Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis

Introducción: Debido al panorama epidemiológico de la candidiasis producida por Candida tropicalis y la marcada resistencia generada hacia los azoles, se hace necesario profundizar en el conocimiento de la virulencia y mecanismos de resistencia a fármacos. Objetivo: Sintetizar los factores de virule...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/23823
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/23823
https://doi.org/10.17151/biosa.2020.19.2.1
Palabra clave:
Candida tropicalis
Factores de virulencia
Resistencia a medicamentos
Azoles
Antifúngicos
Candida tropicalis
Virulence Factors
Drug Resistance
Azoles
Antifungals
Rights
openAccess
License
Biosalud - 2025
id REPOUCALDA_ecf579b319d11c938c8abd5d687d94c8
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/23823
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
Virulence factors of Candida spp and molecular mechanisms of resistance to azoles expressed by Candida tropicalis
title Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
spellingShingle Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
Candida tropicalis
Factores de virulencia
Resistencia a medicamentos
Azoles
Antifúngicos
Candida tropicalis
Virulence Factors
Drug Resistance
Azoles
Antifungals
title_short Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
title_full Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
title_fullStr Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
title_full_unstemmed Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
title_sort Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalis
dc.subject.none.fl_str_mv Candida tropicalis
Factores de virulencia
Resistencia a medicamentos
Azoles
Antifúngicos
Candida tropicalis
Virulence Factors
Drug Resistance
Azoles
Antifungals
topic Candida tropicalis
Factores de virulencia
Resistencia a medicamentos
Azoles
Antifúngicos
Candida tropicalis
Virulence Factors
Drug Resistance
Azoles
Antifungals
description Introducción: Debido al panorama epidemiológico de la candidiasis producida por Candida tropicalis y la marcada resistencia generada hacia los azoles, se hace necesario profundizar en el conocimiento de la virulencia y mecanismos de resistencia a fármacos. Objetivo: Sintetizar los factores de virulencia de Candida spp. y los mecanismos moleculares de resistencia a azoles expresados por Candida tropicalis. Materiales y métodos: Se realizó una búsqueda bibliográfica en la base de datos Pubmed y los manuscritos fueron seleccionados según los criterios de análisis crítico propuestos por el instrumento PRISMA. La pregunta orientadora de la búsqueda fue: ¿Cuáles son los factores de virulencia de Candida spp y los mecanismos de resistencia a los azoles expresados por la especie C.tropicalis? y los resultados se organizaron en dos categorías: Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a azoles. Resultados: Los factores de virulencia de Candida spp. están representados por la producción de toxinas y enzimas, la formación de biopelículas, la modificación del medio ambiente, la filamentación y el crecimiento hifal; por otro lado, los mecanismos de resistencia a los azoles expresados por C.tropicalis están determinados principalmente por la sobreexpresión de los genes ERG11 y MDR1 y por mutaciones en el gen ERG11. Conclusiones: Los factores de virulencia son similares entre las distintas especies de Candida y los mecanismos moleculares de resistencia a los azoles expresados por C. tropicalis se traducen fundamentalmente en una menor afinidad por la diana farmacológica y una menor concentración intracelular del fármaco.
publishDate 2025
dc.date.none.fl_str_mv 2025-10-06T00:00:00Z
2025-10-08T21:17:16Z
2025-10-06T00:00:00Z
2025-10-08T21:17:16Z
2025-10-06
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
Text
info:eu-repo/semantics/article
Journal article
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
status_str publishedVersion
dc.identifier.none.fl_str_mv 1657-9550
https://repositorio.ucaldas.edu.co/handle/ucaldas/23823
10.17151/biosa.2020.19.2.1
2462-960X
https://doi.org/10.17151/biosa.2020.19.2.1
identifier_str_mv 1657-9550
10.17151/biosa.2020.19.2.1
2462-960X
url https://repositorio.ucaldas.edu.co/handle/ucaldas/23823
https://doi.org/10.17151/biosa.2020.19.2.1
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 25
2
7
19
Biosalud
Arendrup MC. Candida and Candidaemia. Susceptibility and epidemiology. Dan Med J.2013;60(11):B4698. https://pubmed.ncbi.nlm.nih.gov/24192246/
Kaur, H., Singh, S., Rudramurthy, S. M., Ghosh, A. K., Jayashree, M., Narayana, Y., ... & Chakrabarti, A. (2020). Candidaemia in a tertiary care centre of developing country: Monitoring possible change in spectrum of agents and antifungal susceptibility. Indian journal of medical microbiology, 38(1), 109-116. https:// 10.4103/ijmm.IJMM_20_112
Barac A, Cevik M, Colovic N, Lekovic D, Stevanovic G, Micic J, et al. Investigation of a healthcareassociated Candida tropicalis candidiasis cluster in a hematology unit and a systematic review of nosocomial outbreaks. Mycoses. 2020;63(4):326-33. https://doi.org/10.1111/myc.13048
León CP de, Ernesto L. Infecciones en huéspedes inmunocomprometidos. Rev Méd Hered. 2013;24(2):156-61
Chakraborty M, Banu H, Gupta MK. Epidemiology and Antifungal Susceptibility of Candida Species Causing Blood Stream Infections: An Eastern India Perspective. J Assoc Physicians India. 2021;69(8):11-2. https://pubmed.ncbi.nlm.nih.gov/34472809/
Treviño-Rangel R de J, Bodden-Mendoza BA, Montoya AM, Villanueva-Lozano H, Elizondo-Zertuche M, Robledo-Leal E, et al. Phenotypical characterization, and molecular identification of clinical isolates of Candida tropicalis. Rev Iberoam Micol. 2018;35(1):17-21. https://doi.org/10.1016/j.riam.2017.05.002
Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. noviembre de 2010;14(11):e954-966. https://doi.org/10.1016/j.ijid.2010.04.006
Tan TY, Hsu LY, Alejandria MM, Chaiwarith R, Chinniah T, Chayakulkeeree M, et al. Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol. 2016;54(5):471-7. https://doi.org/10.1093/mmy/myv114
Motoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Rev Iberoam Micol. 2017;34(1):17-22.https://doi.org/10.1016/j.riam.2016.02.006
Chander J, Singla N, Sidhu SK, Gombar S. Epidemiology of Candida bloodstream infections: experience of a tertiary care center in North India. J Infect Dev Ctries. 16 de septiembre de 2013;7(9):670-5.https://doi.org/10.3855/jidc.2623
Verma AK, Prasad KN, Singh M, Dixit AK, Ayyagari A. Candidaemia in patients of a tertiary health care hospital from north India. Indian J Med Res. marzo de 2003;117:122-8. https://pubmed.ncbi.nlm.nih.gov/14575178/
Cortés, J. A., Reyes, P., Gómez, C., Buitrago, G., & Leal, A. L. (2011). Fungal bloodstream infections in tertiary care hospitals in Colombia. Revista iberoamericana de micologia, 28(2), 74-78. https://doi.org/ :10.1016/j.riam.2010.12.002
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017;8:1927. https://doi.org/10.3389/fmicb.2017.01927
Xu J. Is Natural Population of Candida tropicalis Sexual, Parasexual, and/or Asexual? Front Cell Infect Microbiol. 2021;11:751676. https://doi.org/10.3389/fcimb.2021.751676
Seervai RNH, Jones SK, Hirakawa MP, Porman AM, Bennett RJ. Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell. diciembre de 2013;12(12):1629-40. https://doi.org/10.1128/EC.00128-13
Oliveira JS de, Pereira VS, Castelo-Branco D de SCM, Cordeiro R de A, Sidrim JJC, Brilhante RSN, et al. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Candida tropicalis. Can J Microbiol. 2020;66(6):377-88. https://doi.org/10.1139/cjm-2019-0531
Parra L, Cárdenas J. Mecanismos de resistencia a fluconazol expresados por Candida glabrata: una situación para considerar en la terapéutica. Investig En Enferm Imagen Desarro. 2020;22. https://doi.org/10.11144/Javeriana.ie22.mrfe
Nocua-Báez LC, Uribe-Jerez P, Tarazona-Guaranga L, Robles R, Cortés JA, Nocua-Báez LC, et al. Azoles de antes y ahora: una revisión. Rev Chil Infectol. 2020;37(3):219-30. http://dx.doi.org/10.4067/s0716-10182020000300219
Pahwa N, Kumar R, Nirkhiwale S, Bandi A. Species distribution and drug susceptibility of Candida in clinical isolates from a tertiary care center at Indore. Indian J Med Microbiol. marzo de 2014;32(1):44-8. https://doi.org/10.4103/0255-0857.124300
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 15 de febrero de 2016;62(4):e1-50. https:// doi.org/10.1093/cid/civ933
Carvalho VO, Okay TS, Melhem MSC, Szeszs MW, Negro GMB del. The new mutation L321F in «Candida albicans» ERG11 gene may be associated with fluconazole resistance. Rev Iberoam Micol. 2013;30(3):209-12. https://doi.org/10.1016/j.riam.2013.01.001
Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S. The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryot Cell. diciembre de 2015;14(12):1154-64. https://doi.org/10.1128/EC.00137-15
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535
Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol. 2021;59(12):1127-44.https://doi.org/10.1093/mmy/myab053
Richardson JP, Brown R, Kichik N, Lee S, Priest E, Mogavero S, et al. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio. 2022;13(1):e0351021. . https://doi.org/10.1128/mbio.03510-21
Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections.Curr Opin Microbiol. 2019;52:100-9. https://doi.org/10.1016/j.mib.2019.06.002
König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins. 2020;12(8):469. https://doi.org/10.3390/toxins12080469
Batista JM, Birman EG, Cury AE. Susceptibility to antifungal drugs of Candida albicans strains isolated from patients with denture stomatitis. Rev Odontol Universidade São Paulo. diciembre de 1999;13(4):343-8. https://doi.org/10.1590/S0103-06631999000400005
Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28. https://doi.org/10.4161/viru.22913
Gonçalves B, Azevedo N, Osório H, Henriques M, Silva S. Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochem J. 2021;478(4):961-74
Alves R, Sousa-Silva M, Vieira D, Soares P, Chebaro Y, Lorenz MC, et al. Carboxylic Acid Transporters in Candida Pathogenesis. mBio. 2020;11(3):e00156-20. https://doi.org/10.1128/mBio.00156-20
Kämmer P, McNamara S, Wolf T, Conrad T, Allert S, Gerwien F, et al. Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio.2020;11(5):e02435-20. https://doi.org/10.1128/mBio.02435-20
Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, et al. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence. 2022;13(1):191-214. https://doi.org/10.1080/21505594.2022.2026037
Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol. 2014;69(5):733-9. https://doi.org/10.1007/s00284-014-0651-3
Connolly LA, Riccombeni A, Grózer Z, Holland LM, Lynch DB, Andes DR, et al. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol. octubre de 2013;90(1):36-53. https://doi.org/10.1111/mmi.12345
Galán-Ladero MÁ, Blanco-Blanco MT, Fernández-Calderón MC, Lucio L, Gutiérrez-Martín Y, Blanco MT, et al. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast. 2019;36(2):107-15. https://doi.org/10.1002/yea.3370
Jiang C, Li Z, Zhang L, Tian Y, Dong D, Peng Y. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiol Res. 2016;192:65-72. https://doi.org/10.1016/j.micres.2016.06.003
Chen J, Hu N, Xu H, Liu Q, Yu X, Zhang Y, et al. Molecular Epidemiology, Antifungal Susceptibility, and Virulence Evaluation of Candida Isolates Causing Invasive Infection in a Tertiary Care Teaching Hospital. Front Cell Infect Microbiol. 2021;11:721439. https://doi.org/10.3389/fcimb.2021.721439
Moralez ATP, França EJG, Furlaneto-Maia L, Quesada RMB, Furlaneto MC. Phenotypic switching in Candida tropicalis: association with modification of putative virulence attributes and antifungal drug sensitivity. Med Mycol. 2014;52(1):106-14. https://doi.org/10.3109/13693786.2013.825822
Lew SQ, Lin CH. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis. Curr Genet. 2021;67(2):249-54. https://doi.org/10.1007/s00294-020-01138-z
Kumar R, Saraswat D, Tati S, Edgerton M. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis. Infect Immun. 7 de enero de 2015;83(7):2614-26. https://doi.org/10.1128/IAI.00282-15
Bader O. Looking into the virulence of Candida parapsilosis. Virulence. 15 de mayo de 2014;5(4):457-9. https://doi.org/10.4161/viru.28955
Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and hemolysin activities than non-albicans Candida isolates. Trop Biomed. diciembre de 2013;30(4):654-62. https://pubmed.ncbi.nlm.nih.gov/24522136/
Rossoni RD, Barbosa JO, Vilela SFG, Jorge AOC, Junqueira JC. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res. 2013;27(6):484-9. https://doi.org/10.1590/S1806-83242013000600007
Noori M, Dakhili M, Sepahvand A, Davari N. Evaluation of esterase and hemolysin activities of different Candida species isolated from vulvovaginitis cases in Lorestan Province, Iran. Curr Med Mycol. 2017;3(4):1-5. https://doi.org/10.29252/cmm.3.4.1
Amani D, Emira N, Ismail T, Jamel E, Dominique S, Rosa DC, et al. Extracellular enzymes and adhesive properties of medically important Candida spp. strains from landfill leachate. MicrobPathog. 2018;116:328-34. https://doi.org/10.1016/j.micpath.2018.01.042
Silva RC, Padovan ACB, Pimenta DC, Ferreira RC, da Silva CV, Briones MRS. Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol. 2014;4:66. https://doi.org/10.3389/fcimb.2014.00066
Tsang PWK, Fong WP, Samaranayake LP. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage. PloS One. 2017;12(12):e0189219. https://doi.org/10.1371/journal.pone.0189219
Sharma Y, Chumber SK, Kaur M. Studying the Prevalence, Species Distribution, and Detection of In vitro Production of Phospholipase from Candida Isolated from Cases of Invasive Candidiasis. J Glob Infect Dis. 2017;9(1):8-11. https://doi.org/10.4103/0974-777X.199995
Udayalaxmi J, Shenoy N. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children. J Clin Diagn Res JCDR. 2016;10(4):DC21-23. https://doi.org/10.7860/JCDR/2016/17019.7643
Riceto ÉB de M, Menezes R de P, Penatti MPA, Pedroso RDS. Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol. 2015;32(2):79-82. https://doi.org/10.1016/j.riam.2013.11.003
Ramos L de S, Barbedo LS, Braga-Silva LA, dos Santos ALS, Pinto MR, Sgarbi DB da G. Protease, and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol.2015;32(2):122-5. https://doi.org/10.1016/j.riam.2014.01.003
Furlaneto MC, Góes HP, Perini HF, Dos Santos RC, Furlaneto-Maia L. How much do we know about hemolytic capability of pathogenic Candida species? Folia Microbiol (Praha). 2018;63(4):405-12.https://doi.org/10.1007/s12223-018-0584-5
Erum R, Samad F, Khan A, Kazmi SU. A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC Microbiol. 2020;20(1):368.https://doi.org/10.1186/s12866-020-02045-6
Mello VG, Escudeiro H, Weckwerth ACVB, Andrade MI, Fusaro AE, de Moraes EB, et al. Virulence Factors and Antifungal Susceptibility in Candida Species Isolated from Dermatomycosis Patients.Mycopathologia. 2021;186(1):71-80. https://doi.org/10.1007/s11046-020-00509-x
Patel PN, Sah P, Chandrashekar C, Vidyasagar S, Venkata Rao J, Tiwari M, et al. Oral Candidal speciation, virulence and antifungal susceptibility in type 2 diabetes mellitus. Diabetes Res ClinPract. 2017;125:10-9. https://doi.org/10.1016/j.diabres.2017.01.001
57 Brilhante RSN, Bittencourt PV, Castelo-Branco D de SCM, de Oliveira JS, Alencar LP de, Cordeiro R de A, et al. Trends in antifungal susceptibility and virulence of Candida spp. from the nasolacrimalduct of horses. Med Mycol. 2016;54(2):147-54. https://doi.org/10.1093/mmy/myv090
Seneviratne CJ, Rajan S, Wong SSW, Tsang DNC, Lai CKC, Samaranayake LP, et al. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong. Front Microbiol. 2016;7:216. https://doi.org/10.3389/fmicb.2016.00216
Singh DP, Kumar Verma R, Sarswat S, Saraswat S. Non-Candida albicans Candida species: virulence factors and species identification in India. Curr Med Mycol. 2021;7(2):8-13. https://doi.org/10.18502/cmm.7.2.7032
El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Virulence Factors and Antifungal Susceptibility Profile of C. tropicalis Isolated from Various Clinical Specimens in Alexandria, Egypt. J Fungi. 2021;7(5):351. https://doi.org/10.3390/jof7050351
Deorukhkar SC, Saini S, Mathew S. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J Microbiol. 2014;2014:e456878. https://doi.org/10.1155/2014/456878
Yu S, Li W, Che J, Bian F, Lu J, Wu Y. Study on virulence factors of Candida tropicalis isolated from clinical samples. Zhonghua liu xing bing xue za zhi. 2015;36(10):1162-6. https://pubmed.ncbi.nlm.nih.gov/26837366/
Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, et al. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 2018;33(2):113-24.https://doi.org/10.1111/omi.12206
Alenzi FQB. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy. Pak J Med Sci. 2016;32(1):143-6. https://doi.org/10.12669/pjms.321.8559
Negri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia. 2016;181(3-4):217-24. https://doi.org/10.1007/s11046-015-9964-4
Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, et al. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol. 2016;7:1783. https://doi.org/10.3389/fmicb.2016.01783
Udayalaxmi null, Jacob S, D’Souza D. Comparison Between Virulence Factors of Candida albicans and Non-Albicans Species of Candida Isolated from Genitourinary Tract. J Clin Diagn Res JCDR.2014;8(11):DC15-17. https://doi.org/10.7860/JCDR/2014/10121.5137
Nouraei H, Pakshir K, ZareShahrabadi Z, Zomorodian K. High detection of virulence factors by Candida species isolated from bloodstream of patients with candidemia. Microb Pathog. 2020;149:104574.https://doi.org/10.1016/j.micpath.2020.104574
Vieira de Melo AP, Zuza-Alves DL, da Silva-Rocha WP, Ferreira Canário de Souza LB, Francisco EC, Salles de Azevedo Melo A, et al. Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. J Mycol Medicale. 2019;29(2):132-9. https://doi.org/10.1016/j.mycmed.2019.02.002
Atalay MA, Koc AN, Demir G, Sav H. Investigation of possible virulence factors in Candida strains isolated from blood cultures. Niger J Clin Pract. 2015;18(1):52-5. https://doi.org/10.4103/1119-3077.146979
Tellapragada C, Eshwara VK, Johar R, Shaw T, Malik N, Bhat PV, et al. Antifungal susceptibility patterns, in vitro production of virulence factors, and evaluation of diagnostic modalities for the speciation of pathogenic Candida from bloodstream infections and vulvovaginal candidiasis. J Pathog. 2014;2014:142864. https://doi.org/10.1155/2014/142864
Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 2015;69:71-92. https://doi.org/10.1146/annurev-micro-091014-104330
Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect Inst Pasteur. 2016;18(5):310-21. https://doi.org/10.1016/j.micinf.2016.01.002
Sasani E, Khodavaisy S, Rezaie S, Salehi M, Yadegari MH. The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microb Pathog. 2021;155:104889.https://doi.org/10.1016/j.micpath.2021.104889
Sriphannam C, Nuanmuang N, Saengsawang K, Amornthipayawong D, Kummasook A. Anti-fungal susceptibility, and virulence factors of Candida spp. isolated from blood cultures. J Mycol Médicale. 2019;29(4):325-30. https://doi.org/10.1016/j.mycmed.2019.08.001
Yu SB, Li WG, Liu XS, Che J, Lu JX, Wu Y. The Activities of Adhesion and Biofilm Formation by Candida tropicalis Clinical Isolates Display Significant Correlation with Its Multilocus Sequence Typing. Mycopathologia. 2017;182(5-6):459-69. https://doi.org/10.1007/s11046-017-0111-2
Leerahakan P, Matangkasombut O, Tarapan S, Lam-Ubol A. Biofilm formation of Candida isolates from xerostomic post-radiotherapy head and neck cancer patients. Arch Oral Biol. 2022;142:105495. https://doi.org/10.1007/s11046-017-0111-2
Pannanusorn S, Fernandez V, Römling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56(3):264-72. https://doi.org/10.1111/myc.12014
Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front Microbiol. 2017;7:2173. https://doi.org/10.3389/fmicb.2016.02173
Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450-60. https://doi.org/10.1128/AAC.03470-14
López-Ávila K, Dzul-Rosado KR, Lugo-Caballero C, Arias-León JJ, Zavala-Castro JE. Mecanismos de resistencia antifúngica de los azoles en Candida albicans. Una revisión. Rev Bioméd. Doi:83. Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update. abril de 2016;22(2):164-81.https://doi.org/10.1093/humupd/dmv049
Morales-Pérez M, García-Milian AJ, Morales-Pérez M, García-Milian AJ. Papel de la superfamilia ABC en la resistencia farmacológica. Horiz Sanit. 2017;16(2):93-101. https://doi.org/10.19136/hs.v16i2.1469
Fuentes M, Hermosilla G, Alburquenque C, Falconer MA, Amaro J, Tapia C. [Characterization of azole resistance mechanisms in Chilean clinical isolates of Candida albicans]. Rev Chil Infectologia Organo of Soc Chil Infectologia. octubre de 2014;31(5):511-7. https://doi.org/10.4067/s0716-10182014000500001
Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792-8. https://doi.org/10.1016/j.cmi.2019.03.028
Sasani E, Yadegari MH, Khodavaisy S, Rezaie S, Salehi M, Getso MI. Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia. Mycopathologia.2021;186(6):847-56. https://doi.org/10.1007/s11046-021-00580-y
Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013;68(4):778-85. https://doi.org/10.1093/jac/dks481
Fan X, Xiao M, Zhang D, Huang JJ, Wang H, Hou X, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2019;25(7):885-91. https://doi.org/10.1016/j.cmi.2018.11.007
Paul S, Singh S, Sharma D, Chakrabarti A, Rudramurthy SM, Ghosh AK. Dynamics of in vitro development of azole resistance in Candida tropicalis. J Glob Antimicrob Resist. -61. https://doi.org/10.1016/j.jgar.2020.04.018
Pandey N, Tripathi M, Gupta MK, Tilak R. Overexpression of efflux pump transporter genes and mutations in ERG11 pave the way to fluconazole resistance in Candida tropicalis: A study from a North India region. J Glob Antimicrob Resist. 2020;22:374-8. https://doi.org/10.1016/j.jgar.2020.02.010
Silva MC, Cardozo Bonfim Carbone D, Diniz PF, Freitas Fernandes F, Fuzo CA, Santos Pereira Cardoso Trindade C, et al. Modulation of ERG Genes Expression in Clinical Isolates of Candida tropicalis Susceptible and Resistant to Fluconazole and Itraconazole. Mycopathologia. 2020;185(4):675-84. https://doi.org/10.1007/s11046-020-00465-6
Jin L, Cao Z, Wang Q, Wang Y, Wang X, Chen H, et al. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infect Dis. 2018;18(1):162. https://doi.org/10.1186/s12879-018-3082-0
El Said M, Badawi H, Gamal D, Salem D, Dahroug H, El-Far A. Detection of ERG11 gene in fluconazole resistant urinary Candida isolates. Egypt J Immunol. 2022;29(4):134-4 https://pubmed.ncbi.nlm.nih.gov/36208042/
Choi MJ, Won EJ, Shin JH, Kim SH, Lee WG, Kim MN, et al. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother. 2016;60(6):3653-61. https://doi.org/10.1128/AAC.02652-15
Paul S, Dadwal R, Singh S, Shaw D, Chakrabarti A, Rudramurthy SM, et al. Rapid detection of ERG11 polymorphism associated azole resistance in Candida tropicalis. PloS One. 2021;16(1):e0245160.https://doi.org/10.1371/journal.pone.0245160
Forastiero A, Mesa-Arango AC, Alastruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Pelaez T, et al. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrob Agents Chemother. 10 de enero de 2013;57(10):4769-81. https://doi. org/10.1128/AAC.00477-13
Paul S, Shaw D, Joshi H, Singh S, Chakrabarti A, Rudramurthy SM, et al. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PloS One. 2022;17(7):e0269721. https://doi.org/10.1371/journal.pone.0269721
Leepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi.2022;8(10):983. https://doi.org/10.3390/jof8100983
Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents. 2020;55(1):105799. https://doi.org/10.1016/j.ijantimicag.2019.09.003
Keighley C, Gall M, van Hal SJ, Halliday CL, Chai LYA, Chew KL, et al. Whole Genome Sequencing Shows Genetic Diversity, as Well as Clonal Complex and Gene Polymorphisms Associated with Fluconazole Non-Susceptible Isolates of Candida tropicalis. J Fungi Basel Switz. 2022;8(9):896. https://doi.org/10.3390/jof8090896
Benedetti VP, Savi DC, Aluizio R, Adamoski D, Kava V, Galli-Terasawa LV, et al. ERG11 gene polymorphisms and susceptibility to fluconazole in Candida isolates from diabetic and kidney transplant patients. Rev Soc Bras Med Trop. 2019;52:e20180473. https://doi.org/10.1590/0037-8682-0473-2018
Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Hafez A, Salehi M, Polat F, et al. Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping. Front Microbiol. 2020;11:587278. https://doi.org/10.3389/fmicb.2020.587278
Teo JQM, Lee SJY, Tan AL, Lim RSM, Cai Y, Lim TP, et al. Molecular mechanisms of azole resistance in Candida bloodstream isolates. BMC Infect Dis. 2019;19(1):63. https://doi.org/10.1186/s12879-019-3672-5
Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother.2013;57(7):3182-93. https://doi.org/10.1128/AAC.00555-13
Astvad KMT, Sanglard D, Delarze E, Hare RK, Arendrup MC. Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the In Vivo Susceptibility in Invertebrate and Murine Models. Antimicrob Agents Chemother. 2018;62(12):e01624-18. https://doi.org/10.1128/aac.01624-18
Khalifa HO, Watanabe A, Kamei K. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clin Microbiol Infect. 2022;28(2):302.e5-302.e8. https://doi.org/10.1016/j. cmi.2021.10.004
Jiang C, Ni Q, Dong D, Zhang L, Li Z, Tian Y, et al. The Role of UPC2 Gene in Azole-Resistant Candida tropicalis. Mycopathologia. 2016;181(11-12):833-8. https://doi.org/10.1007/s11046-016-0050-3
You L, Qian W, Yang Q, Mao L, Zhu L, Huang X, et al. ERG11 Gene Mutations and MDR1 Upregulation Confer Pan-Azole Resistance in Candida tropicalis Causing Disseminated Candidiasis in an Acute Lymphoblastic Leukemia Patient on Posaconazole Prophylaxis. Antimicrob Agents Chemother.2017;61(7):e02496-16. https://doi.org/10.1128/AAC.02496-16
Núm. 2 , Año 2020 : Julio - Diciembre
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/10985/8009
dc.rights.none.fl_str_mv Biosalud - 2025
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Biosalud - 2025
https://creativecommons.org/licenses/by/4.0
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
publisher.none.fl_str_mv Universidad de Caldas
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/10985
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532563881263104
spelling Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a los azoles expresados por Candida tropicalisVirulence factors of Candida spp and molecular mechanisms of resistance to azoles expressed by Candida tropicalisCandida tropicalisFactores de virulenciaResistencia a medicamentosAzolesAntifúngicosCandida tropicalisVirulence FactorsDrug ResistanceAzolesAntifungalsIntroducción: Debido al panorama epidemiológico de la candidiasis producida por Candida tropicalis y la marcada resistencia generada hacia los azoles, se hace necesario profundizar en el conocimiento de la virulencia y mecanismos de resistencia a fármacos. Objetivo: Sintetizar los factores de virulencia de Candida spp. y los mecanismos moleculares de resistencia a azoles expresados por Candida tropicalis. Materiales y métodos: Se realizó una búsqueda bibliográfica en la base de datos Pubmed y los manuscritos fueron seleccionados según los criterios de análisis crítico propuestos por el instrumento PRISMA. La pregunta orientadora de la búsqueda fue: ¿Cuáles son los factores de virulencia de Candida spp y los mecanismos de resistencia a los azoles expresados por la especie C.tropicalis? y los resultados se organizaron en dos categorías: Factores de virulencia de Candida spp y mecanismos moleculares de resistencia a azoles. Resultados: Los factores de virulencia de Candida spp. están representados por la producción de toxinas y enzimas, la formación de biopelículas, la modificación del medio ambiente, la filamentación y el crecimiento hifal; por otro lado, los mecanismos de resistencia a los azoles expresados por C.tropicalis están determinados principalmente por la sobreexpresión de los genes ERG11 y MDR1 y por mutaciones en el gen ERG11. Conclusiones: Los factores de virulencia son similares entre las distintas especies de Candida y los mecanismos moleculares de resistencia a los azoles expresados por C. tropicalis se traducen fundamentalmente en una menor afinidad por la diana farmacológica y una menor concentración intracelular del fármaco.Introduction: Due to the epidemiological panorama of candidiasis caused by Candida tropicalis and the marked resistance generated towards azoles, it is necessary to deepen the knowledge of virulence and drug resistance mechanisms. Objective: To synthesize the virulence factors of Candida spp. and the molecular mechanisms of azole resistance expressed by Candida tropicalis. Materials and methods: The bibliographical search were conducted in the PubMed database and manuscripts were selected according to the critical analysis criteria proposed by the PRISMA instrument. The guiding question for the search was: What are the virulence factors of Candida spp, and the azole resistance mechanisms expressed by the species C. tropicalis? The results were organized into two categories: Virulence factors of Candida spp and molecular mechanisms of resistance to azoles. Results: The virulence factors of Candida spp. are represented by toxin and enzyme production, biofilm formation, environmental modification, filamentation, and hyphal growth. The mechanisms of resistance to azoles expressed by C. tropicalis are mainly determined by overexpression of the ERG11 and MDR1 genes and by mutations in the ERG11 gene. Conclusion: Virulence factors are similar among Candida species and the molecular mechanisms of resistance to azoles expressed by C. tropicalis fundamentally result in decreased affinity for the pharmacological target and lower intracellular concentration of the drug.Universidad de Caldas2025-10-06T00:00:00Z2025-10-08T21:17:16Z2025-10-06T00:00:00Z2025-10-08T21:17:16Z2025-10-06Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdf1657-9550https://repositorio.ucaldas.edu.co/handle/ucaldas/2382310.17151/biosa.2020.19.2.12462-960Xhttps://doi.org/10.17151/biosa.2020.19.2.1https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/10985eng252719BiosaludArendrup MC. Candida and Candidaemia. Susceptibility and epidemiology. Dan Med J.2013;60(11):B4698. https://pubmed.ncbi.nlm.nih.gov/24192246/Kaur, H., Singh, S., Rudramurthy, S. M., Ghosh, A. K., Jayashree, M., Narayana, Y., ... & Chakrabarti, A. (2020). Candidaemia in a tertiary care centre of developing country: Monitoring possible change in spectrum of agents and antifungal susceptibility. Indian journal of medical microbiology, 38(1), 109-116. https:// 10.4103/ijmm.IJMM_20_112Barac A, Cevik M, Colovic N, Lekovic D, Stevanovic G, Micic J, et al. Investigation of a healthcareassociated Candida tropicalis candidiasis cluster in a hematology unit and a systematic review of nosocomial outbreaks. Mycoses. 2020;63(4):326-33. https://doi.org/10.1111/myc.13048León CP de, Ernesto L. Infecciones en huéspedes inmunocomprometidos. Rev Méd Hered. 2013;24(2):156-61Chakraborty M, Banu H, Gupta MK. Epidemiology and Antifungal Susceptibility of Candida Species Causing Blood Stream Infections: An Eastern India Perspective. J Assoc Physicians India. 2021;69(8):11-2. https://pubmed.ncbi.nlm.nih.gov/34472809/Treviño-Rangel R de J, Bodden-Mendoza BA, Montoya AM, Villanueva-Lozano H, Elizondo-Zertuche M, Robledo-Leal E, et al. Phenotypical characterization, and molecular identification of clinical isolates of Candida tropicalis. Rev Iberoam Micol. 2018;35(1):17-21. https://doi.org/10.1016/j.riam.2017.05.002Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. noviembre de 2010;14(11):e954-966. https://doi.org/10.1016/j.ijid.2010.04.006Tan TY, Hsu LY, Alejandria MM, Chaiwarith R, Chinniah T, Chayakulkeeree M, et al. Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol. 2016;54(5):471-7. https://doi.org/10.1093/mmy/myv114Motoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Rev Iberoam Micol. 2017;34(1):17-22.https://doi.org/10.1016/j.riam.2016.02.006Chander J, Singla N, Sidhu SK, Gombar S. Epidemiology of Candida bloodstream infections: experience of a tertiary care center in North India. J Infect Dev Ctries. 16 de septiembre de 2013;7(9):670-5.https://doi.org/10.3855/jidc.2623Verma AK, Prasad KN, Singh M, Dixit AK, Ayyagari A. Candidaemia in patients of a tertiary health care hospital from north India. Indian J Med Res. marzo de 2003;117:122-8. https://pubmed.ncbi.nlm.nih.gov/14575178/Cortés, J. A., Reyes, P., Gómez, C., Buitrago, G., & Leal, A. L. (2011). Fungal bloodstream infections in tertiary care hospitals in Colombia. Revista iberoamericana de micologia, 28(2), 74-78. https://doi.org/ :10.1016/j.riam.2010.12.002Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017;8:1927. https://doi.org/10.3389/fmicb.2017.01927Xu J. Is Natural Population of Candida tropicalis Sexual, Parasexual, and/or Asexual? Front Cell Infect Microbiol. 2021;11:751676. https://doi.org/10.3389/fcimb.2021.751676Seervai RNH, Jones SK, Hirakawa MP, Porman AM, Bennett RJ. Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell. diciembre de 2013;12(12):1629-40. https://doi.org/10.1128/EC.00128-13Oliveira JS de, Pereira VS, Castelo-Branco D de SCM, Cordeiro R de A, Sidrim JJC, Brilhante RSN, et al. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Candida tropicalis. Can J Microbiol. 2020;66(6):377-88. https://doi.org/10.1139/cjm-2019-0531Parra L, Cárdenas J. Mecanismos de resistencia a fluconazol expresados por Candida glabrata: una situación para considerar en la terapéutica. Investig En Enferm Imagen Desarro. 2020;22. https://doi.org/10.11144/Javeriana.ie22.mrfeNocua-Báez LC, Uribe-Jerez P, Tarazona-Guaranga L, Robles R, Cortés JA, Nocua-Báez LC, et al. Azoles de antes y ahora: una revisión. Rev Chil Infectol. 2020;37(3):219-30. http://dx.doi.org/10.4067/s0716-10182020000300219Pahwa N, Kumar R, Nirkhiwale S, Bandi A. Species distribution and drug susceptibility of Candida in clinical isolates from a tertiary care center at Indore. Indian J Med Microbiol. marzo de 2014;32(1):44-8. https://doi.org/10.4103/0255-0857.124300Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 15 de febrero de 2016;62(4):e1-50. https:// doi.org/10.1093/cid/civ933Carvalho VO, Okay TS, Melhem MSC, Szeszs MW, Negro GMB del. The new mutation L321F in «Candida albicans» ERG11 gene may be associated with fluconazole resistance. Rev Iberoam Micol. 2013;30(3):209-12. https://doi.org/10.1016/j.riam.2013.01.001Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S. The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryot Cell. diciembre de 2015;14(12):1154-64. https://doi.org/10.1128/EC.00137-15Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol. 2021;59(12):1127-44.https://doi.org/10.1093/mmy/myab053Richardson JP, Brown R, Kichik N, Lee S, Priest E, Mogavero S, et al. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio. 2022;13(1):e0351021. . https://doi.org/10.1128/mbio.03510-21Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections.Curr Opin Microbiol. 2019;52:100-9. https://doi.org/10.1016/j.mib.2019.06.002König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins. 2020;12(8):469. https://doi.org/10.3390/toxins12080469Batista JM, Birman EG, Cury AE. Susceptibility to antifungal drugs of Candida albicans strains isolated from patients with denture stomatitis. Rev Odontol Universidade São Paulo. diciembre de 1999;13(4):343-8. https://doi.org/10.1590/S0103-06631999000400005Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28. https://doi.org/10.4161/viru.22913Gonçalves B, Azevedo N, Osório H, Henriques M, Silva S. Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochem J. 2021;478(4):961-74Alves R, Sousa-Silva M, Vieira D, Soares P, Chebaro Y, Lorenz MC, et al. Carboxylic Acid Transporters in Candida Pathogenesis. mBio. 2020;11(3):e00156-20. https://doi.org/10.1128/mBio.00156-20Kämmer P, McNamara S, Wolf T, Conrad T, Allert S, Gerwien F, et al. Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio.2020;11(5):e02435-20. https://doi.org/10.1128/mBio.02435-20Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, et al. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence. 2022;13(1):191-214. https://doi.org/10.1080/21505594.2022.2026037Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol. 2014;69(5):733-9. https://doi.org/10.1007/s00284-014-0651-3Connolly LA, Riccombeni A, Grózer Z, Holland LM, Lynch DB, Andes DR, et al. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol. octubre de 2013;90(1):36-53. https://doi.org/10.1111/mmi.12345Galán-Ladero MÁ, Blanco-Blanco MT, Fernández-Calderón MC, Lucio L, Gutiérrez-Martín Y, Blanco MT, et al. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast. 2019;36(2):107-15. https://doi.org/10.1002/yea.3370Jiang C, Li Z, Zhang L, Tian Y, Dong D, Peng Y. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiol Res. 2016;192:65-72. https://doi.org/10.1016/j.micres.2016.06.003Chen J, Hu N, Xu H, Liu Q, Yu X, Zhang Y, et al. Molecular Epidemiology, Antifungal Susceptibility, and Virulence Evaluation of Candida Isolates Causing Invasive Infection in a Tertiary Care Teaching Hospital. Front Cell Infect Microbiol. 2021;11:721439. https://doi.org/10.3389/fcimb.2021.721439Moralez ATP, França EJG, Furlaneto-Maia L, Quesada RMB, Furlaneto MC. Phenotypic switching in Candida tropicalis: association with modification of putative virulence attributes and antifungal drug sensitivity. Med Mycol. 2014;52(1):106-14. https://doi.org/10.3109/13693786.2013.825822Lew SQ, Lin CH. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis. Curr Genet. 2021;67(2):249-54. https://doi.org/10.1007/s00294-020-01138-zKumar R, Saraswat D, Tati S, Edgerton M. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis. Infect Immun. 7 de enero de 2015;83(7):2614-26. https://doi.org/10.1128/IAI.00282-15Bader O. Looking into the virulence of Candida parapsilosis. Virulence. 15 de mayo de 2014;5(4):457-9. https://doi.org/10.4161/viru.28955Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and hemolysin activities than non-albicans Candida isolates. Trop Biomed. diciembre de 2013;30(4):654-62. https://pubmed.ncbi.nlm.nih.gov/24522136/Rossoni RD, Barbosa JO, Vilela SFG, Jorge AOC, Junqueira JC. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res. 2013;27(6):484-9. https://doi.org/10.1590/S1806-83242013000600007Noori M, Dakhili M, Sepahvand A, Davari N. Evaluation of esterase and hemolysin activities of different Candida species isolated from vulvovaginitis cases in Lorestan Province, Iran. Curr Med Mycol. 2017;3(4):1-5. https://doi.org/10.29252/cmm.3.4.1Amani D, Emira N, Ismail T, Jamel E, Dominique S, Rosa DC, et al. Extracellular enzymes and adhesive properties of medically important Candida spp. strains from landfill leachate. MicrobPathog. 2018;116:328-34. https://doi.org/10.1016/j.micpath.2018.01.042Silva RC, Padovan ACB, Pimenta DC, Ferreira RC, da Silva CV, Briones MRS. Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol. 2014;4:66. https://doi.org/10.3389/fcimb.2014.00066Tsang PWK, Fong WP, Samaranayake LP. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage. PloS One. 2017;12(12):e0189219. https://doi.org/10.1371/journal.pone.0189219Sharma Y, Chumber SK, Kaur M. Studying the Prevalence, Species Distribution, and Detection of In vitro Production of Phospholipase from Candida Isolated from Cases of Invasive Candidiasis. J Glob Infect Dis. 2017;9(1):8-11. https://doi.org/10.4103/0974-777X.199995Udayalaxmi J, Shenoy N. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children. J Clin Diagn Res JCDR. 2016;10(4):DC21-23. https://doi.org/10.7860/JCDR/2016/17019.7643Riceto ÉB de M, Menezes R de P, Penatti MPA, Pedroso RDS. Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol. 2015;32(2):79-82. https://doi.org/10.1016/j.riam.2013.11.003Ramos L de S, Barbedo LS, Braga-Silva LA, dos Santos ALS, Pinto MR, Sgarbi DB da G. Protease, and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol.2015;32(2):122-5. https://doi.org/10.1016/j.riam.2014.01.003Furlaneto MC, Góes HP, Perini HF, Dos Santos RC, Furlaneto-Maia L. How much do we know about hemolytic capability of pathogenic Candida species? Folia Microbiol (Praha). 2018;63(4):405-12.https://doi.org/10.1007/s12223-018-0584-5Erum R, Samad F, Khan A, Kazmi SU. A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC Microbiol. 2020;20(1):368.https://doi.org/10.1186/s12866-020-02045-6Mello VG, Escudeiro H, Weckwerth ACVB, Andrade MI, Fusaro AE, de Moraes EB, et al. Virulence Factors and Antifungal Susceptibility in Candida Species Isolated from Dermatomycosis Patients.Mycopathologia. 2021;186(1):71-80. https://doi.org/10.1007/s11046-020-00509-xPatel PN, Sah P, Chandrashekar C, Vidyasagar S, Venkata Rao J, Tiwari M, et al. Oral Candidal speciation, virulence and antifungal susceptibility in type 2 diabetes mellitus. Diabetes Res ClinPract. 2017;125:10-9. https://doi.org/10.1016/j.diabres.2017.01.00157 Brilhante RSN, Bittencourt PV, Castelo-Branco D de SCM, de Oliveira JS, Alencar LP de, Cordeiro R de A, et al. Trends in antifungal susceptibility and virulence of Candida spp. from the nasolacrimalduct of horses. Med Mycol. 2016;54(2):147-54. https://doi.org/10.1093/mmy/myv090Seneviratne CJ, Rajan S, Wong SSW, Tsang DNC, Lai CKC, Samaranayake LP, et al. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong. Front Microbiol. 2016;7:216. https://doi.org/10.3389/fmicb.2016.00216Singh DP, Kumar Verma R, Sarswat S, Saraswat S. Non-Candida albicans Candida species: virulence factors and species identification in India. Curr Med Mycol. 2021;7(2):8-13. https://doi.org/10.18502/cmm.7.2.7032El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Virulence Factors and Antifungal Susceptibility Profile of C. tropicalis Isolated from Various Clinical Specimens in Alexandria, Egypt. J Fungi. 2021;7(5):351. https://doi.org/10.3390/jof7050351Deorukhkar SC, Saini S, Mathew S. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J Microbiol. 2014;2014:e456878. https://doi.org/10.1155/2014/456878Yu S, Li W, Che J, Bian F, Lu J, Wu Y. Study on virulence factors of Candida tropicalis isolated from clinical samples. Zhonghua liu xing bing xue za zhi. 2015;36(10):1162-6. https://pubmed.ncbi.nlm.nih.gov/26837366/Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, et al. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 2018;33(2):113-24.https://doi.org/10.1111/omi.12206Alenzi FQB. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy. Pak J Med Sci. 2016;32(1):143-6. https://doi.org/10.12669/pjms.321.8559Negri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia. 2016;181(3-4):217-24. https://doi.org/10.1007/s11046-015-9964-4Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, et al. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol. 2016;7:1783. https://doi.org/10.3389/fmicb.2016.01783Udayalaxmi null, Jacob S, D’Souza D. Comparison Between Virulence Factors of Candida albicans and Non-Albicans Species of Candida Isolated from Genitourinary Tract. J Clin Diagn Res JCDR.2014;8(11):DC15-17. https://doi.org/10.7860/JCDR/2014/10121.5137Nouraei H, Pakshir K, ZareShahrabadi Z, Zomorodian K. High detection of virulence factors by Candida species isolated from bloodstream of patients with candidemia. Microb Pathog. 2020;149:104574.https://doi.org/10.1016/j.micpath.2020.104574Vieira de Melo AP, Zuza-Alves DL, da Silva-Rocha WP, Ferreira Canário de Souza LB, Francisco EC, Salles de Azevedo Melo A, et al. Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. J Mycol Medicale. 2019;29(2):132-9. https://doi.org/10.1016/j.mycmed.2019.02.002Atalay MA, Koc AN, Demir G, Sav H. Investigation of possible virulence factors in Candida strains isolated from blood cultures. Niger J Clin Pract. 2015;18(1):52-5. https://doi.org/10.4103/1119-3077.146979Tellapragada C, Eshwara VK, Johar R, Shaw T, Malik N, Bhat PV, et al. Antifungal susceptibility patterns, in vitro production of virulence factors, and evaluation of diagnostic modalities for the speciation of pathogenic Candida from bloodstream infections and vulvovaginal candidiasis. J Pathog. 2014;2014:142864. https://doi.org/10.1155/2014/142864Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 2015;69:71-92. https://doi.org/10.1146/annurev-micro-091014-104330Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect Inst Pasteur. 2016;18(5):310-21. https://doi.org/10.1016/j.micinf.2016.01.002Sasani E, Khodavaisy S, Rezaie S, Salehi M, Yadegari MH. The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microb Pathog. 2021;155:104889.https://doi.org/10.1016/j.micpath.2021.104889Sriphannam C, Nuanmuang N, Saengsawang K, Amornthipayawong D, Kummasook A. Anti-fungal susceptibility, and virulence factors of Candida spp. isolated from blood cultures. J Mycol Médicale. 2019;29(4):325-30. https://doi.org/10.1016/j.mycmed.2019.08.001Yu SB, Li WG, Liu XS, Che J, Lu JX, Wu Y. The Activities of Adhesion and Biofilm Formation by Candida tropicalis Clinical Isolates Display Significant Correlation with Its Multilocus Sequence Typing. Mycopathologia. 2017;182(5-6):459-69. https://doi.org/10.1007/s11046-017-0111-2Leerahakan P, Matangkasombut O, Tarapan S, Lam-Ubol A. Biofilm formation of Candida isolates from xerostomic post-radiotherapy head and neck cancer patients. Arch Oral Biol. 2022;142:105495. https://doi.org/10.1007/s11046-017-0111-2Pannanusorn S, Fernandez V, Römling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56(3):264-72. https://doi.org/10.1111/myc.12014Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front Microbiol. 2017;7:2173. https://doi.org/10.3389/fmicb.2016.02173Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450-60. https://doi.org/10.1128/AAC.03470-14López-Ávila K, Dzul-Rosado KR, Lugo-Caballero C, Arias-León JJ, Zavala-Castro JE. Mecanismos de resistencia antifúngica de los azoles en Candida albicans. Una revisión. Rev Bioméd. Doi:83. Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update. abril de 2016;22(2):164-81.https://doi.org/10.1093/humupd/dmv049Morales-Pérez M, García-Milian AJ, Morales-Pérez M, García-Milian AJ. Papel de la superfamilia ABC en la resistencia farmacológica. Horiz Sanit. 2017;16(2):93-101. https://doi.org/10.19136/hs.v16i2.1469Fuentes M, Hermosilla G, Alburquenque C, Falconer MA, Amaro J, Tapia C. [Characterization of azole resistance mechanisms in Chilean clinical isolates of Candida albicans]. Rev Chil Infectologia Organo of Soc Chil Infectologia. octubre de 2014;31(5):511-7. https://doi.org/10.4067/s0716-10182014000500001Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792-8. https://doi.org/10.1016/j.cmi.2019.03.028Sasani E, Yadegari MH, Khodavaisy S, Rezaie S, Salehi M, Getso MI. Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia. Mycopathologia.2021;186(6):847-56. https://doi.org/10.1007/s11046-021-00580-yJiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013;68(4):778-85. https://doi.org/10.1093/jac/dks481Fan X, Xiao M, Zhang D, Huang JJ, Wang H, Hou X, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2019;25(7):885-91. https://doi.org/10.1016/j.cmi.2018.11.007Paul S, Singh S, Sharma D, Chakrabarti A, Rudramurthy SM, Ghosh AK. Dynamics of in vitro development of azole resistance in Candida tropicalis. J Glob Antimicrob Resist. -61. https://doi.org/10.1016/j.jgar.2020.04.018Pandey N, Tripathi M, Gupta MK, Tilak R. Overexpression of efflux pump transporter genes and mutations in ERG11 pave the way to fluconazole resistance in Candida tropicalis: A study from a North India region. J Glob Antimicrob Resist. 2020;22:374-8. https://doi.org/10.1016/j.jgar.2020.02.010Silva MC, Cardozo Bonfim Carbone D, Diniz PF, Freitas Fernandes F, Fuzo CA, Santos Pereira Cardoso Trindade C, et al. Modulation of ERG Genes Expression in Clinical Isolates of Candida tropicalis Susceptible and Resistant to Fluconazole and Itraconazole. Mycopathologia. 2020;185(4):675-84. https://doi.org/10.1007/s11046-020-00465-6Jin L, Cao Z, Wang Q, Wang Y, Wang X, Chen H, et al. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infect Dis. 2018;18(1):162. https://doi.org/10.1186/s12879-018-3082-0El Said M, Badawi H, Gamal D, Salem D, Dahroug H, El-Far A. Detection of ERG11 gene in fluconazole resistant urinary Candida isolates. Egypt J Immunol. 2022;29(4):134-4 https://pubmed.ncbi.nlm.nih.gov/36208042/Choi MJ, Won EJ, Shin JH, Kim SH, Lee WG, Kim MN, et al. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother. 2016;60(6):3653-61. https://doi.org/10.1128/AAC.02652-15Paul S, Dadwal R, Singh S, Shaw D, Chakrabarti A, Rudramurthy SM, et al. Rapid detection of ERG11 polymorphism associated azole resistance in Candida tropicalis. PloS One. 2021;16(1):e0245160.https://doi.org/10.1371/journal.pone.0245160Forastiero A, Mesa-Arango AC, Alastruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Pelaez T, et al. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrob Agents Chemother. 10 de enero de 2013;57(10):4769-81. https://doi. org/10.1128/AAC.00477-13Paul S, Shaw D, Joshi H, Singh S, Chakrabarti A, Rudramurthy SM, et al. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PloS One. 2022;17(7):e0269721. https://doi.org/10.1371/journal.pone.0269721Leepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi.2022;8(10):983. https://doi.org/10.3390/jof8100983Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents. 2020;55(1):105799. https://doi.org/10.1016/j.ijantimicag.2019.09.003Keighley C, Gall M, van Hal SJ, Halliday CL, Chai LYA, Chew KL, et al. Whole Genome Sequencing Shows Genetic Diversity, as Well as Clonal Complex and Gene Polymorphisms Associated with Fluconazole Non-Susceptible Isolates of Candida tropicalis. J Fungi Basel Switz. 2022;8(9):896. https://doi.org/10.3390/jof8090896Benedetti VP, Savi DC, Aluizio R, Adamoski D, Kava V, Galli-Terasawa LV, et al. ERG11 gene polymorphisms and susceptibility to fluconazole in Candida isolates from diabetic and kidney transplant patients. Rev Soc Bras Med Trop. 2019;52:e20180473. https://doi.org/10.1590/0037-8682-0473-2018Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Hafez A, Salehi M, Polat F, et al. Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping. Front Microbiol. 2020;11:587278. https://doi.org/10.3389/fmicb.2020.587278Teo JQM, Lee SJY, Tan AL, Lim RSM, Cai Y, Lim TP, et al. Molecular mechanisms of azole resistance in Candida bloodstream isolates. BMC Infect Dis. 2019;19(1):63. https://doi.org/10.1186/s12879-019-3672-5Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother.2013;57(7):3182-93. https://doi.org/10.1128/AAC.00555-13Astvad KMT, Sanglard D, Delarze E, Hare RK, Arendrup MC. Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the In Vivo Susceptibility in Invertebrate and Murine Models. Antimicrob Agents Chemother. 2018;62(12):e01624-18. https://doi.org/10.1128/aac.01624-18Khalifa HO, Watanabe A, Kamei K. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clin Microbiol Infect. 2022;28(2):302.e5-302.e8. https://doi.org/10.1016/j. cmi.2021.10.004Jiang C, Ni Q, Dong D, Zhang L, Li Z, Tian Y, et al. The Role of UPC2 Gene in Azole-Resistant Candida tropicalis. Mycopathologia. 2016;181(11-12):833-8. https://doi.org/10.1007/s11046-016-0050-3You L, Qian W, Yang Q, Mao L, Zhu L, Huang X, et al. ERG11 Gene Mutations and MDR1 Upregulation Confer Pan-Azole Resistance in Candida tropicalis Causing Disseminated Candidiasis in an Acute Lymphoblastic Leukemia Patient on Posaconazole Prophylaxis. Antimicrob Agents Chemother.2017;61(7):e02496-16. https://doi.org/10.1128/AAC.02496-16Núm. 2 , Año 2020 : Julio - Diciembrehttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/10985/8009Biosalud - 2025https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución 4.0.http://purl.org/coar/access_right/c_abf2Rojas Rodríguez, Ana ElisaCárdenas Parra, Leidy YuranyZapata Serna, YulianaPérez Cárdenas, Jorge Enriqueoai:repositorio.ucaldas.edu.co:ucaldas/238232025-10-08T21:17:16Z