Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy
tablas, figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22206
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22206
- Palabra clave:
- 550 - Ciencias de la tierra
1. Ciencias Naturales
Monogenético
Evolución magmática
Litósfera-Astenósfera
Zona de subducción
Cristalización fraccionada
Geotermobarometría
Vulcanología
Geología
- Rights
- License
- https://creativecommons.org/licenses/by/4.0/
id |
REPOUCALDA_f2c0535c4ccacda6e724a67bfdd3a062 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22206 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
title |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
spellingShingle |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy 550 - Ciencias de la tierra 1. Ciencias Naturales Monogenético Evolución magmática Litósfera-Astenósfera Zona de subducción Cristalización fraccionada Geotermobarometría Vulcanología Geología |
title_short |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
title_full |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
title_fullStr |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
title_full_unstemmed |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
title_sort |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy |
dc.contributor.none.fl_str_mv |
Murcia Agudelo, Hugo Fernando Sánchez Torres, Laura Universidad de Caldas GIEV-(CUMANDAY) Grupo de Investigación en Estratigrafía y Vulcanología (Categoría A1) Jaimes-Viera, Carmen Ureta, Gabriel |
dc.subject.none.fl_str_mv |
550 - Ciencias de la tierra 1. Ciencias Naturales Monogenético Evolución magmática Litósfera-Astenósfera Zona de subducción Cristalización fraccionada Geotermobarometría Vulcanología Geología |
topic |
550 - Ciencias de la tierra 1. Ciencias Naturales Monogenético Evolución magmática Litósfera-Astenósfera Zona de subducción Cristalización fraccionada Geotermobarometría Vulcanología Geología |
description |
tablas, figuras |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05-14T14:25:26Z 2025-05-14T14:25:26Z 2025-05-13 |
dc.type.none.fl_str_mv |
Trabajo de grado - Maestría Text info:eu-repo/semantics/masterThesis http://purl.org/redcol/resource_type/TM |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22206 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22206 |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
Abdel-Rahman, A. F. M., & Nassar, P. E. (2004). Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological magazine, 141(5), 545-563. Andersen, D.J & Lindsley, D.H. (1985). New (and final!) models for the Ti magnetite/ilmenite geothermometer and oxygen barometer. Abstract AGU 1985 Spring Meeting Eos Transactions American Geophysical Union, 66, 416. Anderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O. & Ketcham, R. A. (2016). Andean topographic growth and base ment uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere, 12(4), 1235-1256. Aoki, K. I. & Shiba, I. (1973). Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6(1), 41-51. Arango, M.I., Rodríguez, G., Zapata, G. & Bermúdez, J.G. (2015). Catálogo de unidades litoestratigráficas de Colombia: monzogranito de Altamira. Servicio Geológico Colombiano. Arndt, N. & Fowler, A. (2004) Textures in komatiites and variolitic basalts. K. Erikson and al. The Precambrian Earth: tempos and events, Elsevier, 298-311. Arndt, N. T., Lesher, C. M. & Barnes, S. J. (2008). Komatiite. Cambridge University Press, New York, USA. Arndt, N.T. (1977). Ultrabasic magmas and high-degree melting of the mantle. Contrib. Mineral. Petrology, 64, 205-211. Arndt, N.T. (1994). Archean komatiites. In: K.C. Condie (editor), Archean Crustal Evolution. Elsevier, Amsterdam, 11-44. Avellaneda-Jiménez, D. S., Monsalve, G., León, S. & Gómez-García, A. M. (2022). Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophysical Journal International, 229(3), 1964-1977. Bacon, C.R. & Hirschmann, M.M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist, 73, 57-61. Bartolini, S., Bolós, X., Martí, J., Pedra, E. R. & Planagumá, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78, 1349-1367. Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizábal, J.J. & Reyes Harker, A. (2008). An integrated analysis of an orogen-sedimentary basin pair: latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia, The Geological Society of American, 120, 1171–1197. Bebout, G. E. & Barton, M. D. (1989). Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology, 17(11), 976-980. Becerril, L., Larrea, P., Salinas, S., Mossoux, S., Ferrés, D., Widom, E., Siebe, C. & Martí, J. (2021). The historical case of Paricutin volcano (Michoacán, México): challenges of simulating lava flows on a gentle slope during a long-lasting eruption. Natural Hazards, 107, 809-829 Best, M.G. (2003). Igneous and Metamorphic Petrology, Second Edition. Blackell Science Ltd, 758p. Blatter, D., Carmichael, I.S.E., Deino, A. & Renne, P. (2001). Neogene volcanism at the front of the central Mexican Volcanic Belt: Basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lava. Geol. Soc. Am. Bull. 113:1324–1342. Bogatikov, O. A., Kovalenko, V. I. & Sharkov, E. V. (2020). General features of magmatic evolution throughout the Earth’s history. In Magmatism and Geodynamics. CRC Press, 337-367. Bolós, X., Martí, J., Becerril, J., Planagumá, L., Grosse, P. & Bardecabusson, S. (2015). Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing systems. Tectonophysics, 642, 58-70. Bullen, T. D., & Clynne, M. A. (1990). Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center. Journal of Geophysical Research: Solid Earth, 95, 19671-19691. Cañón-Tapia, E. & Walker, G.P.L. (2004). Global aspects of volcanism: the perspectives of plate tectonics and volcanic systems. Earth Sci. Rev. 66, 163–182. Cañón-Tapia, E. (2016). Reappraisal of the significance of volcanic fields. Journal of Volcanology and Geothermal Research, 310, 26-38. Carmichael, I.S. (1991). The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106, 129-141. Carracedo, J.C., Troll, V., Day, J., Geiger, H., Aulinas, M., Soler, V., Deegan, F., Perez Torrado, F., Gisbert, G., Gazel, E., Rodriguez-Gonzalez, A. & Albert, H. (2022). The 2021 eruption of the Cumbre Vieja volcanic ridge on La Palma, Canary Islands. Geology Today, 38 (3), 94 107. Cas, R. & Wright, J.W. (1987). Volcanic Successions: Modern and Ancient. Allen and Unwin, London, 487 p. Cashman, K.V. & B. Scheu, (2015). Magmatic fragmentation. In: H.Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, & J. Stix, Editors, Encyclopedia of Volcanoes (2nd edition), Academic Press, Elsevier, 459-471. Cashman, K.V. & J. Blundy, (2000). Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 358(1770): 1487-1513. Cassidy, M., Taylor, R. N., Palmer, M. R., Cooper, R. J., Stenlake, C. & Trofimovs, J. (2012). Tracking the magmatic evolution of island arc volcanism: Insights from a high‐precision Pb isotope record of Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 13(5). Cediel, F., Shaw, R. P. & Cceres, C. (2003). Tectonic assembly of the northern Andean block. 815-848. Cervantes, P. & Wallace, P. J. (2003). Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31(3), 235-238. Chapman, J. B., Ducea, M. N., Kapp, P., Gehrels, G. E. & DeCelles, P. G. (2017). Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 48, 189-204. Chiaradia, M., Müntener, O., Beate, B. & Fontignie, D. (2009). Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158, 563-588. Cloos, M. (1993). Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geological Society American Bulletin, 105, 715–737. Connor, C.B. & Conway, F.M. (2000). Basaltic Volcanic Fields. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of Volcanoes, Academic Press, 331-343. Cortes, J.A. (2017a). "CFU," https://vhub.org/resources/cfu Cortes, J.A. (2017b). "CFU-PINGU," https://vhub.org/resources/cfupingu Cortés, M., Angelier, J. & Colletta, B. (2005). Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics, 24 – 1. Cox, K. G., Brown, G. C., Hawkesworth, C. J. & Wilson, R. C. L. (1992). The interpretation of magmatic evolution. Cambridge University Press, 115-131 Cox, K.G., Bell, J.D. & Pankhurst, R.J. (1979). Petrographic aspects of volcanic rocks. In: The Interpretation of Igneous Rocks. Springer. 94, 7, 176-196. Davies, J. H. & Stevenson, D. J. (1992). Physical models of source region of subduction zone volcanics, Journal Geophysics Research, 97(B2), 2037–2070. de Silva, S. & Lindsay, J.M. (2015). Primary volcanic landforms. En: H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, J. Stix (Ed.), Encyclopedia of Volcanoes (2nd edition), Academic Press, Elsevier, USA, 273-297. Diederix, H., Bohórquez, O. P., Páez, H. M., Peláez, J. R., Cardona, L., Corchuelo, Y., Ramírez, J., & Mila, F. D. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 423–452. Donaldson, C. H. (1979). An experimental investigation of the delay in nucleation of olivine in Mafic Magmas. Contributions to Mineralogy and Petrology 69, 21-32. Errázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336, 151-168. Faure, F., Arndt, N. & Libourel, G. (2006). Formation of spinifex texture in komatiites: an experimental study. Journal of Petrology 47, 1591-1610. Feeley, T.C. & Sharp, Z.D. (1996). Chemical and hydrogen isotopic evidence for in situ dehydrogenation of biotite in silicic magma chamber. Geology, 24, 1021-1021. Ferreira, R. C., Pinheiro, M. A., Magalhães, J. & Novo, T. A. (2022). Komatiite lavas from the Quebra Osso Group (Rio das Velhas greenstone belt, southeast Brazil): a field guide to an archean flow field. Estudos Geológicos. Ghiorso, M.S. & Gualda, G.A. (2015). Chemical thermodynamics and the study of magmas. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 143-161. Gill, J.B. (1981). Orogenic Andesites and Plate Tectonics. Berlín. Springer, 370p. Gilluly, J. (1971). Plate tectonics and magmatic evolution. Geological Society of America Bulletin, 82(9), 2383-2396. Gómez, J., Montes, N.E. & Marín, E. (2023). Mapa Geológico de Colombia 2023. Escala 1:1 500 000. Servicio Geológico Colombiano. Bogotá. Gómez-Vasconcelos, M. G., Macías, J. L., Avellán, D. R., Sosa-Ceballos, G., Garduño-Monroy, V. H., Cisneros-Máximo, G. & Perton, M. (2020). The control of preexisting faults on the distribution, morphology, and volume of monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field. Bulletin, 132(11-12), 2455-2474. González, P.D. (2008). Textura de los cuerpos ígneos. En Llambías, E.J. & D’Eramo, J. (Eds). Geología de los cuerpos ígneos. Asociación Geológica de Argentina. Serie B. Didáctica y complementaria. Facultad de Ciencias Naturales, Universidad Nacional de Salta, 171-197. Gordeychik, B., Churikova, T., Shea, T., Kronz, A., Simakin, A. & Wörner, G. (2020). Fo and Ni relations in olivine differentiate between crystallization and diffusion trends. Journal of Petrology, 61(9). Grove, T. L., Baker, M. B. & Kinzler, R. J. (1984). Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochimica et cosmochimica Acta, 48(10), 2113-2121. Grove, T.L., Parman, S.W. & Dann, J.C. (1999). Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Y. Fei, C.M. Bertka and B.O. Mysen (Editors), Mantle petrology: field observations and high-pressure experimentation. The Geochemical Society, Houston, 155-167. Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Müntener, O. & Gaetani, G. A. (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145, 515-533. Grove, T.L. & Till, C.B. (2015). Melting the Earth´s Upper Mantle. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 35-47 Hasenaka, T., & Carmichael, I. S. (1985). The cinder cones of Michoacán—Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25(1-2), 105-124. Hogan, J.P. (1993). Monomineralic glomerocrysts: textural evidence for mineral resorptions during crystallization of igneous rocks. The Journal of Geology, 101, 531-540. Hora, J. M., Kronz, A., Möller-McNett, S. & Wörner, G. (2013). An Excel-based tool for evaluating and visualizing geothermobarometry data. Computers & geosciences, 56, 178-185. Irvine, T.N.J. & Baragar, W.R.A.F. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548. Janoušek, V., Farrow, C.M. & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Tollkit (GCDkit). Journal of Petrology, 47, 1255-1259. Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V. & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330, 194-210. Jeffery, A.J., Gertisser, R., Troll, V.R., Jolis, E.M., Dahren, B., Harris, C. & Chadwick, J.P. (2013). The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contributions to Mineralogy and Petrology, 166, 275 308. Johnson, E. R., Wallace, P. J., Delgado Granados, H., Manea, V. C., Kent, A. J., Bindeman, I. N. & Donegan, C. S. (2009). Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. Journal of Petrology, 50(9), 1729-1764. Keiding, J.K. & Sigmarsson, O. (2012). Geotermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research: Solid Earth, 117, B9. Kereszturi, G. & Németh, K. (2012). Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. En: Németh, K. (Ed.). Updates in Volcanology – New Advances in Understanding Volcanic Systems. InTech, 3-88. Le Bast, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750. Le Corvec, N., Spoerli, K.B., Rowland, J. & Lindsay, J. (2013). Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci. Rev. 124, 96–114. Leake, B.E., Wolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D. & Linthout, K. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineralogical magazine, 61, 295-310. Lepage, L.D. (2003). ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers & Geosciences, 29, 673-678. Li, C., & Ripley, E. M. (2010). The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. Chemical Geology, 275(1-2), 99-104 Li, C., Ripley, M.E., Tao, Y. & Mathez, A.E. (2008). Cr-spinel/olivine and Cr-spinel/liquid nickel partition coefficients from natural simples. Geochimica et Cosmochimica Acta. 72, 6, 1481-1730. Li, J. L., Schwarzenbach, E. M., John, T., Ague, J. J., Tassara, S., Gao, J., & Konecke, B. A. (2021). Subduction zone sulfur mobilization and redistribution by intraslab fluid–rock interaction. Geochimica et Cosmochimica Acta, 297, 40-64. Lowrey, J.R. & Ivanic, T.J. (2018). Platy pyroxene spinifex: re-evaluating the distribution of komatiite across Western Australia’s Archean cratons. Australian Journal of Mineralogy, 19, 2. Lowrey, J.R., Ivanic, T.J., Wyman, D.A. & Roberts, M.P. (2017). Platy pyroxene: New insights into spinifex texture. Journal of Petrology. 58, 9, 167-1700. Mandler, B. E., Donnelly-Nolan, J. M. & Grove, T. L. (2014). Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon. Contributions to Mineralogy and Petrology, 168, 1-25. Marín-Cerón, M. I., Moriguti, T., Makishima, A. & Nakamura, E. (2010). Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta, 74(3), 1104-1121. Marrero, J.M., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A. & Ortiz, R. (2019). Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). Journal of Applied, Volcanology, 8, 6. Marsh, B. D. (1996). Solidification fronts and magmatic evolution. Mineralogical Magazine, 60(398), 5-40. Martí, J. & Felpeto, A. (2010). Methodology for the computation of volcanic susceptibility: an example for mafic and felsic eruptions on Tenerife (Canary Islands). Journal of Volcanology and Geothermal Research, 195, 69-77. Martí, J. (2017). Assessing Volcanic Hazard: A Review. Oxford Handbooks Online. 73p. Martí, J., Becerril, L. & Rodríguez, A. (2022). How long-term hazard assessment may help to anticipate volcanic eruptions: The case of La Palma eruption 2021 (Canary Islands). Journal of Volcanology and Geothermal Research 431, 107669, 1-15. Martí, J., López, C., Bartolini, S., Becerril, L. & Geyer, A. (2016). Stress controls of monogenetic volcanism: a review. Frontiers in Earth Science, 4, 106. Mattioli, M., Renzulli, A., Menna, M. & Holm, P. M. (2006). Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): Evidence from a nearly aphyric high-K andesite with skeletal olivines. Journal of Volcanology and Geothermal Research, 158(1-2), 87-105. McDonough, W. F. & Sun, S. S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253. Miyahara, M., El Goresy, A., Ohtani, E., Kimura, M., Ozawa, S., Nagase, T. & Nishijima, M. (2009). Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein. Physics of the Earth and Planetary Interiors, 177(3-4), 116-121. Monfaredi, B., Masoudi, F., Tabakh, S.A., Shaker, A.F. & Halama, R. (2009). Magmatic interation as recorded in texture and composition of plagioclase phenocrysts from the Sirjan area, Urumieh-Dokhtar magmatic arc, Iran. Journal of Sciences Islamic Republic of Iran, 20, 243-251. Monsalve–Bustamante, M.L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 97–159. Monsalve–Bustamante, M.L., Gómez, J. & Núñez–Tello, A. (2020). Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 353–396. Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S. & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin, Earth Science. Rev., 198, 102903. Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M. & Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377(1), 411-442. Morris D. & Tera F. (1989). 10Be and 9Be in mineral separates and whole rocks from volcanic arcs: implications for sediment subduction. Geochim. Cosmochim. Acta 53, 3197–3206. Murcia, A. & Cepeda, H. (1983). Estudio geológico del complejo migmatítico de la Cocha-Rio Tellez, parte más SW del escudo de Guyana en Colombia. Ingeominas, 15p. Bogotá. Murcia, A. & Cepeda, H. (1991). Memoria explicativa: Geología de la plancha 429 - Pasto, Escala 1:100,000, Ingeominas, 17 p. Bogotá. Murcia, H. & Németh, K. (2020). “Effusive Monogenetic Volcanism,” in Volcanoes-Updates in Volcanology (London, UK: IntechOpen). Murcia, H. (2015). Monogenetic volcanism in the western Arabian Peninsula: Insights from Late Quaternary eruptions in northern Harrat Rahat, Kingdom of Saudi Arabia (Doctoral dissertation, ResearchSpace@ Auckland). Murillo-Orobio, L. T., Chapuel-Cuasapud, D. L., Álvaro Botero-Gómez, L. & Murcia, H. (2024). Análisis morfo-estructural del Campo Volcánico Monogenético Guamuéz- Sibundoy (sur de Colombia). Geofísica Internacional. Nakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation principle and proposal. Journal of volcanology and Geothermal Research,2(1), 1-16. Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38, 757-775. Nandedkar, R. H., Hürlimann, N., Ulmer, P. & Müntener, O. (2016). Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contributions to Mineralogy and Petrology, 171, 1-25. Natland, J. H. (1982). Crystal morphologies and pyroxene compositions in boninites and tholeiitic basalts from deep sea drilling project holes 458 and 459B in the Mariana fore-arc region. Initial reports of the Deep Sea Drilling Project 60, 681 707. Nelson, S.T. & Montana, A. (1992). Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist. 77, 11-12, 1242-1249. Németh, K. & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104, 2131-2146. Németh, K. (2010). Monogenetic Volcanic Fields: Origin, Sedimentary Record, and Relationship with Polygenetic Volcanism. Special Pap. Geol. Soc. Am. 470, 43–66. Nieto-Torres A., Martin Del Pozzo A. L., Groppelli G. & Jaimes Viera M.C. (2023). Risk scenarios for a future eruption in the Chichinautzin monogenetic volcanic field, south México City. Journal of Volcanology and Geothermal Research, 433,107733. Nieto-Torres, A. & Martín del Pozo, A.L. (2019). Spatio-temporal hazard assessment of a monogenetic volcanic flied, near México City. Journal of Volcanology and Geothermal Research, 371, 46-58. Nimis, P. & Taylor, W.R. (2000). Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541-554. Núñez, A. T. (2003). Reconocimiento geológico regional de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyac. Ingeominas, 19–203. O´Neill, H.S.C. & Pownceby, M.I. (1993). Thermodynamic data from redox reactions at high temperature. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for Fe-FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffer and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114, 296-314. Ortega, A.S. (2024). Contribución a la evaluación de la amenaza volcánica en el Campo Volcánico Monogenético Guamuez-Sibundoy, Nariño y Putumayo, Colombia (Tesis de pregrado). Programa de Geología. Universidad de Caldas. 124 p. Pasquare, G., Poli, S., Vezzoli, L. & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. In: F.-C. Wezel (editor), the origin and evolution of arcs. Tectonophysics 146, 217–230. Pecerillo, A. & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. Perring, C. S., Barnes, S. J. & Hill, R. E. T. (1995). The physical volcanology of Archaean komatiite sequences from Forrestania, Southern Cross province, Western Australia. Lithos, 34(1-3), 189-207. Perugini, D., Busá, T.,Poli, G. & Nazzareni, S. (2003). The Role of Chaotic Dynamics and Flow Fields in the Development of Disequilibrium Textures in Volcanic Rocks. Journal of Petrology. 44, 733–756. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. (2013). Why do mafic arc magmas contain∼ 4 wt% water on average?. Earth and Planetary Science Letters, 364, 168-179. Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya, S. (2007). Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science Letters, 255(1-2), 53-69. Poveda, E., Monsalve, G. & Vargas, C.A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia, Journal Geophysics Research, 120, 2408–2425. Putirka, K. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120. Putirka, K. (2017). Geothermometry and Geobarometry, in White, W.M. ed., Encyclopedia of Geochemistry. Springer International Publishing, 1-19. Pyke, D. R., Naldrett, A. J. & Eckstrand, O. R. (1973). Archean ultramafic flows in Munro Township, Ontario. Geological Society of America Bulletin 84, 955. Renjith, M. L. (2014). Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience frontiers, 5(1), 113-126. Restrepo, M., Bustamante, C., Cardona, A., Beltran-Trivino, A., Busta mante, A., Chavarria, L. & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences. 111, 103-439. Rhodes, J.M., Dungan, M.A., Blanchard, D.P. & Long, P.E. (1979). Magma mixing at mid ocean ridges: evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55, 35-61. Ridolfi, F. & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163, 877-895. Ridolfi, F. (2021). Amp-TB2: an updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324. Ridolfi, F., Puerini, M., Renzulli, A., Menna, M. & Toulkeridis, T. (2008). The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176, 94-106. Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in cal-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-realted volanoes. Contributions to Mineralogy and Petrology, 160, 45-66. Rivera-Lara, V. (2021). Estudio morfométrico y geomorfológico del Campo Volcánico Monogenético Guamuez – Sibundoy, Colombia. (Tesis de pregrado). Programa de Geología, Universidad de Caldas, 100 p. Rodríguez, G., Arango, M. I., Zapata, G. & Gilberto, B. J. (2016). Catálogo de las unidades litoestrátigraficas de Colombia, Formación Saldaña, cordillera Central y Oriental Tolima, Huila Cauca y Putumayo. Servicio Geológico Colombiano. pp. 8–60, Bogotá. Roeder, P.L. & Emilse, R. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275-289. Rollinson, H.R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Routledge, Harlow, Essex, England, 352p. Ruscitto, D. M., Wallace, P. J., Johnson, E. R., Kent, A. J. R. & Bindeman, I. N. (2010). Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters, 298(1-2), 153-161. Rutherford, M.J. & Hill, P.M. (1993). Magma ascent rates from amphibole breakdown study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98, 19667-19685. Sakuyama M. & Nesbrit R. W. (1986). Geochemistry of the Quaternary volcanic rocks of the Northeast Japan arc. Journal of Volcanology and Geothermal Research, 29, 413–450. Salas, P., Ruprecht, P., Hernández, L. & Rabbia, O. (2021). Out-of-sequence skeletal growth causing oscillatory zoning in arc olivines. Nature Communications, 12(1), 4069. Sánchez-Torres, L., Murcia, H. & Schonwalder-Ángel, D. (2022). The Northernmost Volcanoes in South America (Colombia, 5-6°N): The Potentially Active Samaná Monogenetic Volcanic Field. Frontiers Earth Science, 10, 2296-6463. Scambelluri, M. & Philippot, P. (2001). Deep fluids in subduction zones. Lithos, 55(1-4), 213-227. Schmidt, C., Laag, C., Whitehead, M., Profe, J., Aka, F. T., Hasegawa, T. & Kereszturi, G. (2022). The complexities of assessing volcanic hazards along the Cameroon Volcanic Line using spatial distribution of monogenetic volcanoes. Journal of Volcanology and Geothermal Research, 427, 107558. Schmincke, H. U. (2007). The quaternary volcanic fields of the East and West Eifel (Germany). Mantle Plumes: A Multidisciplinary Approach, pp. 241–322. Sen, G. (2014). Petrology. Springer, 371p. Shadman, P., Torabi, G. & Morishita, T. (2022). Eocene Calc-Alkaline Volcanic Rocks from Central Iran (Southeast of Khur, Isfahan Province); an Evidence of Neotethys Syn-Subduction Magmatism. Petrology, 30(6), 671-689. Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E. & Shipman, J. S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162, 83-99. Shimizu, K., Nakamura, E. & Maruyama, S. (2005). The geochemistry of ultramafic to mafic volcanics from the Belingwe Greenstone Belt, Zimbabwe: magmatism in an Archean continental large igneous province. Journal of Petrology 46, 2367 2394. Shore, M. & Fowler, A.D. (1998). Optical and thermal anisotropy of olivine, hydrothermal cooling of komatiites and the origin of spinifex texture. GAC-MAC, Program and Abstracts. Geological Association of Canada-Mineralogical Association of Canada Sieron, K., Juárez Cerrillo, S. F., González-Zuccolotto, K., Córdoba-Montiel, F., Connor, C. B., Connor, L. & Tapia-McClung, H. (2021). Morphology and distribution of monogenetic volcanoes in Los Tuxtlas Volcanic Field, Veracruz, Mexico: implications for hazard assessment. Bulletin of Volcanology, 83(7), 47. Smith, I. E. M. & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society, London, Special Publications, 446, 1-28. Stern, R. J. (2002). Subduction zones, Rev. Geophy. 40(4), 1012. Sun, S.S. (1980). Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 297, 409-445 Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H. & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. Tanaka, K.L., Shoemaker, E.M., Ulrich, G.E. & Wolfe, E.W. (1986). Migration of volcanism in the San-Francisco volcanic field, Arizona. Geol. Soc. Am. Bull. 97, 129–141. Tepley III, F.J., Davidson, J.P. & Clynne, M.A. (1999). Magmatic interactions as recorded in plagioclases phenocrysts of Chaos Crags, Lassen Volcanic Center, California. Journal of Petrology, 40, 787-806. Tilley, C. E. (1950). Some aspects of magmatic evolution. Quarterly Journal of the Geological Society, 106(1-4), 37-61. Tindle, A.G. & Webb, P.C. (1990). Formula Unit Calculations with optional calculates Li2O. 2Li2O and H2O calculations. European Journal of Mineralogy, 2, 595-610. Turner, S. & Costa, F. (2007). Measuring timescales of magmatic evolution. Elements, 3(4), 267-272. Valentine, G. A. & Gregg, T. K. P. (2008). Continental Basaltic Volcanoes - Processes and Problems. J. Volcanol. Geotherm. Res. 177, 857–873 Valentine, G.A. & Connor, C.B. (2015). Basaltic Volcanic Fields. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, 2nd edition. Academic Press, Elsevier, USA, pp. 423-439. van der Hilst, R. D. & P. Mann (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America, Geology, 22, 451–454. Vance, J.A. & Gilreath, J.P. (1967). The effect of synneusis on phenocryst distribution patterns in some porphyritic igneous rocks. American Mineralogist Journal of Earth and Planetary Materials, 52, 529-536. Velandia, J., Murcia, H., Németh, K. & Borrero, C. (2021). Uncommon mafic rocks (MgO> 10 wt.%) in the northernmost Andean volcanic chain (4° 25 ″N): Implications for magma source and evolution. Journal of South American Earth Sciences, 110, 103308. Viccaro, M., Giacomoni, P.P, Ferlito, C. & Cristofolini, R. (2010). Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116, 77-91. Viccaro, M., Giuffrida, M., Nicotra, E. & Ozerov, A.Y. (2012). Magma Storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: inferences on the plumbing system geometry. Lithos, 140, 11-24. Villamizar-Escalante, N., Bernet, M., Urueña-Suárez, C., Hernández-González, J.S., Terraza-Melo, R., Roncancio, J., Muñoz-Rocha, J.A., Peña-Urueña, M.L., Amaya, S. & Piraquive, A. (2021). Thermal history of the southern Central Cordillera and its exhumation record in the Cenozoic deposits of the Upper Magdalena Valley, Colombia. Journal South American Earth Science, 107, 103-105. Wallace, P. J., & Carmichael, I. S. (1999). Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions to Mineralogy and Petrology, 135(4), 291-314 Wang, K., Plank, T., Walker, J. D. & Smith, E. I. (2002). A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107, ECV-5. Weber, M. B. I., Tarnet, J., Kempton, P. D. & Kent, R. W. (2002). Crustal make-up of the northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia, Tectonophysics, 345,49–82. White, W.M. (1998). Geochemistry, 712p. Whitney, D.L. & Evans, B.W. (2010). Abreviation for names of rock-forming minerals. American Mineralogist, 95, 185-187. Wilson, M. (1993). Magmatic differentiation. Journal of the Geological Society, 150(4), 611-624. Young, D.A. (2003). Mind over magma. Princeton University Press, Princeton. 686 p. Zapata-García, G., Rodríguez García, G. & Mejía, M.I. (2017). Petrografía, geoquímica y geocronología de rocas metamórficas aflorantes en San Francisco Putumayo y la vía Palermo-San Luis asociadas a los complejos La Cocha-Río Téllez y Aleluya. Boletín de Ciencias de la Tierra. 41, 47-64. Zellmer, G. F., Annen, C., Charlier, B. L. A., George, R. M. M., Turner, S. P. & Hawkesworth, C. J. (2005). Magma evolution and ascent at volcanic arcs: constraining petrogenetic processes through rates and chronologies. Journal of Volcanology and Geothermal Research, 140(1-3), 171-191. Zheng, Y., Chen, R., Xu, Z. & Zhang, S. (2016). The transport of water in subduction zones. Science China Earth Sciences, 59, 651-682. Zhou, M-F., Zhao, T-P., Malpas, J. & Sun, M. (2000). Crustal-contaminated komatiitic basalts in Southern China: products of a Proterozoic mantle plume beneath the Yangtze Block. Precambrian Research. 103, 3-4, 175-189. Zimanowski, B., Büttner, R., Lorenz, V. & Häfele, H. G. (1997). Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research: Solid Earth, 102, 803-81. |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
150 páginas application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas, Colombia Maestría en Ciencias de la Tierra |
publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales, Caldas, Colombia Maestría en Ciencias de la Tierra |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145020045885440 |
spelling |
Evolución magmática en el Campo Volcánico Monogenético Guamuez-Sibundoy (Colombia) a partir del estudio de los volcanes Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy550 - Ciencias de la tierra1. Ciencias NaturalesMonogenéticoEvolución magmáticaLitósfera-AstenósferaZona de subducciónCristalización fraccionadaGeotermobarometríaVulcanologíaGeologíatablas, figurasEl Campo Volcánico Monogenético Guamuez-Sibundoy está ubicado en el Segmento Volcánico Sur, en la Cordillera Central de Colombia. Este campo alberga al menos 19 volcanes, desde conos de escoria y maares hasta domos de lava. Este tipo de vulcanismo hace parte del arco volcánico ocasionado por la interacción entre la placa Nazca y Suramericana y un ambiente tectónico transtensional con formación de cuencas pull-apart y fallas regionales asociadas al Sistema de Fallas Algeciras que permitieron el emplazamiento de los volcanes. Este estudio integra técnicas de geología de campo, petrografía, química mineral, química de roca total y análisis geotermobarométricos con el fin de conocer las características composicionales y reconstruir la evolución de los magmas que dieron origen a algunos volcanes. Los productos asociados a los volcanes en estudio (Guayapungo, Yaku, Mujundinoy Sur y Fuisanoy) corresponden a corrientes de densidad piroclástica concentradas y diluidas y flujos de lava, estos últimos predominando en todo el campo. Mineralógicamente todas las rocas están compuestas por olivino (Fo71-90), clinopiroxeno (Wo33-48, En36-54, Fe7-16) y plagioclasa (An26-82), además de ortopiroxeno (Wo3-5, En68-71, Fe24-28) solamente en el volcán Fuisanoy y anfíbol (magnesiohastingsita y tschermakita) exclusivamente en los volcanes Yaku y Mujundinoy Sur. Óxidos de Fe-Ti están presentes como fase menor en todos los volcanes. Petrográficamente, las rocas son porfiríticas, con textura fluidal y seriada, masa fundamental microcristalina, criptocristalina y vítrea; también presentan textura glomeroporfirítica en olivino,clinopiroxeno y ortopiroxeno, zonación normal en plagioclasa, esqueletal en olivino y clinopiroxeno y textura spinifex en clinopiroxeno. Químicamente, los volcanes son de composición basáltica y andesita basáltica, de afinidad calco-alcalina media en potasio, típico de ambientes de subducción. Análisis geotermobarométricos indican que las condiciones de cristalización para el olivino fueron de 1188 – 1137 °C, para el clinopiroxeno de 1199 – 1015 °C y 1,7 – 0,2 GPa y para la plagioclasa de 1127 – 1077 °C y 0,6 – 0,2 GPa. Todos estos análisis permiten evidenciar que los magmas comparten un origen común en el límite astenósfera-litósfera y que el proceso de evolución magmática más importante fue la cristalización fraccionada durante el ascenso e incluso durante cortos periodos de estancamiento en la corteza. Las altas temperaturas para el olivino podrían indicar cristalización en límite manto-corteza o incluso a mayor profundidad, aunque no se obtuvieron datos de presión para esta fase. Las condiciones de cristalización de las fases minerales indican que el clinopiroxeno fue el primero en cristalizar en el límite manto-corteza aunque se mantuvo hasta niveles corticales (64 – 7 km), seguido por la cristalización de plagioclasa solamente a niveles corticales (24 – 7 km). Datos químicos y condiciones de cristalización indican que el volcán Guayapungo ascendió directamente desde el manto y experimentó un ascenso rápido desde los 15 km hasta la superficie. Ausencia de cristalización de los minerales, así como xenocristales de anfíbol y condiciones anómalas de cristalización de esta fase mineral (903 °C y 1,7 GPa), indican que los magmas de los volcanes Yaku y Mujundinoy Sur experimentaron leve asimilación cortical. Condiciones de cristalización y mayor evolución en el volcán Fuisanoy indican que este volcán pudo haber tenido un ascenso más lento. Finalmente, un depósito de caída de 17 ka que cubre los volcanes, marca el límite temporal mínimo de la última erupción.The Guamuez-Sibundoy Monogenetic Volcanic Field is located in the Southern Volcanic Segment of the Central Cordillera of Colombia. This field hosts 19 volcanoes, which has been defined as scoria cones, maars and lava domes. This type of volcanism is part of the volcanic arc caused by the interaction between the Nazca and South American plates and a transtensional tectonic environment with the formation of pull-apart basins and regional faults associated with the Algeciras Fault System. This study integrates field geology, petrography, mineral chemistry, whole-rock chemistry and geothermobarometric analysis techniques in order to know the compositional characteristics and reconstruct the evolution of the magmas that gave rise to 4 of the 19 volcanoes in the field: Guayapungo, Yaku, Mujundinoy Sur and Fuisanoy volcanoes. The products associated with these volcanoes correspond to concentrated and dilute pyroclastic density currents and lava flows, the latter predominating throughout the field. Mineralogically, all rocks are composed of olivine (Fo71-90), clinopyroxene (Wo33-48, En36-54, Fe7-16) and plagioclase (An26-82), plus orthopyroxene (Wo3-5, En68-71, Fe24-28) only in Fuisanoy volcano and amphibole (magnesiohansgtinsite and tschermakite) exclusively in Yaku and Mujundinoy Sur volcanoes. Petrographically, the rocks are porphyritic, with olivine, clinopyroxene, orthopyroxene, plagioclase, amphibole and Fe-Ti oxides as mineral phases embedded in a microcrystalline, cryptocrystalline and glassy groundmass. They present glomeroporphyritic texture in olivine and pyroxene, zoning in plagioclase, skeletal in olivine and pyroxene, and spinifex texture in pyroxene. Fluidal and serial texture is also common. Fe-Ti oxides are present as a minor phase in all volcanoes. Chemically, the volcanics are basaltic and basaltic andesite in composition, and display calc-alkaline affinity, typical of subduction environments. Geothermobarometric analyses indicate that the crystallization conditions for olivine were 1188 – 1137 °C, for clinopyroxene 1199 – 1015 °C and 1.7 – 0.2 GPa and for plagioclase 1127 – 1077 °C and 0.6 – 0.2 GPa. The analyses indicate that the magmas share a common origin at the asthenosphere-lithosphere boundary and that fractional crystallization was the most important magmatic evolution process during ascent. The crystallisations conditions of the mineral phases indicate that olivine, followed by clinopyroxene, were the first to crystallise at the mantle-crust boundary (or below) and it remained until cortical levels (64 – 7 km); plagioclase crystallised only at cortical levels (24 – 7 km). Chemical data and crystallisation conditions indicate that the Guayapungo volcano ascended directly from the mantle and experienced a rapid ascent from 15 km to the surface. Absence of mineral crystallization, in addition to the presence of amphibole xenocrysts and anomalous crystallization conditions of this mineral phase (800 °C and 1.7 GPa), indicate that the Yaku and Mujundinoy Sur magmas experienced mild assimilation. Crystallisation conditions and further evolution at Fuisanoy volcano indicate that this volcano may have had a slower ascent.Introducción -- Objetivos -- Marco geológico -- Campo Volcánico Monogenético Guamuez-Sibundoy -- Geología estructural y tectónica -- Metodología -- Trabajo de campo y recolección de muestras -- Petrografía -- Química mineral -- Química de roca total -- Marco teórico -- Vulcanismo monogenético -- Estilos eruptivos en vulcanismo monogenético -- Sistemas magmáticos en vulcanismo monogenético -- Procesos de evolución magmática -- Resultados -- Volcanes y sus productos -- Volcán Guayapungo -- Volcán Yaku -- Volcán Mujundinoy Sur --Volcán Fuisanoy -- Petrografía -- Volcán Guayapungo -- Volcán Yaku -- Volcán Mujundinoy Sur -- Volcán Fuisanoy -- Química mineral -- Volcán Guayapungo -- Volcán Yaku -- Volcán Mujundinoy Sur -- Volcán Fuisanoy -- Química de roca total -- Discusión -- Análisis textural -- ¿Textura Spinifex? -- Geotermobarometría --Olivino -- Clinopiroxeno -- Plagioclasa -- Anfíbol -- Óxidos de Fe-Ti -- Evolución magmática -- Fusión parcial -- Cristalización fraccionada -- ¿Asimilación cortical o fraccionamiento de anfíbol? -- Modelo de evolución magmática del CVMGS -- Implicaciones de amenaza volcánica -- Conclusiones -- ReferenciasMaestríaPara este estudio se realizó una campaña de campo de 10 días con el fin de reconocer las estructuras del CVMGS, correlacionar estratigráficamente sus depósitos y reconocer geoformas asociadas a los volcanes Guayapungo, Yaku, Mujudinoy Sur y Fuisanoy. Se hicieron recorridos estratégicos con el fin de realizar un mapeo, tomar puntos de control y recolectar muestras de roca fresca, correlacionables con afloramientos de cada volcán, de aproximadamente 1000 g cada una. En total se recolectaron 10 muestras, una perteneciente a una bomba volcánica y nueve a flujos de lava. De estas, cuatro son del volcán Guayapungo, una de Yaku, dos de Mujundinoy Sur y tres de Fuisanoy. El número de muestras varía de acuerdo con las condiciones de acceso a cada volcán, el estado de las rocas aflorantes y la disponibilidad de estas para el muestreo. Para el análisis petrográfico se realizaron 10 secciones delgadas pulidas, una de cada muestra recolectada en campo, en los laboratorios de TecLab en Bogotá (Colombia). Posteriormente, las secciones se analizaron a través de un microscopio Nikon Eclipse E200 en el laboratorio de petrografía del Instituto de Investigaciones en Estratigrafía (IIES) de la Universidad de Caldas (Colombia); así, se definieron las asociaciones mineralógicas y las texturas de los minerales. El tamaño de los cristales fue definido de acuerdo con González (2008) dónde los fenocristales son > 0,5 mm, los microfenocristales entre 0,5 – 0,05 mm y microcristales son < 0,05 mm y hacen parte de la masa fundamental. Las abreviaciones de los nombres de los minerales se tomaron de Whitney & Evans (2010): olivino (Ol), piroxeno (Px), plagioclasa (Pl) y anfíbol (Anf). Finalmente, se marcaron puntos de interés sobre la sección para posterior análisis de química mineral.Magister en Ciencias de la TierraVulcanologíaUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, Caldas, ColombiaMaestría en Ciencias de la TierraMurcia Agudelo, Hugo FernandoSánchez Torres, LauraUniversidad de CaldasGIEV-(CUMANDAY) Grupo de Investigación en Estratigrafía y Vulcanología (Categoría A1)Jaimes-Viera, CarmenUreta, GabrielToro Agudelo, Ana María2025-05-14T14:25:26Z2025-05-14T14:25:26Z2025-05-13Trabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TM150 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22206Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbdel-Rahman, A. F. M., & Nassar, P. E. (2004). Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological magazine, 141(5), 545-563.Andersen, D.J & Lindsley, D.H. (1985). New (and final!) models for the Ti magnetite/ilmenite geothermometer and oxygen barometer. Abstract AGU 1985 Spring Meeting Eos Transactions American Geophysical Union, 66, 416.Anderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O. & Ketcham, R. A. (2016). Andean topographic growth and base ment uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere, 12(4), 1235-1256.Aoki, K. I. & Shiba, I. (1973). Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6(1), 41-51.Arango, M.I., Rodríguez, G., Zapata, G. & Bermúdez, J.G. (2015). Catálogo de unidades litoestratigráficas de Colombia: monzogranito de Altamira. Servicio Geológico Colombiano.Arndt, N. & Fowler, A. (2004) Textures in komatiites and variolitic basalts. K. Erikson and al. The Precambrian Earth: tempos and events, Elsevier, 298-311.Arndt, N. T., Lesher, C. M. & Barnes, S. J. (2008). Komatiite. Cambridge University Press, New York, USA.Arndt, N.T. (1977). Ultrabasic magmas and high-degree melting of the mantle. Contrib. Mineral. Petrology, 64, 205-211.Arndt, N.T. (1994). Archean komatiites. In: K.C. Condie (editor), Archean Crustal Evolution. Elsevier, Amsterdam, 11-44.Avellaneda-Jiménez, D. S., Monsalve, G., León, S. & Gómez-García, A. M. (2022). Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophysical Journal International, 229(3), 1964-1977.Bacon, C.R. & Hirschmann, M.M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist, 73, 57-61.Bartolini, S., Bolós, X., Martí, J., Pedra, E. R. & Planagumá, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78, 1349-1367.Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizábal, J.J. & Reyes Harker, A. (2008). An integrated analysis of an orogen-sedimentary basin pair: latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia, The Geological Society of American, 120, 1171–1197.Bebout, G. E. & Barton, M. D. (1989). Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology, 17(11), 976-980.Becerril, L., Larrea, P., Salinas, S., Mossoux, S., Ferrés, D., Widom, E., Siebe, C. & Martí, J. (2021). The historical case of Paricutin volcano (Michoacán, México): challenges of simulating lava flows on a gentle slope during a long-lasting eruption. Natural Hazards, 107, 809-829Best, M.G. (2003). Igneous and Metamorphic Petrology, Second Edition. Blackell Science Ltd, 758p.Blatter, D., Carmichael, I.S.E., Deino, A. & Renne, P. (2001). Neogene volcanism at the front of the central Mexican Volcanic Belt: Basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lava. Geol. Soc. Am. Bull. 113:1324–1342.Bogatikov, O. A., Kovalenko, V. I. & Sharkov, E. V. (2020). General features of magmatic evolution throughout the Earth’s history. In Magmatism and Geodynamics. CRC Press, 337-367.Bolós, X., Martí, J., Becerril, J., Planagumá, L., Grosse, P. & Bardecabusson, S. (2015). Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing systems. Tectonophysics, 642, 58-70.Bullen, T. D., & Clynne, M. A. (1990). Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center. Journal of Geophysical Research: Solid Earth, 95, 19671-19691.Cañón-Tapia, E. & Walker, G.P.L. (2004). Global aspects of volcanism: the perspectives of plate tectonics and volcanic systems. Earth Sci. Rev. 66, 163–182.Cañón-Tapia, E. (2016). Reappraisal of the significance of volcanic fields. Journal of Volcanology and Geothermal Research, 310, 26-38.Carmichael, I.S. (1991). The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106, 129-141.Carracedo, J.C., Troll, V., Day, J., Geiger, H., Aulinas, M., Soler, V., Deegan, F., Perez Torrado, F., Gisbert, G., Gazel, E., Rodriguez-Gonzalez, A. & Albert, H. (2022). The 2021 eruption of the Cumbre Vieja volcanic ridge on La Palma, Canary Islands. Geology Today, 38 (3), 94 107.Cas, R. & Wright, J.W. (1987). Volcanic Successions: Modern and Ancient. Allen and Unwin, London, 487 p.Cashman, K.V. & B. Scheu, (2015). Magmatic fragmentation. In: H.Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, & J. Stix, Editors, Encyclopedia of Volcanoes (2nd edition), Academic Press, Elsevier, 459-471.Cashman, K.V. & J. Blundy, (2000). Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 358(1770): 1487-1513.Cassidy, M., Taylor, R. N., Palmer, M. R., Cooper, R. J., Stenlake, C. & Trofimovs, J. (2012). Tracking the magmatic evolution of island arc volcanism: Insights from a high‐precision Pb isotope record of Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 13(5).Cediel, F., Shaw, R. P. & Cceres, C. (2003). Tectonic assembly of the northern Andean block. 815-848.Cervantes, P. & Wallace, P. J. (2003). Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31(3), 235-238.Chapman, J. B., Ducea, M. N., Kapp, P., Gehrels, G. E. & DeCelles, P. G. (2017). Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 48, 189-204.Chiaradia, M., Müntener, O., Beate, B. & Fontignie, D. (2009). Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158, 563-588.Cloos, M. (1993). Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geological Society American Bulletin, 105, 715–737.Connor, C.B. & Conway, F.M. (2000). Basaltic Volcanic Fields. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of Volcanoes, Academic Press, 331-343.Cortes, J.A. (2017a). "CFU," https://vhub.org/resources/cfuCortes, J.A. (2017b). "CFU-PINGU," https://vhub.org/resources/cfupinguCortés, M., Angelier, J. & Colletta, B. (2005). Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics, 24 – 1.Cox, K. G., Brown, G. C., Hawkesworth, C. J. & Wilson, R. C. L. (1992). The interpretation of magmatic evolution. Cambridge University Press, 115-131Cox, K.G., Bell, J.D. & Pankhurst, R.J. (1979). Petrographic aspects of volcanic rocks. In: The Interpretation of Igneous Rocks. Springer. 94, 7, 176-196.Davies, J. H. & Stevenson, D. J. (1992). Physical models of source region of subduction zone volcanics, Journal Geophysics Research, 97(B2), 2037–2070.de Silva, S. & Lindsay, J.M. (2015). Primary volcanic landforms. En: H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, J. Stix (Ed.), Encyclopedia of Volcanoes (2nd edition), Academic Press, Elsevier, USA, 273-297.Diederix, H., Bohórquez, O. P., Páez, H. M., Peláez, J. R., Cardona, L., Corchuelo, Y., Ramírez, J., & Mila, F. D. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 423–452.Donaldson, C. H. (1979). An experimental investigation of the delay in nucleation of olivine in Mafic Magmas. Contributions to Mineralogy and Petrology 69, 21-32.Errázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336, 151-168.Faure, F., Arndt, N. & Libourel, G. (2006). Formation of spinifex texture in komatiites: an experimental study. Journal of Petrology 47, 1591-1610.Feeley, T.C. & Sharp, Z.D. (1996). Chemical and hydrogen isotopic evidence for in situ dehydrogenation of biotite in silicic magma chamber. Geology, 24, 1021-1021.Ferreira, R. C., Pinheiro, M. A., Magalhães, J. & Novo, T. A. (2022). Komatiite lavas from the Quebra Osso Group (Rio das Velhas greenstone belt, southeast Brazil): a field guide to an archean flow field. Estudos Geológicos.Ghiorso, M.S. & Gualda, G.A. (2015). Chemical thermodynamics and the study of magmas. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 143-161.Gill, J.B. (1981). Orogenic Andesites and Plate Tectonics. Berlín. Springer, 370p.Gilluly, J. (1971). Plate tectonics and magmatic evolution. Geological Society of America Bulletin, 82(9), 2383-2396.Gómez, J., Montes, N.E. & Marín, E. (2023). Mapa Geológico de Colombia 2023. Escala 1:1 500 000. Servicio Geológico Colombiano. Bogotá.Gómez-Vasconcelos, M. G., Macías, J. L., Avellán, D. R., Sosa-Ceballos, G., Garduño-Monroy, V. H., Cisneros-Máximo, G. & Perton, M. (2020). The control of preexisting faults on the distribution, morphology, and volume of monogenetic volcanism in the Michoacán-Guanajuato Volcanic Field. Bulletin, 132(11-12), 2455-2474.González, P.D. (2008). Textura de los cuerpos ígneos. En Llambías, E.J. & D’Eramo, J. (Eds). Geología de los cuerpos ígneos. Asociación Geológica de Argentina. Serie B. Didáctica y complementaria. Facultad de Ciencias Naturales, Universidad Nacional de Salta, 171-197.Gordeychik, B., Churikova, T., Shea, T., Kronz, A., Simakin, A. & Wörner, G. (2020). Fo and Ni relations in olivine differentiate between crystallization and diffusion trends. Journal of Petrology, 61(9).Grove, T. L., Baker, M. B. & Kinzler, R. J. (1984). Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochimica et cosmochimica Acta, 48(10), 2113-2121.Grove, T.L., Parman, S.W. & Dann, J.C. (1999). Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Y. Fei, C.M. Bertka and B.O. Mysen (Editors), Mantle petrology: field observations and high-pressure experimentation. The Geochemical Society, Houston, 155-167.Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Müntener, O. & Gaetani, G. A. (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145, 515-533.Grove, T.L. & Till, C.B. (2015). Melting the Earth´s Upper Mantle. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 35-47Hasenaka, T., & Carmichael, I. S. (1985). The cinder cones of Michoacán—Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25(1-2), 105-124.Hogan, J.P. (1993). Monomineralic glomerocrysts: textural evidence for mineral resorptions during crystallization of igneous rocks. The Journal of Geology, 101, 531-540.Hora, J. M., Kronz, A., Möller-McNett, S. & Wörner, G. (2013). An Excel-based tool for evaluating and visualizing geothermobarometry data. Computers & geosciences, 56, 178-185.Irvine, T.N.J. & Baragar, W.R.A.F. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548.Janoušek, V., Farrow, C.M. & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Tollkit (GCDkit). Journal of Petrology, 47, 1255-1259.Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V. & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330, 194-210.Jeffery, A.J., Gertisser, R., Troll, V.R., Jolis, E.M., Dahren, B., Harris, C. & Chadwick, J.P. (2013). The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contributions to Mineralogy and Petrology, 166, 275 308.Johnson, E. R., Wallace, P. J., Delgado Granados, H., Manea, V. C., Kent, A. J., Bindeman, I. N. & Donegan, C. S. (2009). Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. Journal of Petrology, 50(9), 1729-1764.Keiding, J.K. & Sigmarsson, O. (2012). Geotermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research: Solid Earth, 117, B9.Kereszturi, G. & Németh, K. (2012). Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. En: Németh, K. (Ed.). Updates in Volcanology – New Advances in Understanding Volcanic Systems. InTech, 3-88.Le Bast, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.Le Corvec, N., Spoerli, K.B., Rowland, J. & Lindsay, J. (2013). Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci. Rev. 124, 96–114.Leake, B.E., Wolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D. & Linthout, K. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineralogical magazine, 61, 295-310.Lepage, L.D. (2003). ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers & Geosciences, 29, 673-678.Li, C., & Ripley, E. M. (2010). The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. Chemical Geology, 275(1-2), 99-104Li, C., Ripley, M.E., Tao, Y. & Mathez, A.E. (2008). Cr-spinel/olivine and Cr-spinel/liquid nickel partition coefficients from natural simples. Geochimica et Cosmochimica Acta. 72, 6, 1481-1730.Li, J. L., Schwarzenbach, E. M., John, T., Ague, J. J., Tassara, S., Gao, J., & Konecke, B. A. (2021). Subduction zone sulfur mobilization and redistribution by intraslab fluid–rock interaction. Geochimica et Cosmochimica Acta, 297, 40-64.Lowrey, J.R. & Ivanic, T.J. (2018). Platy pyroxene spinifex: re-evaluating the distribution of komatiite across Western Australia’s Archean cratons. Australian Journal of Mineralogy, 19, 2.Lowrey, J.R., Ivanic, T.J., Wyman, D.A. & Roberts, M.P. (2017). Platy pyroxene: New insights into spinifex texture. Journal of Petrology. 58, 9, 167-1700.Mandler, B. E., Donnelly-Nolan, J. M. & Grove, T. L. (2014). Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon. Contributions to Mineralogy and Petrology, 168, 1-25.Marín-Cerón, M. I., Moriguti, T., Makishima, A. & Nakamura, E. (2010). Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta, 74(3), 1104-1121.Marrero, J.M., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A. & Ortiz, R. (2019). Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). Journal of Applied, Volcanology, 8, 6.Marsh, B. D. (1996). Solidification fronts and magmatic evolution. Mineralogical Magazine, 60(398), 5-40.Martí, J. & Felpeto, A. (2010). Methodology for the computation of volcanic susceptibility: an example for mafic and felsic eruptions on Tenerife (Canary Islands). Journal of Volcanology and Geothermal Research, 195, 69-77.Martí, J. (2017). Assessing Volcanic Hazard: A Review. Oxford Handbooks Online. 73p.Martí, J., Becerril, L. & Rodríguez, A. (2022). How long-term hazard assessment may help to anticipate volcanic eruptions: The case of La Palma eruption 2021 (Canary Islands). Journal of Volcanology and Geothermal Research 431, 107669, 1-15.Martí, J., López, C., Bartolini, S., Becerril, L. & Geyer, A. (2016). Stress controls of monogenetic volcanism: a review. Frontiers in Earth Science, 4, 106.Mattioli, M., Renzulli, A., Menna, M. & Holm, P. M. (2006). Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): Evidence from a nearly aphyric high-K andesite with skeletal olivines. Journal of Volcanology and Geothermal Research, 158(1-2), 87-105.McDonough, W. F. & Sun, S. S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253.Miyahara, M., El Goresy, A., Ohtani, E., Kimura, M., Ozawa, S., Nagase, T. & Nishijima, M. (2009). Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein. Physics of the Earth and Planetary Interiors, 177(3-4), 116-121.Monfaredi, B., Masoudi, F., Tabakh, S.A., Shaker, A.F. & Halama, R. (2009). Magmatic interation as recorded in texture and composition of plagioclase phenocrysts from the Sirjan area, Urumieh-Dokhtar magmatic arc, Iran. Journal of Sciences Islamic Republic of Iran, 20, 243-251.Monsalve–Bustamante, M.L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 97–159.Monsalve–Bustamante, M.L., Gómez, J. & Núñez–Tello, A. (2020). Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 353–396.Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S. & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin, Earth Science. Rev., 198, 102903.Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M. & Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377(1), 411-442.Morris D. & Tera F. (1989). 10Be and 9Be in mineral separates and whole rocks from volcanic arcs: implications for sediment subduction. Geochim. Cosmochim. Acta 53, 3197–3206.Murcia, A. & Cepeda, H. (1983). Estudio geológico del complejo migmatítico de la Cocha-Rio Tellez, parte más SW del escudo de Guyana en Colombia. Ingeominas, 15p. Bogotá.Murcia, A. & Cepeda, H. (1991). Memoria explicativa: Geología de la plancha 429 - Pasto, Escala 1:100,000, Ingeominas, 17 p. Bogotá.Murcia, H. & Németh, K. (2020). “Effusive Monogenetic Volcanism,” in Volcanoes-Updates in Volcanology (London, UK: IntechOpen).Murcia, H. (2015). Monogenetic volcanism in the western Arabian Peninsula: Insights from Late Quaternary eruptions in northern Harrat Rahat, Kingdom of Saudi Arabia (Doctoral dissertation, ResearchSpace@ Auckland).Murillo-Orobio, L. T., Chapuel-Cuasapud, D. L., Álvaro Botero-Gómez, L. & Murcia, H. (2024). Análisis morfo-estructural del Campo Volcánico Monogenético Guamuéz- Sibundoy (sur de Colombia). Geofísica Internacional.Nakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation principle and proposal. Journal of volcanology and Geothermal Research,2(1), 1-16.Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38, 757-775.Nandedkar, R. H., Hürlimann, N., Ulmer, P. & Müntener, O. (2016). Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contributions to Mineralogy and Petrology, 171, 1-25.Natland, J. H. (1982). Crystal morphologies and pyroxene compositions in boninites and tholeiitic basalts from deep sea drilling project holes 458 and 459B in the Mariana fore-arc region. Initial reports of the Deep Sea Drilling Project 60, 681 707.Nelson, S.T. & Montana, A. (1992). Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist. 77, 11-12, 1242-1249.Németh, K. & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104, 2131-2146.Németh, K. (2010). Monogenetic Volcanic Fields: Origin, Sedimentary Record, and Relationship with Polygenetic Volcanism. Special Pap. Geol. Soc. Am. 470, 43–66.Nieto-Torres A., Martin Del Pozzo A. L., Groppelli G. & Jaimes Viera M.C. (2023). Risk scenarios for a future eruption in the Chichinautzin monogenetic volcanic field, south México City. Journal of Volcanology and Geothermal Research, 433,107733.Nieto-Torres, A. & Martín del Pozo, A.L. (2019). Spatio-temporal hazard assessment of a monogenetic volcanic flied, near México City. Journal of Volcanology and Geothermal Research, 371, 46-58.Nimis, P. & Taylor, W.R. (2000). Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541-554.Núñez, A. T. (2003). Reconocimiento geológico regional de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyac. Ingeominas, 19–203.O´Neill, H.S.C. & Pownceby, M.I. (1993). Thermodynamic data from redox reactions at high temperature. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for Fe-FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffer and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114, 296-314.Ortega, A.S. (2024). Contribución a la evaluación de la amenaza volcánica en el Campo Volcánico Monogenético Guamuez-Sibundoy, Nariño y Putumayo, Colombia (Tesis de pregrado). Programa de Geología. Universidad de Caldas. 124 p.Pasquare, G., Poli, S., Vezzoli, L. & Zanchi, A. (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. In: F.-C. Wezel (editor), the origin and evolution of arcs. Tectonophysics 146, 217–230.Pecerillo, A. & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.Perring, C. S., Barnes, S. J. & Hill, R. E. T. (1995). The physical volcanology of Archaean komatiite sequences from Forrestania, Southern Cross province, Western Australia. Lithos, 34(1-3), 189-207.Perugini, D., Busá, T.,Poli, G. & Nazzareni, S. (2003). The Role of Chaotic Dynamics and Flow Fields in the Development of Disequilibrium Textures in Volcanic Rocks. Journal of Petrology. 44, 733–756.Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. (2013). Why do mafic arc magmas contain∼ 4 wt% water on average?. Earth and Planetary Science Letters, 364, 168-179.Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya, S. (2007). Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science Letters, 255(1-2), 53-69.Poveda, E., Monsalve, G. & Vargas, C.A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia, Journal Geophysics Research, 120, 2408–2425.Putirka, K. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120.Putirka, K. (2017). Geothermometry and Geobarometry, in White, W.M. ed., Encyclopedia of Geochemistry. Springer International Publishing, 1-19.Pyke, D. R., Naldrett, A. J. & Eckstrand, O. R. (1973). Archean ultramafic flows in Munro Township, Ontario. Geological Society of America Bulletin 84, 955.Renjith, M. L. (2014). Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience frontiers, 5(1), 113-126.Restrepo, M., Bustamante, C., Cardona, A., Beltran-Trivino, A., Busta mante, A., Chavarria, L. & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences. 111, 103-439.Rhodes, J.M., Dungan, M.A., Blanchard, D.P. & Long, P.E. (1979). Magma mixing at mid ocean ridges: evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55, 35-61.Ridolfi, F. & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163, 877-895.Ridolfi, F. (2021). Amp-TB2: an updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324.Ridolfi, F., Puerini, M., Renzulli, A., Menna, M. & Toulkeridis, T. (2008). The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176, 94-106.Ridolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in cal-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-realted volanoes. Contributions to Mineralogy and Petrology, 160, 45-66.Rivera-Lara, V. (2021). Estudio morfométrico y geomorfológico del Campo Volcánico Monogenético Guamuez – Sibundoy, Colombia. (Tesis de pregrado). Programa de Geología, Universidad de Caldas, 100 p.Rodríguez, G., Arango, M. I., Zapata, G. & Gilberto, B. J. (2016). Catálogo de las unidades litoestrátigraficas de Colombia, Formación Saldaña, cordillera Central y Oriental Tolima, Huila Cauca y Putumayo. Servicio Geológico Colombiano. pp. 8–60, Bogotá.Roeder, P.L. & Emilse, R. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275-289.Rollinson, H.R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Routledge, Harlow, Essex, England, 352p.Ruscitto, D. M., Wallace, P. J., Johnson, E. R., Kent, A. J. R. & Bindeman, I. N. (2010). Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters, 298(1-2), 153-161.Rutherford, M.J. & Hill, P.M. (1993). Magma ascent rates from amphibole breakdown study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98, 19667-19685.Sakuyama M. & Nesbrit R. W. (1986). Geochemistry of the Quaternary volcanic rocks of the Northeast Japan arc. Journal of Volcanology and Geothermal Research, 29, 413–450.Salas, P., Ruprecht, P., Hernández, L. & Rabbia, O. (2021). Out-of-sequence skeletal growth causing oscillatory zoning in arc olivines. Nature Communications, 12(1), 4069.Sánchez-Torres, L., Murcia, H. & Schonwalder-Ángel, D. (2022). The Northernmost Volcanoes in South America (Colombia, 5-6°N): The Potentially Active Samaná Monogenetic Volcanic Field. Frontiers Earth Science, 10, 2296-6463.Scambelluri, M. & Philippot, P. (2001). Deep fluids in subduction zones. Lithos, 55(1-4), 213-227.Schmidt, C., Laag, C., Whitehead, M., Profe, J., Aka, F. T., Hasegawa, T. & Kereszturi, G. (2022). The complexities of assessing volcanic hazards along the Cameroon Volcanic Line using spatial distribution of monogenetic volcanoes. Journal of Volcanology and Geothermal Research, 427, 107558.Schmincke, H. U. (2007). The quaternary volcanic fields of the East and West Eifel (Germany). Mantle Plumes: A Multidisciplinary Approach, pp. 241–322.Sen, G. (2014). Petrology. Springer, 371p.Shadman, P., Torabi, G. & Morishita, T. (2022). Eocene Calc-Alkaline Volcanic Rocks from Central Iran (Southeast of Khur, Isfahan Province); an Evidence of Neotethys Syn-Subduction Magmatism. Petrology, 30(6), 671-689.Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E. & Shipman, J. S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162, 83-99.Shimizu, K., Nakamura, E. & Maruyama, S. (2005). The geochemistry of ultramafic to mafic volcanics from the Belingwe Greenstone Belt, Zimbabwe: magmatism in an Archean continental large igneous province. Journal of Petrology 46, 2367 2394.Shore, M. & Fowler, A.D. (1998). Optical and thermal anisotropy of olivine, hydrothermal cooling of komatiites and the origin of spinifex texture. GAC-MAC, Program and Abstracts. Geological Association of Canada-Mineralogical Association of CanadaSieron, K., Juárez Cerrillo, S. F., González-Zuccolotto, K., Córdoba-Montiel, F., Connor, C. B., Connor, L. & Tapia-McClung, H. (2021). Morphology and distribution of monogenetic volcanoes in Los Tuxtlas Volcanic Field, Veracruz, Mexico: implications for hazard assessment. Bulletin of Volcanology, 83(7), 47.Smith, I. E. M. & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society, London, Special Publications, 446, 1-28.Stern, R. J. (2002). Subduction zones, Rev. Geophy. 40(4), 1012.Sun, S.S. (1980). Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 297, 409-445Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H. & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813.Tanaka, K.L., Shoemaker, E.M., Ulrich, G.E. & Wolfe, E.W. (1986). Migration of volcanism in the San-Francisco volcanic field, Arizona. Geol. Soc. Am. Bull. 97, 129–141.Tepley III, F.J., Davidson, J.P. & Clynne, M.A. (1999). Magmatic interactions as recorded in plagioclases phenocrysts of Chaos Crags, Lassen Volcanic Center, California. Journal of Petrology, 40, 787-806.Tilley, C. E. (1950). Some aspects of magmatic evolution. Quarterly Journal of the Geological Society, 106(1-4), 37-61.Tindle, A.G. & Webb, P.C. (1990). Formula Unit Calculations with optional calculates Li2O. 2Li2O and H2O calculations. European Journal of Mineralogy, 2, 595-610.Turner, S. & Costa, F. (2007). Measuring timescales of magmatic evolution. Elements, 3(4), 267-272.Valentine, G. A. & Gregg, T. K. P. (2008). Continental Basaltic Volcanoes - Processes and Problems. J. Volcanol. Geotherm. Res. 177, 857–873Valentine, G.A. & Connor, C.B. (2015). Basaltic Volcanic Fields. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, 2nd edition. Academic Press, Elsevier, USA, pp. 423-439.van der Hilst, R. D. & P. Mann (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America, Geology, 22, 451–454.Vance, J.A. & Gilreath, J.P. (1967). The effect of synneusis on phenocryst distribution patterns in some porphyritic igneous rocks. American Mineralogist Journal of Earth and Planetary Materials, 52, 529-536.Velandia, J., Murcia, H., Németh, K. & Borrero, C. (2021). Uncommon mafic rocks (MgO> 10 wt.%) in the northernmost Andean volcanic chain (4° 25 ″N): Implications for magma source and evolution. Journal of South American Earth Sciences, 110, 103308.Viccaro, M., Giacomoni, P.P, Ferlito, C. & Cristofolini, R. (2010). Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116, 77-91.Viccaro, M., Giuffrida, M., Nicotra, E. & Ozerov, A.Y. (2012). Magma Storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: inferences on the plumbing system geometry. Lithos, 140, 11-24.Villamizar-Escalante, N., Bernet, M., Urueña-Suárez, C., Hernández-González, J.S., Terraza-Melo, R., Roncancio, J., Muñoz-Rocha, J.A., Peña-Urueña, M.L., Amaya, S. & Piraquive, A. (2021). Thermal history of the southern Central Cordillera and its exhumation record in the Cenozoic deposits of the Upper Magdalena Valley, Colombia. Journal South American Earth Science, 107, 103-105.Wallace, P. J., & Carmichael, I. S. (1999). Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions to Mineralogy and Petrology, 135(4), 291-314Wang, K., Plank, T., Walker, J. D. & Smith, E. I. (2002). A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107, ECV-5.Weber, M. B. I., Tarnet, J., Kempton, P. D. & Kent, R. W. (2002). Crustal make-up of the northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia, Tectonophysics, 345,49–82.White, W.M. (1998). Geochemistry, 712p.Whitney, D.L. & Evans, B.W. (2010). Abreviation for names of rock-forming minerals. American Mineralogist, 95, 185-187.Wilson, M. (1993). Magmatic differentiation. Journal of the Geological Society, 150(4), 611-624.Young, D.A. (2003). Mind over magma. Princeton University Press, Princeton. 686 p.Zapata-García, G., Rodríguez García, G. & Mejía, M.I. (2017). Petrografía, geoquímica y geocronología de rocas metamórficas aflorantes en San Francisco Putumayo y la vía Palermo-San Luis asociadas a los complejos La Cocha-Río Téllez y Aleluya. Boletín de Ciencias de la Tierra. 41, 47-64.Zellmer, G. F., Annen, C., Charlier, B. L. A., George, R. M. M., Turner, S. P. & Hawkesworth, C. J. (2005). Magma evolution and ascent at volcanic arcs: constraining petrogenetic processes through rates and chronologies. Journal of Volcanology and Geothermal Research, 140(1-3), 171-191.Zheng, Y., Chen, R., Xu, Z. & Zhang, S. (2016). The transport of water in subduction zones. Science China Earth Sciences, 59, 651-682.Zhou, M-F., Zhao, T-P., Malpas, J. & Sun, M. (2000). Crustal-contaminated komatiitic basalts in Southern China: products of a Proterozoic mantle plume beneath the Yangtze Block. Precambrian Research. 103, 3-4, 175-189.Zimanowski, B., Büttner, R., Lorenz, V. & Häfele, H. G. (1997). Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research: Solid Earth, 102, 803-81.https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/222062025-05-15T08:00:37Z |