species from complicated microbiomes by nanopore selective sequencing. Genome Research, 33(4), 612–621. https://doi.org/10.1101/gr.277266.122 Tierney, B. T., Kim, J. K., Overbey, E. G., Ryon, K. A., Foox, J., Sierra, M. A., Bhattacharya, C., Damle, N., Najjar, D., Park, J., Garcia Medina, J. S., Houerbi, N., Meydan, C., Wain Hirschberg, J., Qiu, J., Kleinman, A. S., Al-Ghalith, G. A., MacKay, M., Afshin, E. E., … Mason, C. E. (2024). Longitudinal multi omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nature Microbiology, 9(7), 1661–1675. https://doi.org/10.1038/s41564-024-01635-8 Wick, R. R., & Holt, K. E. (2019). Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 8. https://doi.org/10.12688/f1000research.21782.1 Wick, R. R., Judd, L. M., Cerdeira, L. T., Hawkey, J., Méric, G., Vezina, B., Wyres, K. L., & Holt, K. E. (2021). Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biology, 22(1). https://doi.org/10.1186/s13059-021-02483-z Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1). https://doi.org/10.1186/s13059-019-1891-0 Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. http://ccb.jhu.edu/software/kraken/. Xiong, W., Reyes, L. H., Michener, W. E., Maness, P. C., & Chou, K. J. (2018). Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnology and Bioengineering, 115(7), 1755–1763. https://doi.org/10.1002/bit.26590 Ye, S. H., Siddle, K. J., Park, D. J., & Sabeti, P. C. (2019). Benchmarking Metagenomics Tools for Taxonomic Classification. In Cell (Vol. 178, Issue 4, pp. 779–794). Cell Press. https://doi.org/10.1016/j.cell.2019.07.010 Zhang, Z., Yang, C., Veldsman, W. P., Fang, X., & Zhang, L. (2023). Benchmarking genome assembly methods metagenomic https://doi.org/10.1093/bib/bbad087 sequencing data. Briefings in Bioinformatics, 24(2). |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
23 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145077606416384 |
spelling |
Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado570 - Biología1. Ciencias NaturalesMicroorganismosBioinformáticaBiotecnologíaOxford nanoporeButanolBiologíaMicrobiologíaFiguras, tablasLos residuos orgánicos representan uno de los principales desafíos ambientales y de salud pública en la actualidad, debido a las enormes cantidades que se generan diariamente (FAO, 2021). En particular, los residuos provenientes de plazas de mercado, compuestos principalmente por restos de frutas, verduras, hojas y otros productos vegetales, ya que se descomponen rápidamente. En este contexto, las comunidades microbianas que naturalmente colonizan este tipo de residuos desempeñan un papel fundamental, ya que son capaces de transformar la materia orgánica en productos de valor agregado, como biogás, enzimas, ácidos orgánicos y alcoholes. Este potencial convierte a los residuos orgánicos en una materia prima valiosa para la producción sostenible de compuestos químicos y energéticos renovables. Por lo tanto, el presente trabajo tiene como objetivo diseñar un flujo de trabajo que permita determinar, la composición y abundancia de los microorganismos presentes en los residuos orgánicos generados en plazas de mercado. Para lograr este propósito, se propone realizar una revisión bibliográfica enfocada en la recopilación y análisis de protocolos de laboratorio que aborden aspectos clave como la calidad y cuantificación de ADN, así como su secuenciación utilizando la tecnología de secuenciación de tercera generación de Oxford Nanopore. Además, se buscarán microorganismos con potencial biotecnológico, en especial aquellos capaces de generar alcoholes mediante procesos fermentativos. Particularmente, se espera la presencia de bacterias del género Clostridium, reconocidas por su capacidad para producir alcoholes, como el butanol, a través de procesos fermentativos en residuos orgánicos.Organic waste represents one of the main environmental and public health challenges today, due to the vast amounts generated daily (FAO, 2021). In particular, waste originating from public marketplaces—mainly composed of fruit and vegetable residues, leaves, and other plant-based materials—decomposes rapidly. In this context, microbial communities that naturally colonize this type of waste play a fundamental role, as they are capable of transforming organic matter into value-added products such as biogas, enzymes, organic acids, and alcohols. This potential positions organic waste as a valuable raw material for the sustainable production of chemical and renewable energy compounds. Therefore, the present study aims to design a workflow to determine the composition and abundance of microorganisms present in organic waste generated in public marketplaces. To achieve this objective, a literature review will be conducted focusing on the collection and analysis of laboratory protocols addressing key aspects such as DNA quality assessment, quantification, and sequencing using third-generation sequencing technology provided by Oxford Nanopore. Additionally, microorganisms with biotechnological potential will be identified, particularly those capable of producing alcohols through fermentative processes. In particular, the presence of bacteria from the genus Clostridium is expected, as they are well-known for their ability to produce alcohols such as butanol via fermentation of organic waste.Actividades realizadas durante la pasantía -- Participación de la ejecución de proyectos de investigación del área de biotecnología -- Participación de la formulación de proyectos de investigación -- Actividades de formación -- Logros alcanzados -- Desarrollo de un flujo de trabajo para la caracterización microbiana de residuos orgánicos en plazas de mercado -- Productos generados durante su estanciaPregradoMetodología: revisión sistemática usado PRISMA, tiene como objetivo identificar protocolos de extracción, secuenciación de ADN, softwares para el análisis bioinformático y potenciales microorganismo productores de butanol. Bases de datos usadas: Scopus y Web Of ScienceBiólogo(a)BiotecnologíaUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaORJUELA RODRÍGUEZ, MARCELAMORALES EDWIN, DAVIDBecerra López, Mayerli Alejandra2025-06-13T18:46:22Z2025-06-13T18:46:22Z2025-06-13Informe de investigaciónhttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/reporthttp://purl.org/coar/resource_type/c_93fc23 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22417Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbendroth, C., Latorre-Pérez, A., Porcar, M., Simeonov, C., Luschnig, O., Vilanova, C., & Pascual, J. (2020). Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Systematic https://doi.org/10.1016/j.syapm.2019.126024 and Applied Microbiology, 43(1).Abo, B. O., Gao, M., Wu, C., Zhu, W., & Wang, Q. (2019). A review on characteristics of food waste and their use in butanol production. In Reviews on Environmental Health (Vol. 34, Issue 4, pp. 447–457). Walter de Gruyter GmbH. https://doi.org/10.1515/reveh-2019-0037Ahamefule, C. S., Osilo, C., Ahamefule, B. C., Madueke, S. N., & Moneke, A. N. (2024). Simultaneous production of biofuel from agricultural wastes and bioremediation of the waste substrates: A review. In Current Research in Microbial https://doi.org/10.1016/j.crmicr.2024.100305 Sciences (Vol. 7). Elsevier Ltd.Al-Shorgani, N. K. N., Isa, M. H. M., Yusoff, W. M. W., Kalil, M. S., & Hamid, A. A. (2016). Isolation of a Clostridium acetobutylicum strain and characterization of its fermentation performance on agricultural wastes. Renewable Energy, 86, 459–465. https://doi.org/10.1016/j.renene.2015.08.051Ammer-Herrmenau, C., Antweiler, K. L., Asendorf, T., Beyer, G., Buchholz, S. M., Cameron, S., Capurso, G., Damm, M., Dang, L., Frost, F., Ellenrieder, V., & Neesse, A. (2023). Original research Gut microbiota predicts severity and reveals novel metabolic signatures in acute pancreatitis. Gut, 73(3), 485–495. https://doi.org/10.1136/gutjnl-2023-330987Ammer-Herrmenau, C., Pfisterer, N., van den Berg, T., Gavrilova, I., Amanzada, A., Singh, S. K., Khalil Alaa and Alili, R., Belda, E., Clement, K., El Wahed, A. A., Gady, E. E., Haubrock, M., Beissbarth, T., Ellenrieder, V., & Neesse, A. (2021). Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford https://doi.org/10.1128/mSystems.00750-21 Nanopore Technologies. MSYSTEMS, 6(4).Baker, J. L. (2022). Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples. MSYSTEMS, 7(5). https://doi.org/10.1128/msystems.00491-22Balachandran, K. R. S., Sankara Subramanianan, S. H., Dhassiah, M. P., Rengarajan, A., Chandrasekaran, M., Rangamaran, V. R., & Gopal, D. (2023). Microbial community structure and exploration of bioremediation enzymes: functional metagenomics insight into Arabian Sea sediments. MOLECULAR GENETICS AND GENOMICS, 298(3), 627–651. https://doi.org/10.1007/s00438-023 01995-6Benoit, G., James, R., Raguideau, S., Alabone, G., Goodall, T., Chikhi, R., & Quince, C. (2025). High quality assembly https://doi.org/10.1101/2025.04.22.649928 from nanopore reads with nanoMDBG.Benoit, G., Raguideau, S., James, R., Phillippy, A. M., Chikhi, R., & Quince, C. (2024). High-quality metagenome assembly from long accurate reads with metaMDBG. Nature Biotechnology, 42(9), 1378 1383. https://doi.org/10.1038/s41587-023-01983-6Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. In Journal of Industrial Microbiology & Biotechnology (Vol. 27). www.nature.com/jimBloemen, B., Gand, M., Vanneste, K., Marchal, K., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2023). Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance https://doi.org/10.1038/s41598-023-46771-z surveillance. Scientific Reports, 13(1).Brandt, C., Bongcam-Rudloff, E., & Müller, B. (2020). Abundance tracking by long-read nanopore sequencing of complex microbial communities in samples from 20 different biogas/wastewater plants. Applied Sciences (Switzerland), 10(21), 1–14. https://doi.org/10.3390/app10217518Buttler, J., & Drown, D. (2022). Accuracy and completeness of long read metagenomic assemblies. https://doi.org/10.1101/2022.11.23.517703Chen, Z., Grim, C. J., Ramachandran, P., & Meng, J. (2024). Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing. Microbiology Spectrum, 12(6). https://doi.org/10.1128/spectrum.00117-24Child, H. T., Wierzbicki, L., Joslin, G. R., & Tennant, R. K. (2024). Comparative evaluation of soil DNA extraction long read metagenomic sequencing. Access Microbiology, 6(9). https://doi.org/10.1099/acmi.0.000868.v3Chinwendu, A. O., Catherine, A. O. B., & Uwem Okon, E. (2020). Metagenomics in-sight into the microbial structural diversity of anaerobic digester utilising fruit waste as substrate. Journal of Microbiology, Biotechnology and Food Sciences, 9(5), 965–969. https://doi.org/10.15414/jmbfs.2020.9.5.965-969Chu, C. F., Ebie, Y., Xu, K. Q., Li, Y. Y., & Inamori, Y. (2010). Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy, 35(15), 8253–8261. https://doi.org/10.1016/j.ijhydene.2009.12.021Ciuffreda, L., Rodríguez-Pérez, H., & Flores, C. (2021). Nanopore sequencing and its application to the study of microbial communities. In Computational and Structural Biotechnology Journal (Vol. 19, pp. 1497 1511). Elsevier B.V. https://doi.org/10.1016/j.csbj.2021.02.020Cortez-Cervantes, J., Moreno-Andrade, I., Escalante, A. E., de los Cobos-Vasconcelos, D., & Carrillo Reyes, J. (2024). Identifying reliable microbial indicators in anaerobic digestion of organic solid waste: Insights from a meta-analysis. Journal of Environmental Chemical Engineering, 12(5). https://doi.org/10.1016/j.jece.2024.113392Cusco, A., Perez, D., Vines, J., Fabregas, N., & Francino, O. (2021). Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces. BMC GENOMICS, 22(1). https://doi.org/10.1186/s12864-021-07607-0Cusco, A., Perez, D., Viñes, J., & Francino, O. (2020). Long-Read Metagenomics to Retrieve High-Quality Metagenome-Assembled Genomes from Canine Feces. https://doi.org/10.21203/rs.3.rs-60068/v1De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing https://doi.org/10.1093/bioinformatics/bty149 data. Bioinformatics, 34(15), 2666–2669.Departamento Nacional de Planeación. (2016). Pérdida y desperdicio de alimentos en Colombia: Diagnóstico desde la oferta. https://colaboracion.dnp.gov.co/CDT/Prensa/Publicaciones/Pérdida%20y%20desperdicio%20de%20ali mentos%20en%20colombia.pdfFavale, N., Costa, S., Summa, D., Sabbioni, S., Mamolini, E., Tamburini, E., & Scapoli, C. (2025). Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes. Current https://doi.org/10.1016/j.crmicr.2025.100383 Research in Microbial Sciences, 8.Feng, X., Cheng, H., Portik, D. et al. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods 19, 671–674 (2022). https://doi.org/10.1038/s41592-022-01478-3Gand, M., Bloemen, B., Vanneste, K., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2023). Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing https://doi.org/10.1186/s12864-023-09537-5 to detect bacteria. BMC Genomics, 24(1).Grohmann, A., Vainshtein, Y., Euchner, E., Grumaz, C., Bryniok, D., Rabus, R., & Sohn, K. (2018). Genetic repertoires of anaerobic microbiomes driving generation of biogas. Biotechnology for Biofuels, 11(1). https://doi.org/10.1186/s13068-018-1258-xGweon, H. S., Shaw, L. P., Swann, J., De Maio, N., Abuoun, M., Niehus, R., Hubbard, A. T. M., Bowes, M. J., Bailey, M. J., Peto, T. E. A., Hoosdally, S. J., Walker, A. S., Sebra, R. P., Crook, D. W., Anjum, M. F., Read, D. S., Stoesser, N., Abuoun, M., Anjum, M., … Woodford, N. (2019). The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental Microbiomes, 14(1). https://doi.org/10.1186/s40793-019-0347-1Hegde, S., Lodge, J. S., & Trabold, T. A. (2018). Characteristics of food processing wastes and their use in sustainable alcohol production. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 510–523). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.07.012Herbert, J., Thompson, S., Beckett, A. H., & Robson, S. C. (2025). Impact of microbiological molecular methodologies on adaptive sampling using nanopore sequencing in metagenomic studies. Environmental Microbiome, 20(1). https://doi.org/10.1186/s40793-025-00704-7Huang, H., Liu, H., & Gan, Y. R. (2010). Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. In Biotechnology Advances (Vol. 28, Issue 5, pp. 651–657). https://doi.org/10.1016/j.biotechadv.2010.05.015Khanna, S., Goyal, A., & Moholkar, V. S. (2013). Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel, 112, 557–561. https://doi.org/10.1016/j.fuel.2011.10.071Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of sequences. https://doi.org/10.1101/gr.210641.116 Genome Research, 26(12), 1721–1729.Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020 00971-xKolmogorov, M., Rayko, M., Yuan, J., Polevikov, E., & Pevzner, P. (2019). metaFlye: scalable long-read metagenome assembly using repeat graphs. https://doi.org/10.1101/637637Kumar, G., & Bhadury, P. (2024). Dataset of metagenomic profiles of human gut microbiome from frozen fecal samples sequenced using Illumina and ONT chemistries. Data in Brief, 57. https://doi.org/10.1016/j.dib.2024.110961Lanfear, R., Schalamun, M., Kainer, D., Wang, W., & Schwessinger, B. (2019). MinIONQC: Fast and simple quality control for MinION sequencing data. Bioinformatics, 35(3), 523–525. https://doi.org/10.1093/bioinformatics/bty654Latorre-Pérez, A., Villalba-Bermell, P., Pascual, J., & Vilanova, C. (2020). Assembly methods for nanopore-based metagenomic sequencing: a comparative study. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70491-3Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598 021-00178-wLeggett, R. M., & Clark, M. D. (2017). A world of opportunities with nanopore sequencing. Journal of Experimental Botany, 68(20), 5419–5429. https://doi.org/10.1093/jxb/erx278Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191Li, S., Huang, L., Ke, C., Pang, Z., & Liu, L. (2020). Pathway dissection, regulation, engineering and application: Lessons learned from biobutanol production by solventogenic clostridia. In Biotechnology for Biofuels (Vol. 13, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13068-020-01674-3Li, Y., Tang, W., Chen, Y., Liu, J., & Lee, C. fon F. (2019). Potential of acetone-butanol-ethanol (ABE) as a biofuel. In Fuel (Vol. 242, pp. 673–686). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.01.063Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. In Fermentation (Vol. 9, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/fermentation9090847Liu, Y., Ghaffari, M. H., Ma, T., & Tu, Y. (2024). Impact of database choice and confidence score on the performance of taxonomic classification using Kraken2. ABIOTECH. https://doi.org/10.1007/s42994-024 00178-0Loman, N. J., Quick, J., & Simpson, J. T. (2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods, 12(8), 733–735. https://doi.org/10.1038/nmeth.3454Maiti, S., Sarma, S. J., Brar, S. K., Le Bihan, Y., Drogui, P., Buelna, G., & Verma, M. (2016). Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food and Bioproducts Processing, 98, 217–226. https://doi.org/10.1016/j.fbp.2016.01.002Manter, D. K., Reardon, C. L., Ashworth, A. J., Ibekwe, A. M., Lehman, R. M., Maul, J. E., Miller, D. N., Creed, T., Ewing, P. M., Park, S., Ducey, T. F., Tyler, H. L., Veum, K. S., Weyers, S. L., & Knaebel, D. B. (2024). Unveiling errors in soil microbial community sequencing: a case for reference soils and improved diagnostics for nanopore sequencing. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024 06594-8Marquet, M., Zöllkau, J., Pastuschek, J., Viehweger, A., Schleußner, E., Makarewicz, O., Pletz, M. W., Ehricht, R., & Brandt, C. (2022). Evaluation of microbiome enrichment and host DNA depletion in human vaginal samples using Oxford Nanopore’s adaptive sequencing. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08003-8Martin, S., Heavens, D., Lan, Y., Horsfield, S., Clark, M. D., & Leggett, R. M. (2022). Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples. Genome Biology, 23(1). https://doi.org/10.1186/s13059-021-02582-xMenzel, D., & Hüttemann, M. (2000). The mitochondrial genome of Saprolegnia ferax: organization and gene content. Journal of Molecular Evolution, 51(5), 411–423. https://doi.org/10.1007/s002390010117McIntyre, A. B. R., Ounit, R., Afshinnekoo, E., Prill, R. J., Hénaff, E., Alexander, N., Minot, S. S., Danko, D., Foox, J., Ahsanuddin, S., Tighe, S., Hasan, N. A., Subramanian, P., Moffat, K., Levy, S., Lonardi, S., Greenfield, N., Colwell, R. R., Rosen, G. L., & Mason, C. E. (2017). Comprehensive benchmarking and ensemble approaches for metagenomic https://doi.org/10.1186/s13059-017-1299-7 classifiers. Genome Biology, 18(1).Mikheenko, A., Saveliev, V., & Gurevich, A. (2016). MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697Moon, H. G., Jang, Y. S., Cho, C., Lee, J., Binkley, R., & Lee, S. Y. (2016). One hundred years of clostridial butanol fermentation. FEMS Microbiology Letters, 363(3). https://doi.org/10.1093/femsle/fnw001Moss, E. L., Maghini, D. G., & Bhatt, A. S. (2020). Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nature Biotechnology, 38(6), 701–707. https://doi.org/10.1038/s41587-020 0422-6Nabila, D. S., Chan, R., Syamsuri, R. R. P., Nurlilasari, P., Wan-Mohtar, W. A. A. Q. I., Ozturk, A. B., Rossiana, N., & Doni, F. (2024). Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development. In Current Research in Microbial Sciences (Vol. 7). Elsevier Ltd. https://doi.org/10.1016/j.crmicr.2024.100250Nicholls, S. M., Quick, J. C., Tang, S., & Loman, N. J. (2019). Ultra-deep, long-read nanopore sequencing of mock microbial community standards. GigaScience, 8(5). https://doi.org/10.1093/gigascience/giz043Nicholls, S. M., Quick, J. C., Tang, S., & Loman, N. J. (2019). Ultra-deep, long-read nanopore sequencing of a mock microbial community. Nature Communications, 10, 4359. https://doi.org/10.1038/s41467-019 12223-8Oehlenschläger, K., Hengsbach, J. N., Volkmar, M., & Ulber, R. (2025). From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation. In Applied microbiology and biotechnology (Vol. 109, Issue 1, p. 47). https://doi.org/10.1007/s00253-025-13428-yOrganización de las Naciones Unidas para la Alimentación y la Agricultura. (2021). Food loss and waste. https://www.fao.org/platform-food-loss-waste/resources/multimedia/video/fao-food-policy-series-food loss-and-waste/enOverholt, W. A., Hölzer, M., Geesink, P., Diezel, C., Marz, M., & Küsel, K. (2020). Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environmental Microbiology, 22(9), 4000–4013. https://doi.org/10.1111/1462-2920.15186Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71Pimentel, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76. https://doi.org/10.1007/s11053-005-4679-8Quick-DNATM HMW MagBead Kit. (2025). Quick-DNA TM HMW MagBead Kit High molecular weight DNA isolation for any downstream application.Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., ... & Carroll, M. W. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589), 228–232. https://doi.org/10.1038/nature16996Safar, H. A., Alatar, F., & Mustafa, A. S. (2024). Three Rounds of Read Correction Significantly Improve Eukaryotic Detection in https://doi.org/10.3390/microorganisms12020247 ONT Reads. Microorganisms, 12(2).Sanderson, N. D., Street, T. L., Foster, D., Swann, J., Atkins, B. L., Brent, A. J., McNally, M. A., Oakley, S., Taylor, A., Peto, T. E. A., Crook, D. W., & Eyre, D. W. (2018). Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-5094 ySanguanchaipaiwong, V., & Leksawasdi, N. (2018). Butanol production by Clostridium beijerinckii from pineapple waste juice. Energy Procedia, 153, 231–236. https://doi.org/10.1016/j.egypro.2018.10.006Sauer, M. (2016). Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiology Letters, 363(13). https://doi.org/10.1093/femsle/fnw134Sauvage, T., Cormier, A., & Delphine, P. (2023). A comparison of Oxford nanopore library strategies for bacterial genomics. BMC Genomics, 24(1). https://doi.org/10.1186/s12864-023-09729-zSereika, M., Kirkegaard, R. H., Karst, S. M., Michaelsen, T. Y., Sørensen, E. A., Wollenberg, R. D., & Albertsen, M. (2022). Oxford Nanopore R10.4 long-read sequencing enables the generation of near finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nature Methods, 19(7), 823–826. https://doi.org/10.1038/s41592-022-01539-7Simon, S. A., Schmidt, K., Griesdorn, L., Soares, A. R., Bornemann, T. L. V., & Probst, A. J. (2023). Dancing the Nanopore limbo – Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics, 24(1). https://doi.org/10.1186/s12864-023-09853-wSrivastava, A., & Mishra, A. (2022). Food waste valorization for handling environmental problems: a review. Environmental Sustainability, 5(4), 401–421. https://doi.org/10.1007/s42398-022-00245-6Sun, B., Guo, J., Jin, H., Jin, Z., Sun, Y., Mao, Y., Xie, F., He, Y., Sun, Z., Ivanov, I., & Tian, H. (2024). MetaCONNET: A metagenomic polishing tool for long-read assemblies. PLoS ONE, 19(12 December). https://doi.org/10.1371/journal.pone.0313515Sun, Y., Cheng, Z., Li, X., Yang, Q., Zhao, B., Wu, Z., & Xia, Y. (2023). Genome enrichment of rare and unknown species from complicated microbiomes by nanopore selective sequencing. Genome Research, 33(4), 612–621. https://doi.org/10.1101/gr.277266.122Tierney, B. T., Kim, J. K., Overbey, E. G., Ryon, K. A., Foox, J., Sierra, M. A., Bhattacharya, C., Damle, N., Najjar, D., Park, J., Garcia Medina, J. S., Houerbi, N., Meydan, C., Wain Hirschberg, J., Qiu, J., Kleinman, A. S., Al-Ghalith, G. A., MacKay, M., Afshin, E. E., … Mason, C. E. (2024). Longitudinal multi omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nature Microbiology, 9(7), 1661–1675. https://doi.org/10.1038/s41564-024-01635-8Wick, R. R., & Holt, K. E. (2019). Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 8. https://doi.org/10.12688/f1000research.21782.1Wick, R. R., Judd, L. M., Cerdeira, L. T., Hawkey, J., Méric, G., Vezina, B., Wyres, K. L., & Holt, K. E. (2021). Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biology, 22(1). https://doi.org/10.1186/s13059-021-02483-zWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1). https://doi.org/10.1186/s13059-019-1891-0Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. http://ccb.jhu.edu/software/kraken/.Xiong, W., Reyes, L. H., Michener, W. E., Maness, P. C., & Chou, K. J. (2018). Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnology and Bioengineering, 115(7), 1755–1763. https://doi.org/10.1002/bit.26590Ye, S. H., Siddle, K. J., Park, D. J., & Sabeti, P. C. (2019). Benchmarking Metagenomics Tools for Taxonomic Classification. In Cell (Vol. 178, Issue 4, pp. 779–794). Cell Press. https://doi.org/10.1016/j.cell.2019.07.010Zhang, Z., Yang, C., Veldsman, W. P., Fang, X., & Zhang, L. (2023). Benchmarking genome assembly methods metagenomic https://doi.org/10.1093/bib/bbad087 sequencing data. Briefings in Bioinformatics, 24(2).https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/224172025-06-14T08:01:10Z |