Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia

Figuras, tablas

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22406
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22406
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Oro orogénico
Orogenic gold
Distrito Metalogénico de Berlín
Complejo Cajamarca
Petrografía
Metalografía
Microtermometría
Litogeoquímica.
Berlin Metallogenic District
Cajamarca Complex
Petrography
Metallography
Microthermometry
Lithogeochemistry.
Geología
Petrografía
Mineralogía
Geología estructural
Geoquímica
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_e17de2feb59e642d19877d613322a749
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22406
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
title Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
spellingShingle Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Oro orogénico
Orogenic gold
Distrito Metalogénico de Berlín
Complejo Cajamarca
Petrografía
Metalografía
Microtermometría
Litogeoquímica.
Berlin Metallogenic District
Cajamarca Complex
Petrography
Metallography
Microthermometry
Lithogeochemistry.
Geología
Petrografía
Mineralogía
Geología estructural
Geoquímica
title_short Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
title_full Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
title_fullStr Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
title_full_unstemmed Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
title_sort Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia
dc.contributor.none.fl_str_mv Quiceno Colorado, July Astrid
Hernández-González, Juan S.
Alvarán, Mauricio
dc.subject.none.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Oro orogénico
Orogenic gold
Distrito Metalogénico de Berlín
Complejo Cajamarca
Petrografía
Metalografía
Microtermometría
Litogeoquímica.
Berlin Metallogenic District
Cajamarca Complex
Petrography
Metallography
Microthermometry
Lithogeochemistry.
Geología
Petrografía
Mineralogía
Geología estructural
Geoquímica
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
1. Ciencias Naturales
Oro orogénico
Orogenic gold
Distrito Metalogénico de Berlín
Complejo Cajamarca
Petrografía
Metalografía
Microtermometría
Litogeoquímica.
Berlin Metallogenic District
Cajamarca Complex
Petrography
Metallography
Microthermometry
Lithogeochemistry.
Geología
Petrografía
Mineralogía
Geología estructural
Geoquímica
description Figuras, tablas
publishDate 2025
dc.date.none.fl_str_mv 2025-06-12T22:43:29Z
2025-06-12T22:43:29Z
2025-06-13
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/22406
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22406
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Alexandre, P. (2021). Practical geochemistry. Springer. https://doi.org/10.1007/978-3-030-72453-5
Angée, D. L., & Betancur, C. A. (2018). Caracterización petrográfica, metalográfica, microtermométrica y composicional de la mina El Gran Porvenir, Libano, Tolima. [Tesis de pregrado, Universidad de Caldas]. https://repositorio.ucaldas.edu.co/handle/ucaldas/331
Archer, D. G. (1992). Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2(cr), and phase equilibria. Journal of Physical and Chemical Reference Data, 21(4), 793–829. https://doi.org/10.1063/1.555915
Aspden, J. A., McCourt, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893
Baker, T. (2002). Emplacement depth and carbon dioxide-rich fluid inclusions in instrusion-related gold deposits. Economic Geology, 97(5), 1111–1117. https://doi.org/10.2113/-gsecongeo.97.5.1111
Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1
Barton, P. (1970). Sulfide petrology. Mineralogical Society of America Special Paper, 3, 187–198.
Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015
Benning, L. G., & Seward, T. M. (1996). Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochimica et Cosmochimica Acta, 60(11), 1849–1871. https://doi.org/10.1016/0016-7037(96)00061-0
Berger, B. R. (1998). Hydrothermal alteration. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopedia of geochemistry (pp. 331–333). Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-4496-8_162
Blanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J., Cardona, A., Lázaro, C., & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710
Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. Treatise on Geochemistry: Second Edition, 13, 119–142. https://doi.org/10.1016/B978-0-08-095975-7.01105-0
Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de La Facultad Nacional de Minas, 57, 1–102. https://repositorio.unal.edu.co/handle/unal/83667
Bucher, K. (2023). Petrogenesis of metamorphic rocks (9th ed.). Springer. https://doi.org/10.1007/978-3-031-12595-9
Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzon Massif, upper Magdalena Valley and Central Cordillera, Southern Colombia. Boletín de Geología, 32(2), 93–109. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/2086/3699
Camprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. Boletín de La Sociedad Geológica Mexicana, 62(1), 25–42. https://doi.org/10.18268/BSGM2010v62n1a2
Camprubí, A., González-Partida, E., Levresse, G., Tritlla, J., & Carrillo-Chávez, A. (2003). Depósitos epitermales de alta y baja sulfuración: una tabla comparativa. Boletín de La Sociedad Geológica Mexicana, 56(1), 10–18. https://doi.org/10.18268/BSGM2003v56n1a2
Cardona, A., León, S., Jaramillo, J. S., Valencia, V. A., Zapata, S., Pardo-Trujillo, A., Schmitt, A. K., Mejía, D., & Arenas, J. C. (2020). Cretaceous record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 335–373). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.10
Castro-Dorado, A. (2015). Petrografía de rocas ígneas y metamórficas. In A. Cerviño & Paz Paola (Eds.), Parainfo (1st ed.). Paraninfo.
Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic assembly of the Northern Andean block. In C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics: Vol. Memoir 79 (pp. 815–848). American Association of Petroleum Geologists.
Chiaradia, M. (2015). Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Scientific Reports, 5(1), 8115. https://doi.org/10.1038/srep08115
Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6), 1004. https://doi.org/https://doi.org/10.1029/1999GC000010
Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020
Continental Gold Ltd. (2018). Berlin. https://www.continentalgold.com/projects/berlin/
Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization (Vol. 6). Society of Economic Geologists. https://doi.org/10.5382/SP.06
Correa, T., Obando, M. G., Zapata, J. P., Rincón, ángela V., Ortiz, F. H., Rodríguez, G., & Cetina, L. M. (2018). Geología del borde occidental de la plancha 130 Santa Fe de Antioquia. Servicio Geológico Colombiano.
Correa-Martínez, A. M., Martens, U., & Rodríguez, G. (2020). Collage of tectonic slivers abutting the eastern Romeral Fault System in central Colombia. Journal of South American Earth Sciences, 104, 102794. https://doi.org/10.1016/J.JSAMES.2020.102794
Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The Interpretation of Igneous Rocks. Springer Netherlands. https://doi.org/10.1007/978-94-017-3373-1
Craig, J. R., & Vaughan, D. (1994). Ore mineral textures. In Ore Microscopy and Ore petrography (2nd ed., pp. 120–163). Jhon Wiley & sons.
Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/https://doi.org/10.1038/347662a0
Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90(6), 1841–1856. https://doi.org/10.2113/GSECONGEO.90.6.1841
Dowling, K., & Morrison, G. (1989). Application of quartz textures to the classification of gold deposits using North Queensland examples. In The Geology of Gold Deposits (Vol. 6, pp. 342–355). Society of Economic Geologists. https://doi.org/10.5382/Mono.06.26
Drummond, S. E., & Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1), 126–147. https://doi.org/10.2113/-GSECONGEO.80.1.126
Duan, Z., MØller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-X
Eilu, P. (2015). Overview on gold deposits in Finland. Mineral Deposits of Finland, 377–410. https://doi.org/10.1016/B978-0-12-410438-9.00015-7
Eilu, P. K., Mathison, C., Groves, D., & Allardyce, W. (1999). Atlas of alteration assemblages, styles and zoning in Orogenic Lode-Gold Deposits in a variety of host rock and metamorphic settings (S. Ho, Ed.; Vol. 30). Geology & Geophysics Department (Centre for Strategic Mineral Deposits) & UWA Extension, The University of Western Australia
Einaudi, M. T., Hedenquist, J. W., & Inan, E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from oorphyry to epithermal environments. In S. Simmons & I. Graham (Eds.), Volcanic, Geothermal, and Ore-Forming Fluids (Vol. 10, pp. 285–313). Society of Economic Geologists. https://doi.org/10.5382/SP.10.15
Feininger, T., Barrero, D., & Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-Zona II-B). Boletín Geológico, 20(2), 1–173. https://doi.org/10.32685/0120-1425/BOLGEOL20.2.1972.321
Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20. https://doi.org/-10.1016/j.gexplo.2011.09.009
Garofalo, P. S. (2004). Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part I. Patterns of hydrothermal alteration haloes. European Journal of Mineralogy, 16(5), 753–760. https://doi.org/10.1127/0935-1221/2004/0016-0753
Goldfarb, R. J., Baker, T., Dubé, B., Groves, D. I., Hart, C. J. R., & Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume, 407–450. https://doi.org/10.5382/AV100.14
Goldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: common or evolving fluid and metal sources through time. Lithos, 233, 2–26. https://doi.org/10.1016/J.LITHOS.2015.07.011
Goldfarb, R. J., & Pitcairn, I. (2023). Orogenic gold: is a genetic association with magmatism realistic? Mineralium Deposita, 58(1), 5–35. https://doi.org/10.1007/s00126-022-01146-8
Goldstein, R. H. (2003). Petrographic analyss of fluid inclusions. In I. Samson, A. Anderson, & D. Marshall (Eds.), Fluid Inclusions: analysis and interpretation (Vol. 32, Issue 2, pp. 9–53). Mineralogical Association of Canada. https://doi.org/10.3749/9780921294672.ch02
Gómez, J., Montes, N., & Marín, E. (2023). Mapa geológico de Colombia 2023. Escala 1:500.000. Servicio Geológico Colombiano.
González, P. (2015). Texturas de los cuerpos ígneos. In Asociación Geológica Argentina (Ed.), Geología de los cuerpos ígneos (4th ed., pp. 167–195). Asociación Geológica Argentina
Green, T. H., & Pearson, N. J. (1986). Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chemical Geology, 54(3–4), 185–201. https://doi.org/10.1016/0009-2541(86)90136-1
Grosse, E. (1926). Estudio geológico del Terciario Carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia, entre el Río Arma y Sacaojal (D. Reimer & E. Vohsen, Eds.). Berlín.
Groves, D. I., Condie, K. C., Goldfarb, R. J., Hronsky, J. M. A., & Vielreicher, R. M. (2005). Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposit. Economic Geology, 100th Anniversary Special Paper, 100(2), 203–224. https://doi.org/10.2113/gsecongeo.100.2.203
Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27. https://doi.org/10.1016/S0169-1368(97)00012-7
Groves, D. I., Goldfarb, R. J., Robert, F., & Hart, C. J. R. (2003). Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1), 1–29. https://doi.org/10.2113/GSECONGEO.98.1.1
Groves, D. I., & Santosh, M. (2023). Mineral systems, earth evolution, and global metallogeny (J. McClain & N. Robertson, Eds.). Elsevier. https://doi.org/10.1016/C2022-0-02818-X
Groves, D. I., Santosh, M., Deng, J., Wang, Q., Yang, L., & Zhang, L. (2020). A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2), 275–292. https://doi.org/10.1007/s00126-019-00877-5
Groves, D. I., Santosh, M., Goldfarb, R. J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers, 9(4), 1163–1177. https://doi.org/10.1016/J.GSF.2018.01.006
Hall, R., Álvarez, J., & Rico, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-zona II-A). Boletín Geológico, 20(1), 1–85. https://doi.org/10.32685/0120-1425/BOLGEOL20.1.1972.326
Hall, R. B., Feininger, T., Geological Survey, U. S., Barrero, D., Rico, H., & Alvarez, J. (1970). Recursos minerales de parte de los departamentos de Antioquia y Caldas. Boletín Geológico, 18(2), 1–90. https://doi.org/10.32685/0120-1425/BOLGEOL18.2.1970.55
Halley, S. (2020). Mapping magmatic and hydrothermal processes from routine exploration geochemical analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722
Hedenquist, J., Arribas, A., & Gonzalez-Urien, E. (2000). Exploration for Epithermal Gold Deposits. SEG, 13, 245–277.
Ibañez-Mejia, M., Restrepo, J. J., & García-Casco, A. (2020). Tectonic juxtaposition of Triassic and Cretaceous meta-(ultra)mafic complexes in the Central Cordillera of Colombia (Medellín area) revealed by zircon U-Pb geochronology and Lu-Hf isotopes. In A. Bartorelli, W. Teixeira, & B. B. Brito Neves (Eds.), Geocronologia e Evolução Tectônica do Continente Sul-Americano: a contribuição de Umberto Giuseppe Cordani (1st ed., pp. 418–443). Solaris Edições Culturais.
Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. 8(5), 523–548. https://doi.org/-10.1139/E71-055
Jamieson, R. A., Beaumont, C., Hamilton, J., & Fullsack, P. (1996). Tectonic assembly of inverted metamorphic sequences. Geology, 24(9), 839. https://doi.org/10.1130/0091-7613(1996)024-<0839:TAOIMS>2.3.CO;2
Kennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications, 328(1), 487–531. https://doi.org/-10.1144/SP328.20
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous rocks: a clasification and glossary terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (R. W. Le Maitre, Ed.; 2nd ed.). Cambridge University Press. https://doi.org/10.1017/-CBO9780511535581
Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: a tectono-magmatic approach [Doctoral]. Universidad de Barcelona
Lesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, geochemistry, and fluid characterization of the Late Miocene Buriticá Gold Deposit, Antioquia department, Colombia. Economic Geology, 108(5), 1067–1097. https://doi.org/10.2113/econgeo.108.5.1067
Madrid-Restrepo, D. C. (2021). Protolith and metamorphic conditions of the metapelites from the Rio Claro Region (Antioquia departament) [Tesis de pregrado, Universidad EAFIT]. http://hdl.handle.net/10784/30001
Mantle, G. W., & Collins, W. J. (2008). Quantifying crustal thickness variations in evolving orogens: correlation between arc basalt composition and Moho depth. Geology, 36(1), 87–90. https://doi.org/10.1130/G24095A.1
Maya, M., & Gonzáles, H. (1995). Unidades litodémicas en la Cordillera central de Colombia. Boletín Geológico Ingeominas, 35(2–3), 43–57.
McDonough, W. F., & Sun, S. -s. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Mejía-Vélez, D. Y. (2019). Metamorfismo Jurásico en los Andes Colombianos: ¿respuesta del arco a la transición de un régimen de subducción extensional a uno transpresivo? [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/-handle/unal/78355
Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/-j.earscirev.2019.102903
Mueller, M., Peltonen, P., Eilu, P., Goldfarb, R., & Hanski, E. (2020). The Mustajärvi orogenic gold occurrence, Central Lapland Greenstone Belt, Finland: a telluride-dominant mineral system. Mineralium Deposita, 55(8), 1625–1646. https://doi.org/10.1007/s00126-020-00990-w
Muñoz, J. M. (1980). Estudio petrológico del grupo Valdivia [Tesis de pregrado]. Universidad Nacional de Colombia
Naranjo, A., Horner, J., Jahoda, R., Diamond, L. W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejia, C., & Weil, J. (2018). La Colosa Au porphyry deposit, Colombia: mineralization styles, structural controls, and age constraints. Economic Geology, 113(3), 553–578. https://doi.org/10.5382/econgeo.2018.4562
Nelson, H. W. (1957). Contribution to the geology of the Central and Western Cordillera of Colombia in the sector between Ibagué and Cali. In Leidse Geologische Mededelingen. Servicio Geológico Colombiano.
Passchier, C. W., & Trow, R. A. (2005). Microtectonics (2nd ed.). Springer-Verlag. https://doi.org/10.1007/3-540-29359-0
Paul, A. N., Spikings, R. A., Ulianov, A., & Ovtcharova, M. (2018). High temperature (>350 °C) thermal histories of the long lived (<500 Ma) active margin of Ecuador and Colombia: apatite, titanite and rutile U-Pb thermochronology. Geochimica et Cosmochimica Acta, 228, 275–300. https://doi.org/10.1016/j.gca.2018.02.033
Pearce, J. (1983). The role of subcontinental lithosphere in magma genesis at destructive plate margins. In C. J. Hawkeswrth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Birkhaeuser
Pearce, J. (1996). A user´s guide to basalt discrimination diagrams. In D. A. Wyman (Ed.), Trace element geochemistry of volcanic rocks: aplications for massive sulphide exploration (pp. 79–113). Geological Association of Canada, Short Course Notes.
Pearce, J. A. (2014). Immobile Element Fingerprinting of Ophiolites. Elements, 10(2), 101–108. https://doi.org/10.2113/GSELEMENTS.10.2.101
Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/PETROLOGY/25.4.956
Phillips, G. N., & Evans, K. A. (2004). Role of CO2 in the formation of gold deposits. Nature, 429(6994), 860–863. https://doi.org/10.1038/nature02644
Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
Pirajno, F. (1992). Hydrothermal alteration. In Hydrothermal Mineral Deposits (pp. 101–155). Springer. https://doi.org/10.1007/978-3-642-75671-9_5
Pirajno, F. (2009). Hydrothermal processes and mineral systems (1st ed.). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8613-7
Pracejus, Bernhard. (2015). The ore minerals under the microscope : an optical guide (2nd ed., Vol. 3). Elsevier Science.
Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 17786. https://doi.org/10.1038/srep17786
Pulido-Fernández, N. (2017). Geochemical and petrological characterization of the Cajamarca Complex in the Rio Claro area: metamorphic implications [Tesis de Pregrado, Universidad de los Andes]. http://hdl.handle.net/1992/40144
Ramdohr, P. (1969). The ore minerals and their intergrowths. In New York, Pergamon Press (3rd ed., Vol. 2, Issue 3). Pergamon Press.
Ramos, V. A. (2009). Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In S. Mahlburg, V. Ramos, & W. Dickinson (Eds.), Backbone of the americas: shallow subduction, plateau upflift, and ridge and terrane collision (Vol. 204, pp. 31–65). Geological Society of America. https://doi.org/10.1130/2009.1204(02)
REFLEX. (2018). ioGASTM (Versión 7.0) [Software]. https://reflexnow.com/product/iogas/
Restrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic terranes in Colombia: an update. First part: continental terranes. In J. Gómez & D. Mateus–Zabala (Eds.), The Geology of Colombia (Vol. 1, pp. 37–63). Servicio Geológico Colombiano. https://doi.org/10.32685/PUB.ESP.35.2019.03
Restrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., & Parra-Sánchez, L. N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2), 1–12. https://doi.org/10.1016/J.EPSL.2008.09.037
Ridley, J. (2013). Ore deposit geology. Cambridge University Press. https://doi.org/10.1017/-CBO9781139135528
Ridley, J. R., & Diamond, L. W. (2000). Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Economic Geology, 13, 141–162.
Robert, F., & Kelly, W. C. (1987). Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Economic Geology, 82(6), 1464–1482. https://doi.org/10.2113/gsecongeo.82.6.1464
Rodríguez, G., Arango, M. I., & Bermúdez, J. G. (2012). Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín de Ciencias de La Tierra, 0(32), 81–98. https://repositorio.unal.edu.co/handle/unal/-71052
Rodríguez-García, G., & Sabrica, C. (2023). Edades U-Pb en circón en neises y anfibolitas del Complejo de Puquí y el Grupo Valdivia, y nueva nomenclatura estratigráfica sugerida para unidades de los alrededores del Proyecto Hidroituango. Boletín de Ciencias de La Tierra, 54, 27–47. https://doi.org/10.15446/RBCT.109380
Rodriguez‐Jimenez, J. V., Vinasco, C., & Archanjo, C. J. (2018). Emplacement of the Triassic Pueblito Pluton, NW Colombia: implications for the evolution of the western margin of Pangea. Tectonics, 37(11), 4150–4172. https://doi.org/10.1029/2018TC005138
Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 12–26.
Roedder, E., & Bodnar, R. (1997). Fluid inclusion studies of hydrothermal ore deposits. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (3rd ed., Vol. 8, pp. 657–697).
Rollinson, H., & Pease, V. (2021). Using geochemical data to understand geological processes. In Using Geochemical Data (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781108777834
Sabrica, C. A. (2022). Ambiente geodinámico del Gneis de Naranjales y su relación con las rocas metamórficas encajantes [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82644
Saccani, E. (2015). A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481–501. https://doi.org/10.1016/J.GSF.2014.03.006
Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., & Reed, M. H. (2014). Geochemistry of hydrothermal gold Deposits. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed., Vol. 13, pp. 383–424). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01117-7
Schmid, R., Fettes, D., Harte, B., Davis, E., Desmons, J., Meyer-Marsilius, J., & Siivola, J. (2007, January 2). A systematic nomenclature for metamorphic rocks: 1. How to name a metamorphic rock. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/products.html
Schmidt, M. W., Dardon, A., Chazot, G., & Vannucci, R. (2004). The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3–4), 415–432. https://doi.org/10.1016/J.EPSL.2004.08.010
Sepúlveda, J., Celada, C. M., Leal-Mejía, C. M., Murillo, H., Rodríguez, A., Gómez, M., Prieto, D., Jiménez, C. A., & Rache, A. (2020). Mapa metalogénico de Colombia versión 2020. Memoria explicativa. Servicio Geológico Colombiano.
Sepúlveda, J., Leal-Mejía, H., Salgado, D., Celada, C. M., Murillo, H., Gómez, M., Prieto, D., Hernández González, J. S., Anaya, C., Narvaez, D. F., & Ramírez, C. A. (2022). Mapa metalogénico de Colombia ‒ versión 2022. Nota explicativa. Servicio Geológico Colombiano y Mineral Deposit Research Unit-The University of Bristish Columbia.
Shand, S. (1927). Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits; with a chapter on meteorites. Nature, 120(3033), 872–872. https://doi.org/10.1038/120872a0
Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.
Sillitoe, R. H., & Hedenquist, J. (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In Volcanic, Geothermal, and Ore-Forming Fluids (Vol. 10, pp. 315–343). Society of Economic Geologists. https://doi.org/10.5382/SP.10.16
Simmons, S. F., White, N. C., & John, D. A. (2005). Geological characteristics of epithermal precious and base metal deposits. In J. W. Hedenquist, J. F. Thompson, R. Goldfarb, & J. P. Richards (Eds.), One Hundredth Anniversary Volume: Vol. 100 Anniversary (pp. 485–522). Society of Economic Geologists. https://doi.org/10.5382/AV100.16
Simões, L. S. A., Silva, O. S. G., Fumes, R. A., & Luvizotto, G. L. (2022). Characterization of the inverted metamorphic gradient of the Passos Nappe (SE-Brazil) based on multiple geothermobarometers. Journal of South American Earth Sciences, 119, 103993. https://doi.org/10.1016/J.JSAMES.2022.103993
Spear, F. S. (1993). Metamorphic phase equilibria and presure-temperature-time paths. Mineralogical Society of America.
Spikings, R. A., Crowhurst, P. V., Winkler, W., & Villagomez, D. (2010). Syn- and post-accretionary cooling history of the Ecuadorian Andes constrained by their in-situ and detrital thermochronometric record. Journal of South American Earth Sciences, 30(3–4), 121–133. https://doi.org/10.1016/J.JSAMES.2010.04.002
Spikings, R., & Paul, A. (2019). The Permian – Triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly. In J. Gómez & A. O. Pinilla–Pachón (Eds.), The Geology of Colombia (Vol. 2, pp. 1–43). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. https://doi.org/10.32685/pub.esp.36.2019.01
Sun, S. -s., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Taylor, R. D., Monecke, T., Reynolds, T. J., & Monecke, J. (2021). Paragenesis of an orogenic gold deposit: new insights on mineralizing processes at the Grass Valley District, California. Economic Geology, 116(2), 323–356. https://doi.org/10.5382/econgeo.4794
Thompson, A., & Thompson, J. (1996). Atlas of alteration. A field and petrographic guide to hydrothermal alteration minerals. Mineral Deposits Division, Geological Association of Canada.
Toussaint, J. F., & Restrepo, J. J. (1989). Acreciones sucesivas en Colombia: un nuevo modelo de evolución geológica. Congreso Colombiano de Geología. 5, 127–146.
Toussaint, J. F., & Restrepo, J. J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: oceanic terranes. In J. Gómez & A. O. Pinilla–Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 237–260). Servicio Geológico Colombiano. https://doi.org/10.32685/PUB.ESP.36.2019.07
Urai, J. L., Means, W. D., & Lister, G. S. (1986). Dynamic recrystallization of minerals (B. E. Hobbs & H. C. Heard, Eds.). American Geophysical Union (AGU). https://doi.org/10.1029/GM036p0161
Van Der Lelij, R., Spikings, R. A., Kerr, A. C., Kounov, A., Cosca, M., Chew, D., & Villagomez, D. (2010). Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone. Tectonics, 29(6), 6003. https://doi.org/10.1029/2009TC002654
Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas. In XXIII Curso Latinoamericano de Metalogenia
Villagómez, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America [Tesis Doctoral]. In Terre & Environnement (Vol. 101). University of Geneva.
Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, 160–161(1), 228–249. https://doi.org/10.1016/J.LITHOS.2012.12.008
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/J.LITHOS.2011.05.003
Villamizar-Escalante, N., Bernet, M., Urueña-Suárez, C., Hernández-González, J. S., Terraza-Melo, R., Roncancio, J., Muñoz-Rocha, J. A., Peña-Urueña, M. L., Amaya, S., & Piraquive, A. (2021). Thermal history of the southern Central Cordillera and its exhumation record in the Cenozoic deposits of the Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 107, 103105. https://doi.org/10.1016/j.jsames.2020.103105
Vinasco, C. (2019). The Romeral Shear Zone. In F. Cediel & R. P. Shaw (Eds.), Geology and tectonics of Northwestern South America (pp. 833–876). Springuer. https://doi.org/10.1007/978-3-319-76132-9_12
Vinasco, C., & Cordani, U. (2012). Reactivation episodes of the Romeral Fault System in the northwestern part of Central Andes, Colombia, through 39Ar-40Ar and K-Ar results. Boletín de Ciencias de La Tierra, 0(32), 111–124
Vinasco, C., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/J.JSAMES.2006.07.007
Warnock, J. (1987). Adobe illustrator (Versión 2024 (29.1)) [Software].
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Wilson, F., & Darnell, B. (1942). A Lode Gold Mine in Colombia. Engineering and Mining Journal, 143(4), 62–65.
Wilson, M. (1989). Igneous Petrogenesis: a Global Tectonic Approach. In Igneous Petrogenesis. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6788-4
Winter, J. D. (2014). Principles of igneous and metamorphic petrology (2nd ed.). Pearson Education Limited.
Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008
Zapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., & Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553
Zapata-Villada, J. P., Giraldo, W., Rodríguez, G., Geraldes, M. C., & Obando, M. (2021). Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia. Boletín de La Sociedad Geológica Mexicana, 73(1), A280520. https://doi.org/10.18268/BSGM2021v73n1a280520
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 232 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Geología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Colombia, Caldas, Manizales
Geología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145048094244864
spelling Caracterización petrográfica, metalográfica, microtermométrica y litogeoquímica de la mineralización vetiforme de Berlín, en el municipio de Briceño, Antioquia-Colombia550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología1. Ciencias NaturalesOro orogénicoOrogenic goldDistrito Metalogénico de BerlínComplejo CajamarcaPetrografíaMetalografíaMicrotermometríaLitogeoquímica.Berlin Metallogenic DistrictCajamarca ComplexPetrographyMetallographyMicrothermometryLithogeochemistry.GeologíaPetrografíaMineralogíaGeología estructuralGeoquímicaFiguras, tablasLa mineralización vetiforme de Berlín se localiza en el flanco occidental de la Cordillera Central de los Andes Colombianos, en el municipio de Briceño, al noroeste del departamento de Antioquia. Está hospedada en rocas metamórficas del Pérmico – Triásico del Complejo Cajamarca, al oeste de la Falla Espíritu Santo y hace parte de la Provincia Metalogénica Andina Central (PMAC), representando uno de los principales depósitos dentro del Distrito Metalogénico de Au (-Ag) de Berlín. Este estudio se basa en la descripción de 12 pozos de perforación y en el análisis litogeoquímico de 1,413 datos químicos suministrados por la empresa Zijin-Continental Gold. La descripción litológica de los pozos, combinada con análisis petrográficos y metalográficos, permitieron identificar tres litologías principales como roca hospedante: i) esquistos, ii) filitas, y en menor proporción, iii) gneises. Diques de microtonalita de anfíbol cortan los esquistos y filitas formando contactos intrusivos. El análisis litogeoquímico de la roca hospedante sugiere protolitos pelíticos y volcaniclásticos para los esquistos y filitas respectivamente, y un protolito ígneo con firma geoquímica de granito peraluminoso sincolisional (granito tipo S) para el gneis. Los diques de microtonalita de anfíbol muestran un origen a partir de un magma calcoalcalino en un arco volcánico continental engrosado (~44-50 Km) asociado a zona de subducción. Las estructuras vetiformes son concordantes con la foliación y presentan espesores aparentes que varían entre 10 cm y 6 m. Tres etapas de mineralización fueron definidas mediante análisis petrográficos y metalográficos: la etapa I corresponde al relleno temprano de la veta con la cristalización de cuarzo masivo (Qz1), acompañado de pirrotina y cantidades menores de oro (Au1), albita, turmalina, rutilo, sericita (Ser1) y carbonatos (Cb1). La etapa II corresponde a la recristalización dinámica de Qz1 formando cuarzo de recristalización (Qz2), acompañado de sulfuros como pirita arseniosa y arsenopirita, que aparecen asociados a minerales de alteración como sericita (Ser2), clorita (Chl1) y carbonatos (Cb2). La etapa III corresponde a la precipitación de metales base como calcopirita, esfalerita y galena en fracturas y oquedades, acompañados de oro (Au2) y pequeñas cantidades de cuarzo (Qz3), y asociados a minerales de alteración tardíos como epidota y clorita (Chl2). Las descripciones macroscópicas y petrográficas, acompañadas de análisis litogeoquímico, sugieren que la alteración hidrotermal en la mineralización vetiforme de Berlín se restringe a las estructuras (vetas y respaldos) predominando la sericitización (fílica), seguida de albitización, propilítica, carbonatación y silicificación. Las mediciones microtermométricas y análisis Raman en inclusiones fluidas primarias hospedadas en cuarzo (Qz1) sugieren que el fluido mineralizante de la etapa I está relacionado con un sistema H2O-NaCl-CO2 ± CH4 ± N2, con temperaturas de homogenización entre 220° y 330 °C, densidad promedio de 0.84 g/cm3 y moderada a baja salinidad (0.57-10.86 wt.% de NaCl equiv). Los ensambles mineralógicos observados indican la presencia de un fluido con pH neutro a ligeramente alcalino y relativamente reducido. En consecuencia, el complejo Au (HS)2- fue probablemente el medio de transporte del oro. La presencia de material carbonoso en la roca hospedante ejerce un control químico favorable para la precipitación de oro. La mineralización vetiforme de Berlín presenta características similares a los depósitos de tipo oro orogénico.eng: The Berlin vein-type mineralization is located on the western flank of the Central Cordillera of the Colombian Andes, in the municipality of Briceño, northwestern Antioquia Department. It is hosted in Permian–Triassic metamorphic rocks of the Cajamarca Complex, west of the Espíritu Santo Fault, and is part of the Central Andean Metallogenic Province (CAMP), representing one of the main deposits within the Berlin Au (-Ag) Metallogenic District. This study is based on the description of 12 drill holes and lithogeochemical analysis of 1,413 chemical data points provided by Zijin-Continental Gold. Lithological descriptions of the drill cores, combined with petrographic and metallographic analyses, allowed the identification of three main host lithologies: (i) schists, (ii) phyllites, and to a lesser extent, (iii) gneisses. Amphibole-bearing microtonalite dikes crosscut the schists and phyllites along intrusive contacts. Lithogeochemical analysis of the host rocks suggests pelitic and volcaniclastic protoliths for the schists and phyllites, respectively, and an igneous protolith with a syn-collisional peraluminous granitic geochemical signature (S-type granite) for the gneiss. The amphibole-bearing microtonalite dikes show a magmatic origin from calc-alkaline magma in a thickened continental volcanic arc setting (~44–50 km) associated with a subduction zone. The vein structures are concordant with the foliation and exhibit apparent thicknesses ranging from 10 cm to 6 m. Three mineralization stages were defined through petrographic and metallographic analysis: Stage I corresponds to early vein infill with tmassive quartz crystallization (Qz1), accompanied by pyrrhotite and minor amounts of gold (Au1), albite, tourmaline, rutile, sericite (Ser1), and carbonates (Cb1). Stage II involves dynamic recrystallization of Qz1 forming recrystallized quartz (Qz2), accompanied by sulfides such as arsenian pyrite and arsenopyrite, associated with alteration minerals like sericite (Ser2), chlorite (Chl1), and carbonates (Cb2). Stage III corresponds to the precipitation of base metals such as chalcopyrite, sphalerite, and galena within fractures and cavities, accompanied by gold (Au2), minor quartz (Qz3), and associated with late-stage alteration minerals including epidote and chlorite (Chl2). Macroscopic and petrographic descriptions, supported by lithogeochemical analysis, suggest that hydrothermal alteration in the Berlin vein-type mineralization is restricted to the structures (veins and vein selvages), with sericitization (phyllic alteration) as the dominant type, followed by albitization, propylitic alteration, carbonatization, and silicification. Microthermometric measurements and Raman spectroscopy analysis of primary fluid inclusions hosted in quartz (Qz1) suggest that the mineralizing fluid of Stage I corresponds to an H2O–NaCl–CO2 ± CH4 ± N2 system, with homogenization temperatures ranging between 220° and 330 °C, an average density of 0.84 g/cm³, and moderate to low salinity (0.57–10.86 wt.% NaCl equiv). The observed mineral assemblages indicate a fluid with neutral to slightly alkaline pH and relatively reduced conditions. Consequently, the Au (HS)2- was likely the main gold transport mechanism. The presence of carbonaceous material in the host rock exerted a favorable chemical control for gold precipitation. The Berlin vein-type mineralization exhibits consistent characteristics with orogenic gold-type deposits.Introducción -- Objetivos -- Objetivo general -- Objetivos específicos -- Marco geológico -- Contexto tectónico de la cordillera central de los andes colombianos desde el pérmico -- Geología regional del segmento norte de la actual cordillera central -- Depósito vetiforme de berlín -- Marco teórico -- Depósitos vetiformes de au -- Sistemas magmático-hidrotermales -- Sistemas hidrotermales metamórficos (au orogénico) -- Alteración hidrotermal -- Factores que controlan la alteración hidrotermal -- Intensidad y estilos de alteración hidrotermal -- Tipos de alteración hidrotermal -- Litogeoquímica de alteraciones hidrotermales -- Inclusiones fluidas -- Fases de una inclusión fluida -- Clasificación de inclusiones fluidas -- Familia de inclusiones fluidas (fia) -- Microtermometría de inclusiones fluidas -- Espectroscopía raman de inclusiones fluidas -- Metodología -- Fase preliminar -- Fase de campo -- Elaboración de secciones delgadas pulidas y doblemente pulidas -- Análisis petrográfico y metalográfico -- Química de roca total -- Métodos y procedimientos de laboratorio -- Tratamiento y procesamiento de datos químicos -- Análisis de inclusiones fluidas -- Petrografía de inclusiones fluidas -- Microtermometría de inclusiones fluidas -- Espectroscopía raman de inclusiones fluidas -- Resultados -- Descripción litológica a partir de fotos de núcleos de perforación -- Fase de campo -- Roca hospedante -- Diques -- Mineralización y alteración hidrotermal -- Petrografía y metalografía -- Roca hospedante -- Diques -- Vetas -- Alteración hidrotermal -- Secuencia paragenética -- Litogeoquímica -- Roca hospedante -- Diques -- Alteración hidrotermal -- Análisis de inclusiones fluidas -- Petrografía de inclusiones fluidas -- Microtermometría de inclusiones fluidas -- Interpretación de resultados y discusión -- Origen de la roca hospedante -- Génesis de los diques intrusivos en la roca hospedante -- Condiciones fisicoquímicas (ph-t°) y distribución de la alteración hidrotermal -- Naturaleza y evolución del fluido mineralizante -- Modelo genético para el depósito -- Escenario tectónico para la génesis de la mineralización -- Conclusiones -- Recomendaciones -- Referencias -- AnexosPregradoLa metodología empleada en este trabajo consta de cinco etapas principales correspondientes a una fase preliminar, una fase de campo, análisis petrográfico y metalográfico, análisis litogeoquímico y análisis de inclusiones fluidas.Geólogo(a)Yacimientos MineralesUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesColombia, Caldas, ManizalesGeologíaQuiceno Colorado, July AstridHernández-González, Juan S.Alvarán, MauricioFigueroa Rojas, Adriana Paola2025-06-12T22:43:29Z2025-06-12T22:43:29Z2025-06-13Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis232 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22406Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAlexandre, P. (2021). Practical geochemistry. Springer. https://doi.org/10.1007/978-3-030-72453-5Angée, D. L., & Betancur, C. A. (2018). Caracterización petrográfica, metalográfica, microtermométrica y composicional de la mina El Gran Porvenir, Libano, Tolima. [Tesis de pregrado, Universidad de Caldas]. https://repositorio.ucaldas.edu.co/handle/ucaldas/331Archer, D. G. (1992). Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2(cr), and phase equilibria. Journal of Physical and Chemical Reference Data, 21(4), 793–829. https://doi.org/10.1063/1.555915Aspden, J. A., McCourt, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893Baker, T. (2002). Emplacement depth and carbon dioxide-rich fluid inclusions in instrusion-related gold deposits. Economic Geology, 97(5), 1111–1117. https://doi.org/10.2113/-gsecongeo.97.5.1111Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1Barton, P. (1970). Sulfide petrology. Mineralogical Society of America Special Paper, 3, 187–198.Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015Benning, L. G., & Seward, T. M. (1996). Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochimica et Cosmochimica Acta, 60(11), 1849–1871. https://doi.org/10.1016/0016-7037(96)00061-0Berger, B. R. (1998). Hydrothermal alteration. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopedia of geochemistry (pp. 331–333). Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-4496-8_162Blanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J., Cardona, A., Lázaro, C., & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. Treatise on Geochemistry: Second Edition, 13, 119–142. https://doi.org/10.1016/B978-0-08-095975-7.01105-0Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de La Facultad Nacional de Minas, 57, 1–102. https://repositorio.unal.edu.co/handle/unal/83667Bucher, K. (2023). Petrogenesis of metamorphic rocks (9th ed.). Springer. https://doi.org/10.1007/978-3-031-12595-9Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzon Massif, upper Magdalena Valley and Central Cordillera, Southern Colombia. Boletín de Geología, 32(2), 93–109. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/2086/3699Camprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. Boletín de La Sociedad Geológica Mexicana, 62(1), 25–42. https://doi.org/10.18268/BSGM2010v62n1a2Camprubí, A., González-Partida, E., Levresse, G., Tritlla, J., & Carrillo-Chávez, A. (2003). Depósitos epitermales de alta y baja sulfuración: una tabla comparativa. Boletín de La Sociedad Geológica Mexicana, 56(1), 10–18. https://doi.org/10.18268/BSGM2003v56n1a2Cardona, A., León, S., Jaramillo, J. S., Valencia, V. A., Zapata, S., Pardo-Trujillo, A., Schmitt, A. K., Mejía, D., & Arenas, J. C. (2020). Cretaceous record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes. In J. Gómez & A. O. Pinilla-Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 335–373). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.10Castro-Dorado, A. (2015). Petrografía de rocas ígneas y metamórficas. In A. Cerviño & Paz Paola (Eds.), Parainfo (1st ed.). Paraninfo.Cediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic assembly of the Northern Andean block. In C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics: Vol. Memoir 79 (pp. 815–848). American Association of Petroleum Geologists.Chiaradia, M. (2015). Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Scientific Reports, 5(1), 8115. https://doi.org/10.1038/srep08115Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6), 1004. https://doi.org/https://doi.org/10.1029/1999GC000010Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020Continental Gold Ltd. (2018). Berlin. https://www.continentalgold.com/projects/berlin/Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization (Vol. 6). Society of Economic Geologists. https://doi.org/10.5382/SP.06Correa, T., Obando, M. G., Zapata, J. P., Rincón, ángela V., Ortiz, F. H., Rodríguez, G., & Cetina, L. M. (2018). Geología del borde occidental de la plancha 130 Santa Fe de Antioquia. Servicio Geológico Colombiano.Correa-Martínez, A. M., Martens, U., & Rodríguez, G. (2020). Collage of tectonic slivers abutting the eastern Romeral Fault System in central Colombia. Journal of South American Earth Sciences, 104, 102794. https://doi.org/10.1016/J.JSAMES.2020.102794Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The Interpretation of Igneous Rocks. Springer Netherlands. https://doi.org/10.1007/978-94-017-3373-1Craig, J. R., & Vaughan, D. (1994). Ore mineral textures. In Ore Microscopy and Ore petrography (2nd ed., pp. 120–163). Jhon Wiley & sons.Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/https://doi.org/10.1038/347662a0Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90(6), 1841–1856. https://doi.org/10.2113/GSECONGEO.90.6.1841Dowling, K., & Morrison, G. (1989). Application of quartz textures to the classification of gold deposits using North Queensland examples. In The Geology of Gold Deposits (Vol. 6, pp. 342–355). Society of Economic Geologists. https://doi.org/10.5382/Mono.06.26Drummond, S. E., & Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1), 126–147. https://doi.org/10.2113/-GSECONGEO.80.1.126Duan, Z., MØller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-XEilu, P. (2015). Overview on gold deposits in Finland. Mineral Deposits of Finland, 377–410. https://doi.org/10.1016/B978-0-12-410438-9.00015-7Eilu, P. K., Mathison, C., Groves, D., & Allardyce, W. (1999). Atlas of alteration assemblages, styles and zoning in Orogenic Lode-Gold Deposits in a variety of host rock and metamorphic settings (S. Ho, Ed.; Vol. 30). Geology & Geophysics Department (Centre for Strategic Mineral Deposits) & UWA Extension, The University of Western AustraliaEinaudi, M. T., Hedenquist, J. W., & Inan, E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from oorphyry to epithermal environments. In S. Simmons & I. Graham (Eds.), Volcanic, Geothermal, and Ore-Forming Fluids (Vol. 10, pp. 285–313). Society of Economic Geologists. https://doi.org/10.5382/SP.10.15Feininger, T., Barrero, D., & Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-Zona II-B). Boletín Geológico, 20(2), 1–173. https://doi.org/10.32685/0120-1425/BOLGEOL20.2.1972.321Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20. https://doi.org/-10.1016/j.gexplo.2011.09.009Garofalo, P. S. (2004). Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part I. Patterns of hydrothermal alteration haloes. European Journal of Mineralogy, 16(5), 753–760. https://doi.org/10.1127/0935-1221/2004/0016-0753Goldfarb, R. J., Baker, T., Dubé, B., Groves, D. I., Hart, C. J. R., & Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume, 407–450. https://doi.org/10.5382/AV100.14Goldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: common or evolving fluid and metal sources through time. Lithos, 233, 2–26. https://doi.org/10.1016/J.LITHOS.2015.07.011Goldfarb, R. J., & Pitcairn, I. (2023). Orogenic gold: is a genetic association with magmatism realistic? Mineralium Deposita, 58(1), 5–35. https://doi.org/10.1007/s00126-022-01146-8Goldstein, R. H. (2003). Petrographic analyss of fluid inclusions. In I. Samson, A. Anderson, & D. Marshall (Eds.), Fluid Inclusions: analysis and interpretation (Vol. 32, Issue 2, pp. 9–53). Mineralogical Association of Canada. https://doi.org/10.3749/9780921294672.ch02Gómez, J., Montes, N., & Marín, E. (2023). Mapa geológico de Colombia 2023. Escala 1:500.000. Servicio Geológico Colombiano.González, P. (2015). Texturas de los cuerpos ígneos. In Asociación Geológica Argentina (Ed.), Geología de los cuerpos ígneos (4th ed., pp. 167–195). Asociación Geológica ArgentinaGreen, T. H., & Pearson, N. J. (1986). Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chemical Geology, 54(3–4), 185–201. https://doi.org/10.1016/0009-2541(86)90136-1Grosse, E. (1926). Estudio geológico del Terciario Carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia, entre el Río Arma y Sacaojal (D. Reimer & E. Vohsen, Eds.). Berlín.Groves, D. I., Condie, K. C., Goldfarb, R. J., Hronsky, J. M. A., & Vielreicher, R. M. (2005). Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposit. Economic Geology, 100th Anniversary Special Paper, 100(2), 203–224. https://doi.org/10.2113/gsecongeo.100.2.203Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27. https://doi.org/10.1016/S0169-1368(97)00012-7Groves, D. I., Goldfarb, R. J., Robert, F., & Hart, C. J. R. (2003). Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1), 1–29. https://doi.org/10.2113/GSECONGEO.98.1.1Groves, D. I., & Santosh, M. (2023). Mineral systems, earth evolution, and global metallogeny (J. McClain & N. Robertson, Eds.). Elsevier. https://doi.org/10.1016/C2022-0-02818-XGroves, D. I., Santosh, M., Deng, J., Wang, Q., Yang, L., & Zhang, L. (2020). A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2), 275–292. https://doi.org/10.1007/s00126-019-00877-5Groves, D. I., Santosh, M., Goldfarb, R. J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers, 9(4), 1163–1177. https://doi.org/10.1016/J.GSF.2018.01.006Hall, R., Álvarez, J., & Rico, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-zona II-A). Boletín Geológico, 20(1), 1–85. https://doi.org/10.32685/0120-1425/BOLGEOL20.1.1972.326Hall, R. B., Feininger, T., Geological Survey, U. S., Barrero, D., Rico, H., & Alvarez, J. (1970). Recursos minerales de parte de los departamentos de Antioquia y Caldas. Boletín Geológico, 18(2), 1–90. https://doi.org/10.32685/0120-1425/BOLGEOL18.2.1970.55Halley, S. (2020). Mapping magmatic and hydrothermal processes from routine exploration geochemical analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722Hedenquist, J., Arribas, A., & Gonzalez-Urien, E. (2000). Exploration for Epithermal Gold Deposits. SEG, 13, 245–277.Ibañez-Mejia, M., Restrepo, J. J., & García-Casco, A. (2020). Tectonic juxtaposition of Triassic and Cretaceous meta-(ultra)mafic complexes in the Central Cordillera of Colombia (Medellín area) revealed by zircon U-Pb geochronology and Lu-Hf isotopes. In A. Bartorelli, W. Teixeira, & B. B. Brito Neves (Eds.), Geocronologia e Evolução Tectônica do Continente Sul-Americano: a contribuição de Umberto Giuseppe Cordani (1st ed., pp. 418–443). Solaris Edições Culturais.Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. 8(5), 523–548. https://doi.org/-10.1139/E71-055Jamieson, R. A., Beaumont, C., Hamilton, J., & Fullsack, P. (1996). Tectonic assembly of inverted metamorphic sequences. Geology, 24(9), 839. https://doi.org/10.1130/0091-7613(1996)024-<0839:TAOIMS>2.3.CO;2Kennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications, 328(1), 487–531. https://doi.org/-10.1144/SP328.20Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (2002). Igneous rocks: a clasification and glossary terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (R. W. Le Maitre, Ed.; 2nd ed.). Cambridge University Press. https://doi.org/10.1017/-CBO9780511535581Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: a tectono-magmatic approach [Doctoral]. Universidad de BarcelonaLesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, geochemistry, and fluid characterization of the Late Miocene Buriticá Gold Deposit, Antioquia department, Colombia. Economic Geology, 108(5), 1067–1097. https://doi.org/10.2113/econgeo.108.5.1067Madrid-Restrepo, D. C. (2021). Protolith and metamorphic conditions of the metapelites from the Rio Claro Region (Antioquia departament) [Tesis de pregrado, Universidad EAFIT]. http://hdl.handle.net/10784/30001Mantle, G. W., & Collins, W. J. (2008). Quantifying crustal thickness variations in evolving orogens: correlation between arc basalt composition and Moho depth. Geology, 36(1), 87–90. https://doi.org/10.1130/G24095A.1Maya, M., & Gonzáles, H. (1995). Unidades litodémicas en la Cordillera central de Colombia. Boletín Geológico Ingeominas, 35(2–3), 43–57.McDonough, W. F., & Sun, S. -s. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4Mejía-Vélez, D. Y. (2019). Metamorfismo Jurásico en los Andes Colombianos: ¿respuesta del arco a la transición de un régimen de subducción extensional a uno transpresivo? [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/-handle/unal/78355Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/-j.earscirev.2019.102903Mueller, M., Peltonen, P., Eilu, P., Goldfarb, R., & Hanski, E. (2020). The Mustajärvi orogenic gold occurrence, Central Lapland Greenstone Belt, Finland: a telluride-dominant mineral system. Mineralium Deposita, 55(8), 1625–1646. https://doi.org/10.1007/s00126-020-00990-wMuñoz, J. M. (1980). Estudio petrológico del grupo Valdivia [Tesis de pregrado]. Universidad Nacional de ColombiaNaranjo, A., Horner, J., Jahoda, R., Diamond, L. W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejia, C., & Weil, J. (2018). La Colosa Au porphyry deposit, Colombia: mineralization styles, structural controls, and age constraints. Economic Geology, 113(3), 553–578. https://doi.org/10.5382/econgeo.2018.4562Nelson, H. W. (1957). Contribution to the geology of the Central and Western Cordillera of Colombia in the sector between Ibagué and Cali. In Leidse Geologische Mededelingen. Servicio Geológico Colombiano.Passchier, C. W., & Trow, R. A. (2005). Microtectonics (2nd ed.). Springer-Verlag. https://doi.org/10.1007/3-540-29359-0Paul, A. N., Spikings, R. A., Ulianov, A., & Ovtcharova, M. (2018). High temperature (>350 °C) thermal histories of the long lived (<500 Ma) active margin of Ecuador and Colombia: apatite, titanite and rutile U-Pb thermochronology. Geochimica et Cosmochimica Acta, 228, 275–300. https://doi.org/10.1016/j.gca.2018.02.033Pearce, J. (1983). The role of subcontinental lithosphere in magma genesis at destructive plate margins. In C. J. Hawkeswrth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). BirkhaeuserPearce, J. (1996). A user´s guide to basalt discrimination diagrams. In D. A. Wyman (Ed.), Trace element geochemistry of volcanic rocks: aplications for massive sulphide exploration (pp. 79–113). Geological Association of Canada, Short Course Notes.Pearce, J. A. (2014). Immobile Element Fingerprinting of Ophiolites. Elements, 10(2), 101–108. https://doi.org/10.2113/GSELEMENTS.10.2.101Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/PETROLOGY/25.4.956Phillips, G. N., & Evans, K. A. (2004). Role of CO2 in the formation of gold deposits. Nature, 429(6994), 860–863. https://doi.org/10.1038/nature02644Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.xPirajno, F. (1992). Hydrothermal alteration. In Hydrothermal Mineral Deposits (pp. 101–155). Springer. https://doi.org/10.1007/978-3-642-75671-9_5Pirajno, F. (2009). Hydrothermal processes and mineral systems (1st ed.). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8613-7Pracejus, Bernhard. (2015). The ore minerals under the microscope : an optical guide (2nd ed., Vol. 3). Elsevier Science.Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 17786. https://doi.org/10.1038/srep17786Pulido-Fernández, N. (2017). Geochemical and petrological characterization of the Cajamarca Complex in the Rio Claro area: metamorphic implications [Tesis de Pregrado, Universidad de los Andes]. http://hdl.handle.net/1992/40144Ramdohr, P. (1969). The ore minerals and their intergrowths. In New York, Pergamon Press (3rd ed., Vol. 2, Issue 3). Pergamon Press.Ramos, V. A. (2009). Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In S. Mahlburg, V. Ramos, & W. Dickinson (Eds.), Backbone of the americas: shallow subduction, plateau upflift, and ridge and terrane collision (Vol. 204, pp. 31–65). Geological Society of America. https://doi.org/10.1130/2009.1204(02)REFLEX. (2018). ioGASTM (Versión 7.0) [Software]. https://reflexnow.com/product/iogas/Restrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic terranes in Colombia: an update. First part: continental terranes. In J. Gómez & D. Mateus–Zabala (Eds.), The Geology of Colombia (Vol. 1, pp. 37–63). Servicio Geológico Colombiano. https://doi.org/10.32685/PUB.ESP.35.2019.03Restrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., & Parra-Sánchez, L. N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1–2), 1–12. https://doi.org/10.1016/J.EPSL.2008.09.037Ridley, J. (2013). Ore deposit geology. Cambridge University Press. https://doi.org/10.1017/-CBO9781139135528Ridley, J. R., & Diamond, L. W. (2000). Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Economic Geology, 13, 141–162.Robert, F., & Kelly, W. C. (1987). Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Economic Geology, 82(6), 1464–1482. https://doi.org/10.2113/gsecongeo.82.6.1464Rodríguez, G., Arango, M. I., & Bermúdez, J. G. (2012). Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín de Ciencias de La Tierra, 0(32), 81–98. https://repositorio.unal.edu.co/handle/unal/-71052Rodríguez-García, G., & Sabrica, C. (2023). Edades U-Pb en circón en neises y anfibolitas del Complejo de Puquí y el Grupo Valdivia, y nueva nomenclatura estratigráfica sugerida para unidades de los alrededores del Proyecto Hidroituango. Boletín de Ciencias de La Tierra, 54, 27–47. https://doi.org/10.15446/RBCT.109380Rodriguez‐Jimenez, J. V., Vinasco, C., & Archanjo, C. J. (2018). Emplacement of the Triassic Pueblito Pluton, NW Colombia: implications for the evolution of the western margin of Pangea. Tectonics, 37(11), 4150–4172. https://doi.org/10.1029/2018TC005138Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 12–26.Roedder, E., & Bodnar, R. (1997). Fluid inclusion studies of hydrothermal ore deposits. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (3rd ed., Vol. 8, pp. 657–697).Rollinson, H., & Pease, V. (2021). Using geochemical data to understand geological processes. In Using Geochemical Data (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781108777834Sabrica, C. A. (2022). Ambiente geodinámico del Gneis de Naranjales y su relación con las rocas metamórficas encajantes [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82644Saccani, E. (2015). A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481–501. https://doi.org/10.1016/J.GSF.2014.03.006Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., & Reed, M. H. (2014). Geochemistry of hydrothermal gold Deposits. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed., Vol. 13, pp. 383–424). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01117-7Schmid, R., Fettes, D., Harte, B., Davis, E., Desmons, J., Meyer-Marsilius, J., & Siivola, J. (2007, January 2). A systematic nomenclature for metamorphic rocks: 1. How to name a metamorphic rock. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. https://www.bgs.ac.uk/scmr/products.htmlSchmidt, M. W., Dardon, A., Chazot, G., & Vannucci, R. (2004). The dependence of Nb and Ta rutile–melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3–4), 415–432. https://doi.org/10.1016/J.EPSL.2004.08.010Sepúlveda, J., Celada, C. M., Leal-Mejía, C. M., Murillo, H., Rodríguez, A., Gómez, M., Prieto, D., Jiménez, C. A., & Rache, A. (2020). Mapa metalogénico de Colombia versión 2020. Memoria explicativa. Servicio Geológico Colombiano.Sepúlveda, J., Leal-Mejía, H., Salgado, D., Celada, C. M., Murillo, H., Gómez, M., Prieto, D., Hernández González, J. S., Anaya, C., Narvaez, D. F., & Ramírez, C. A. (2022). Mapa metalogénico de Colombia ‒ versión 2022. Nota explicativa. Servicio Geológico Colombiano y Mineral Deposit Research Unit-The University of Bristish Columbia.Shand, S. (1927). Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits; with a chapter on meteorites. Nature, 120(3033), 872–872. https://doi.org/10.1038/120872a0Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.Sillitoe, R. H., & Hedenquist, J. (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In Volcanic, Geothermal, and Ore-Forming Fluids (Vol. 10, pp. 315–343). Society of Economic Geologists. https://doi.org/10.5382/SP.10.16Simmons, S. F., White, N. C., & John, D. A. (2005). Geological characteristics of epithermal precious and base metal deposits. In J. W. Hedenquist, J. F. Thompson, R. Goldfarb, & J. P. Richards (Eds.), One Hundredth Anniversary Volume: Vol. 100 Anniversary (pp. 485–522). Society of Economic Geologists. https://doi.org/10.5382/AV100.16Simões, L. S. A., Silva, O. S. G., Fumes, R. A., & Luvizotto, G. L. (2022). Characterization of the inverted metamorphic gradient of the Passos Nappe (SE-Brazil) based on multiple geothermobarometers. Journal of South American Earth Sciences, 119, 103993. https://doi.org/10.1016/J.JSAMES.2022.103993Spear, F. S. (1993). Metamorphic phase equilibria and presure-temperature-time paths. Mineralogical Society of America.Spikings, R. A., Crowhurst, P. V., Winkler, W., & Villagomez, D. (2010). Syn- and post-accretionary cooling history of the Ecuadorian Andes constrained by their in-situ and detrital thermochronometric record. Journal of South American Earth Sciences, 30(3–4), 121–133. https://doi.org/10.1016/J.JSAMES.2010.04.002Spikings, R., & Paul, A. (2019). The Permian – Triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly. In J. Gómez & A. O. Pinilla–Pachón (Eds.), The Geology of Colombia (Vol. 2, pp. 1–43). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. https://doi.org/10.32685/pub.esp.36.2019.01Sun, S. -s., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19Taylor, R. D., Monecke, T., Reynolds, T. J., & Monecke, J. (2021). Paragenesis of an orogenic gold deposit: new insights on mineralizing processes at the Grass Valley District, California. Economic Geology, 116(2), 323–356. https://doi.org/10.5382/econgeo.4794Thompson, A., & Thompson, J. (1996). Atlas of alteration. A field and petrographic guide to hydrothermal alteration minerals. Mineral Deposits Division, Geological Association of Canada.Toussaint, J. F., & Restrepo, J. J. (1989). Acreciones sucesivas en Colombia: un nuevo modelo de evolución geológica. Congreso Colombiano de Geología. 5, 127–146.Toussaint, J. F., & Restrepo, J. J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: oceanic terranes. In J. Gómez & A. O. Pinilla–Pachon (Eds.), The Geology of Colombia (Vol. 2, pp. 237–260). Servicio Geológico Colombiano. https://doi.org/10.32685/PUB.ESP.36.2019.07Urai, J. L., Means, W. D., & Lister, G. S. (1986). Dynamic recrystallization of minerals (B. E. Hobbs & H. C. Heard, Eds.). American Geophysical Union (AGU). https://doi.org/10.1029/GM036p0161Van Der Lelij, R., Spikings, R. A., Kerr, A. C., Kounov, A., Cosca, M., Chew, D., & Villagomez, D. (2010). Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone. Tectonics, 29(6), 6003. https://doi.org/10.1029/2009TC002654Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas. In XXIII Curso Latinoamericano de MetalogeniaVillagómez, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America [Tesis Doctoral]. In Terre & Environnement (Vol. 101). University of Geneva.Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, 160–161(1), 228–249. https://doi.org/10.1016/J.LITHOS.2012.12.008Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/J.LITHOS.2011.05.003Villamizar-Escalante, N., Bernet, M., Urueña-Suárez, C., Hernández-González, J. S., Terraza-Melo, R., Roncancio, J., Muñoz-Rocha, J. A., Peña-Urueña, M. L., Amaya, S., & Piraquive, A. (2021). Thermal history of the southern Central Cordillera and its exhumation record in the Cenozoic deposits of the Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 107, 103105. https://doi.org/10.1016/j.jsames.2020.103105Vinasco, C. (2019). The Romeral Shear Zone. In F. Cediel & R. P. Shaw (Eds.), Geology and tectonics of Northwestern South America (pp. 833–876). Springuer. https://doi.org/10.1007/978-3-319-76132-9_12Vinasco, C., & Cordani, U. (2012). Reactivation episodes of the Romeral Fault System in the northwestern part of Central Andes, Colombia, through 39Ar-40Ar and K-Ar results. Boletín de Ciencias de La Tierra, 0(32), 111–124Vinasco, C., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/J.JSAMES.2006.07.007Warnock, J. (1987). Adobe illustrator (Versión 2024 (29.1)) [Software].Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4), 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5Wilson, F., & Darnell, B. (1942). A Lode Gold Mine in Colombia. Engineering and Mining Journal, 143(4), 62–65.Wilson, M. (1989). Igneous Petrogenesis: a Global Tectonic Approach. In Igneous Petrogenesis. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6788-4Winter, J. D. (2014). Principles of igneous and metamorphic petrology (2nd ed.). Pearson Education Limited.Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008Zapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., & Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553Zapata-Villada, J. P., Giraldo, W., Rodríguez, G., Geraldes, M. C., & Obando, M. (2021). Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia. Boletín de La Sociedad Geológica Mexicana, 73(1), A280520. https://doi.org/10.18268/BSGM2021v73n1a280520https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/224062025-06-13T08:01:06Z