Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente

Estadísticas, figuras, tablas

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/21832
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/21832
Palabra clave:
570 - Biología
1. Ciencias Naturales
Tratamiento magnético de semillas
Contenido nutricional
Concentración de iones
Establecimiento
Vigor
Biología
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_dde99a3d8d922a4952d35fc3a4f71cb2
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/21832
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
title Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
spellingShingle Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
570 - Biología
1. Ciencias Naturales
Tratamiento magnético de semillas
Contenido nutricional
Concentración de iones
Establecimiento
Vigor
Biología
title_short Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
title_full Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
title_fullStr Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
title_full_unstemmed Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
title_sort Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente
dc.contributor.none.fl_str_mv Torres Osorio, Javier Ignacio
Universidad de Caldas
Zamorano-Montañez, Carolina
dc.subject.none.fl_str_mv 570 - Biología
1. Ciencias Naturales
Tratamiento magnético de semillas
Contenido nutricional
Concentración de iones
Establecimiento
Vigor
Biología
topic 570 - Biología
1. Ciencias Naturales
Tratamiento magnético de semillas
Contenido nutricional
Concentración de iones
Establecimiento
Vigor
Biología
description Estadísticas, figuras, tablas
publishDate 2024
dc.date.none.fl_str_mv 2024
2025-01-18T14:17:40Z
2025-01-18T14:17:40Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/21832
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/21832
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45102-5
Ahmed, M. A., Shaheen, A. A., Shaban, K. A. H., & Rashad, R. T. (2023). Effect of the pre-magnetic treatment of seeds and the N-fertilizer on the yield and quality of groundnut grown in sandy soil. Sains Tanah, 20(2), 150–159. https://doi.org/10.20961/STJSSA.V20I2.64950
Anjali A., Archana K., Meenakshi T., & Archana K., (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports. https://doi.org/10.1038/s41598-019-45102-5
Balouchi, H.R. & Sanavy, S.A.M.M. (2009). Electromagnetic field impact on annual medics and dodder seed germination. International Agrophysics 23 (2), 111-115.
Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718–730. https://doi.org/10.1007/s11099-017-0722-3
Bezerra, E. A., Carvalho, C. P. S., Costa Filho, R. N., Silva, A. F. B., Alam, M., Sales, M. V., Dias, N. L., Gonçalves, J. F. C., Freitas, C. D. T., & Ramos, M. V. (2023). Static magnetic field promotes faster germination and increases germination rate of Calotropis procera seeds stimulating cellular metabolism. Biocatalysis and Agricultural Biotechnology, 49. https://doi.org/10.1016/j.bcab.2023.102650
Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67–73. https://doi.org/10.1016/j.plaphy.2012.05.008
Carbonell, M. V., Martinez, E., & Amaya, J. M. (2000). Stimulation of germination in rice (Oryza Sativa L.) by a static magnetic field. Electro- and Magnetobiology, 19(1), 121–128. https://doi.org/10.1081/JBC-100100303
Domínguez Pacheco, A., Aguilar, C. H., Cruz Orea, A., Carballo, A. C., Zepeda Bautista, R., & Martínez Ortíz, E. (2010). Semilla de maíz bajo la influencia de irradiación de campos electromagnéticos.
Ercan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., Alshumrani, R., Ozcelik, S., & Kayed, T. S. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36–48. https://doi.org/10.1016/j.plaphy.2021.11.033
Faraz Ali, M., Sajid Aqeel Ahmad, M., Gaafar, A. R. Z., & Shakoor, A. (2024). Seed pre-treatment with electromagnetic field (EMF) differentially enhances germination kinetics and seedling growth of maize (Zea mays L.). Journal of King Saud University - Science, 36(5). https://doi.org/10.1016/j.jksus.2024.103184
Reia, Â., Arza, L., & Fundora, I. A. (2001). Influence of a Stationary Magnetic Field on Wanter Relations in Lettuce Seeds. Part II: Experimental Results. In Bioelectromagnetics (Vol. 22).
Glaser Roland. (2001) Biofísica Editorial Acribia. Zaragoza, España.
Grewal, H. S., & Maheshwari, B. L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32(1), 58–65. https://doi.org/10.1002/bem.20615
Hafeez, M. B., Zahra, N., Ahmad, N., Shi, Z., Raza, A., Wang, X., & Li, J. (2023). Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biology, 25(1), 8–23. https://doi.org/10.1111/plb.13459
Hincapié-Ladino, E. A., Torres-Osorio, J. I., & Bueno-Lopez, L. (2010). Estudio del Efecto de la Estimulación Magnética de Semillas de Leucaena Leucocephala (Lam.) de Wit Study of the Effect of Magnetic Stimulation of Leucaena Leucocephala (Lam.) of Wit Seeds.
Hussain, M. S., Dastgeer, G., Afzal, A. M., Hussain, S., & Kanwar, R. R. (2020). Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental Nanotechnology, Monitoring and Management, 14. https://doi.org/10.1016/j.enmm.2020.100299
Iqbal, M., ul Haq, Z., Malik, A., Ayoub, C. M., Jamil, Y., & Nisar, J. (2016a). Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatalysis and Agricultural Biotechnology, 5, 30-37. https://doi.org/10.1016/j.bcab.2015.12.002
Iqbal, M., ul Haq, Z., Jamil, Y., & Nisar, J. (2016b). Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.). Biocatalysis and Agricultural Biotechnology, 6, 176–183. https://doi.org/10.1016/j.bcab.2016.04.001
Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034
Joshi-Paneri, J., Sharma, S., Guruprasad, Kadur. N., & Kataria, S. (2023). Enhancing the Yield Potential of Soybean after Magneto-Priming: Detailed Study on Its Relation to Underlying Physiological Processes. Seeds 2023, Vol. 2, Pages 60-84, 2(1), 60–84. https://doi.org/10.3390/SEEDS2010006
Kamal, A., Fattah, A., Esmaeil, M., Fattah, A. K. A., & Esmaeil, M. A. (2022). Effect of Pre-sowing Magnetic Treatment of Maize Seeds on Its Productivity and on Some Soil Properties
Kataria, S., Baghel, L., & Guruprasad, K. N. (2017a). Alleviation of Adverse Effects of Ambient UV Stress on Growth and Some Potential Physiological Attributes in Soybean (Glycine max) by Seed Pre-treatment with Static Magnetic Field. Journal of Plant Growth Regulation, 36(3), 550–565. https://doi.org/10.1007/s00344-016-9657-3
Kataria, S., Baghel, L., & Guruprasad, K. N. (2017b). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10, 83–90. https://doi.org/10.1016/j.bcab.2017.02.010
Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18. https://doi.org/10.1016/j.bcab.2019.101090
Luo, X., Li, D., Tao, Y., Wang, P., Yang, R., & Han, Y. (2022). Effect of static magnetic field treatment on the germination of brown rice: Changes in α-amylase activity and structural and functional properties in starch. Food Chemistry, 383. https://doi.org/10.1016/j.foodchem.2022.132392
Marcos, J (2015). Seed vigor testing: an overview of the past, present and future perspective.
Marschner Petra (2023). Mineral Nutrition of Higher Plants. Editado por Zed Rengel, Ismail Cakmak, Philip J. White. Elsevier
Migahid, M. M., Elghobashy, R. M., Bidak, L. M., & Amin, A. W. (2019). Priming of Silybum marianum (L.) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01886
Mohaseb, M. I., Shahin, M. M., Shaheen, A. E. A., & Rashad, R. T. (2023). Macronutrients use efficiency in sandy soil cultivated by magnetically treated seeds pre-sowing and sprayed by N-fertilizer dissolved in magnetized water. Malaysian Journal of Sustainable Agriculture, 7(2), 72-78
Pasitvilaitham, K., Pramuan, J., Saengchong, N., Kaewpanus, K., ruanto, P., & Thepnurat, M. (2023). Effects of magnetic flux density on germination and seedling growth in Oryza sativa var. Glutinosa. In Plant Physiology Reports (Vol. 28, Issue 1, pp. 1–7). Springer. https://doi.org/10.1007/s40502-022-00692-7
Podleśna, A., Bojarszczuk, J., & Podleśny, J. (2019). Effect of Pre-sowing Magnetic Field Treatment on Some Biochemical and Physiological Processes in Faba Bean (Vicia faba L. spp. Minor). Journal of Plant Growth Regulation, 38(3), 1153–1160. https://doi.org/10.1007/s00344-019-09920-1
Podleśny, J., Podleśna, A., Gładyszewska, B., & Bojarszczuk, J. (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum l.) seeds and seedlings. Agronomy, 11(3). https://doi.org/10.3390/agronomy11030494
Rashad, R. T., Shaban, K. A. H., Ashmaye, S. H., Abd El-Kader, M. G., & Mahmoud, A. A. (2022). Effect of pre-sowing magnetic treatment of seeds with bio- and mineral fertilization on the soybean cultivated in a saline calcareous soil. SAINS TANAH - Journal of Soil Science and Agroclimatology, 19(2), 132–144. https://doi.org/10.20961/STJSSA.V19I2.59833
Rathod, G. R., & Anand, A. (2016). Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology, 21(1), 15–22. https://doi.org/10.1007/s40502-015-0189-9
Reina, A., Arza, L., & Fundora, I. A. (2001). Influence of a Stationary Magnetic Field on Wanter Relations in Lettuce Seeds. Part II: Experimental Results. In Bioelectromagnetics (Vol. 22).
Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., Ihtisham, M., & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. In Plants (Vol. 9, Issue 9, pp. 1–17). MDPI AG. https://doi.org/10.3390/plants9091139
Satish C Bhatla & Manju A. Lal (2018). Plant Physiology, Development and Metabolism. Springer Nature Singapore https://link.springer.com/book/10.1007/978-981-13-2023-1
Sherin, G., Aswathi, K. P. R., & Puthur, J. T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming. In Plant Stress (Vol. 4). Elsevier B.V. https://doi.org/10.1016/j.stress.2022.100079
Singh, P., Agrawal, M., Gupta, N., & Khandelwal, A. (2021). Stimulation of Pithecellobium dulce (jungle jalebi) seed with electromagnetic exposure and its impact on biochemical parameter and growth. Materials Today: Proceedings, 42, 1513–1518. https://doi.org/10.1016/j.matpr.2021.01.649
Taiz L., Zeiger E., Møller I., M., & Murphy A. (2015). Plant Physiology and Development. Sinauer Associates
Torres-Osorio, J. I., Aranzazu-Osorio, J. E., & Carbonell-Padrino, M. V. (2015). Static homogeneous magnetic field effects on germination and water absorption in soybean seeds. In Tecno Lógicas (Vol. 18, Issue 35).
Torres, J., Socorro, A., & Hincapié, E. (2018). Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics, 39(5), 343–351. https://doi.org/10.1002/bem.22120
Yang, P., Gan, T., Pi, W., Cao, M., Chen, D., & Luo, J. (2021). Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Chemosphere, 280. https://doi.org/10.1016/j.chemosphere.2021.130724
Zúñiga, U., Zúñiga, O., Benavides, J. A., Salazar, D. I., Jiménez, C. O., & Gutiérrez, M. A. (2016). Ingeniería y Competitividad Tratamiento magnético de agua de riego y semillas en agricultura Magnetic treatment of irrigation water and seeds in agriculture. 18(2), 217–232. http://www.redalyc.org/articulo.oa?id=291346311020
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 48 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145071564521472
spelling Análisis del comportamiento nutricional de las estructuras aéreas de plántulas de Solanum lycopersicum L., desarrolladas a partir de semillas tratadas magnéticamente570 - Biología1. Ciencias NaturalesTratamiento magnético de semillasContenido nutricionalConcentración de ionesEstablecimientoVigorBiologíaEstadísticas, figuras, tablasEl tratamiento magnético de semillas es una técnica de cebado que promueve la germinación de semillas y el desarrollo de las plantas generadas a partir de estas. Para comprender cómo el tratamiento magnético genera modificaciones en los sistemas vegetales, es necesario realizar un análisis detallado de los mecanismos modificados que influyen en la capacidad de los individuos para desarrollarse. La capacidad para acumular biomasa e integrar nutrientes en los tejidos son indicadores clave de la eficiencia de los organismos en su crecimiento y adaptación al entorno. En este estudio, se utilizó una de las dosis magnéticas con las que se encontró una de las mejores respuestas en germinación, de acuerdo con estudios previos realizados por el grupo de investigación en Campos Electromagnéticos, Medio Ambiente y Salud Pública de la Universidad de Caldas. Se analizó la variación en el tamaño, la morfología, la concentración de sustancias en savia y el vigor de plántulas de Solanum lycopersicum L. Los resultados revelan una variación en la morfología que favorece un desarrollo enfocado en funciones distintas al crecimiento primario, una similitud en el contenido de nutrientes y sólidos solubles en la savia fresca, y un mantenimiento del vigor observado en las plántulas. Estos hallazgos aportan información sobre cómo se ven afectados los sistemas vegetales por el tratamiento magnético y su relación con el contenido nutricional. Adicionalmente, se presentan perspectivas para investigaciones futuras centradas en la acumulación de nutrientes y el desarrollo foliar.Magnetic Treatment of Seeds is a priming technique that promotes seed germination and the development of plants generated from treated seeds. To understand how magnetic treatment generates modifications in plant systems, it is necessary to perform a detailed analysis of the modified mechanisms that influence the ability of individuals to develop. The capacity to accumulate biomass and integrate nutrients into tissues are key indicators of the efficiency of organisms in their growth and adaptation to the environment. . In this study, one of the magnetic doses with one of the best germination responses according to previous studies carried out by the research group Campos Electromagnéticos, Medio Ambiente y Salud from the university Universidad de Caldas. The variation in size, morphology, concentration of substances in the sap and vigor of Solanum lycopersicum L. seedlings was analyzed. The results reveal a variation in morphology that favors a development focused on functions other than primary growth, a similarity in the content of nutrients and soluble solids in the fresh sap, and a maintenance of the vigor observed in the seedlings. These findings provide information on how plant systems are affected by magnetic treatment and its relationship to nutrient content. In addition, perspectives for future research on nutrient accumulation and foliar development are presented.Introducción/ Justificación/ Problemática / Pregunta de investigación/Objetivos/Marco conceptual /Energía interna de un sistema/Tratamiento magnético /Establecimiento /Germinación /Desarrollo y eficiencia de las plántulas/Vigor/Utilidad metabólica de los iones en sistemas vegetales/Ca2+ 19/K+ 20/Na+ 21/NO3- 22/ Marco teórico/ Generalidades del TMS/ Modificaciones en las semillas / Relaciones hídricas /Cambios en el metabolismo/Cambios hormonales/Contenido de iones/Modificaciones en plántulas/Fijación de biomasa /Relaciones hídricas/Cambios hormonales /Contenido de nutrientes/ Impacto del TMS sobre el vigor/ Materiales y métodos/Material de estudio /Tratamiento magnético /Germinación /Establecimiento /Toma de datos de desarrollo y contenido de la savia/Toma de datos para parámetros asociados a la fijación de biomasa y la capacidad para integrar materia/Análisis estadístico /Resultados/Crecimiento de las plántulas/Desarrollo de las plántulas/Índices de vigor /Relaciones entre variables/Discusión/Conclusiones/ReferenciasPregradoBiólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaTorres Osorio, Javier IgnacioUniversidad de CaldasZamorano-Montañez, CarolinaArias Ospina, Juan Camilo2025-01-18T14:17:40Z2025-01-18T14:17:40Z2024Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis48 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/21832Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAnand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45102-5Ahmed, M. A., Shaheen, A. A., Shaban, K. A. H., & Rashad, R. T. (2023). Effect of the pre-magnetic treatment of seeds and the N-fertilizer on the yield and quality of groundnut grown in sandy soil. Sains Tanah, 20(2), 150–159. https://doi.org/10.20961/STJSSA.V20I2.64950Anjali A., Archana K., Meenakshi T., & Archana K., (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports. https://doi.org/10.1038/s41598-019-45102-5Balouchi, H.R. & Sanavy, S.A.M.M. (2009). Electromagnetic field impact on annual medics and dodder seed germination. International Agrophysics 23 (2), 111-115.Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718–730. https://doi.org/10.1007/s11099-017-0722-3Bezerra, E. A., Carvalho, C. P. S., Costa Filho, R. N., Silva, A. F. B., Alam, M., Sales, M. V., Dias, N. L., Gonçalves, J. F. C., Freitas, C. D. T., & Ramos, M. V. (2023). Static magnetic field promotes faster germination and increases germination rate of Calotropis procera seeds stimulating cellular metabolism. Biocatalysis and Agricultural Biotechnology, 49. https://doi.org/10.1016/j.bcab.2023.102650Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67–73. https://doi.org/10.1016/j.plaphy.2012.05.008Carbonell, M. V., Martinez, E., & Amaya, J. M. (2000). Stimulation of germination in rice (Oryza Sativa L.) by a static magnetic field. Electro- and Magnetobiology, 19(1), 121–128. https://doi.org/10.1081/JBC-100100303Domínguez Pacheco, A., Aguilar, C. H., Cruz Orea, A., Carballo, A. C., Zepeda Bautista, R., & Martínez Ortíz, E. (2010). Semilla de maíz bajo la influencia de irradiación de campos electromagnéticos.Ercan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., Alshumrani, R., Ozcelik, S., & Kayed, T. S. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36–48. https://doi.org/10.1016/j.plaphy.2021.11.033Faraz Ali, M., Sajid Aqeel Ahmad, M., Gaafar, A. R. Z., & Shakoor, A. (2024). Seed pre-treatment with electromagnetic field (EMF) differentially enhances germination kinetics and seedling growth of maize (Zea mays L.). Journal of King Saud University - Science, 36(5). https://doi.org/10.1016/j.jksus.2024.103184Reia, Â., Arza, L., & Fundora, I. A. (2001). Influence of a Stationary Magnetic Field on Wanter Relations in Lettuce Seeds. Part II: Experimental Results. In Bioelectromagnetics (Vol. 22).Glaser Roland. (2001) Biofísica Editorial Acribia. Zaragoza, España.Grewal, H. S., & Maheshwari, B. L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32(1), 58–65. https://doi.org/10.1002/bem.20615Hafeez, M. B., Zahra, N., Ahmad, N., Shi, Z., Raza, A., Wang, X., & Li, J. (2023). Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biology, 25(1), 8–23. https://doi.org/10.1111/plb.13459Hincapié-Ladino, E. A., Torres-Osorio, J. I., & Bueno-Lopez, L. (2010). Estudio del Efecto de la Estimulación Magnética de Semillas de Leucaena Leucocephala (Lam.) de Wit Study of the Effect of Magnetic Stimulation of Leucaena Leucocephala (Lam.) of Wit Seeds.Hussain, M. S., Dastgeer, G., Afzal, A. M., Hussain, S., & Kanwar, R. R. (2020). Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental Nanotechnology, Monitoring and Management, 14. https://doi.org/10.1016/j.enmm.2020.100299Iqbal, M., ul Haq, Z., Malik, A., Ayoub, C. M., Jamil, Y., & Nisar, J. (2016a). Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatalysis and Agricultural Biotechnology, 5, 30-37. https://doi.org/10.1016/j.bcab.2015.12.002Iqbal, M., ul Haq, Z., Jamil, Y., & Nisar, J. (2016b). Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.). Biocatalysis and Agricultural Biotechnology, 6, 176–183. https://doi.org/10.1016/j.bcab.2016.04.001Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034Joshi-Paneri, J., Sharma, S., Guruprasad, Kadur. N., & Kataria, S. (2023). Enhancing the Yield Potential of Soybean after Magneto-Priming: Detailed Study on Its Relation to Underlying Physiological Processes. Seeds 2023, Vol. 2, Pages 60-84, 2(1), 60–84. https://doi.org/10.3390/SEEDS2010006Kamal, A., Fattah, A., Esmaeil, M., Fattah, A. K. A., & Esmaeil, M. A. (2022). Effect of Pre-sowing Magnetic Treatment of Maize Seeds on Its Productivity and on Some Soil PropertiesKataria, S., Baghel, L., & Guruprasad, K. N. (2017a). Alleviation of Adverse Effects of Ambient UV Stress on Growth and Some Potential Physiological Attributes in Soybean (Glycine max) by Seed Pre-treatment with Static Magnetic Field. Journal of Plant Growth Regulation, 36(3), 550–565. https://doi.org/10.1007/s00344-016-9657-3Kataria, S., Baghel, L., & Guruprasad, K. N. (2017b). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10, 83–90. https://doi.org/10.1016/j.bcab.2017.02.010Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18. https://doi.org/10.1016/j.bcab.2019.101090Luo, X., Li, D., Tao, Y., Wang, P., Yang, R., & Han, Y. (2022). Effect of static magnetic field treatment on the germination of brown rice: Changes in α-amylase activity and structural and functional properties in starch. Food Chemistry, 383. https://doi.org/10.1016/j.foodchem.2022.132392Marcos, J (2015). Seed vigor testing: an overview of the past, present and future perspective.Marschner Petra (2023). Mineral Nutrition of Higher Plants. Editado por Zed Rengel, Ismail Cakmak, Philip J. White. ElsevierMigahid, M. M., Elghobashy, R. M., Bidak, L. M., & Amin, A. W. (2019). Priming of Silybum marianum (L.) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01886Mohaseb, M. I., Shahin, M. M., Shaheen, A. E. A., & Rashad, R. T. (2023). Macronutrients use efficiency in sandy soil cultivated by magnetically treated seeds pre-sowing and sprayed by N-fertilizer dissolved in magnetized water. Malaysian Journal of Sustainable Agriculture, 7(2), 72-78Pasitvilaitham, K., Pramuan, J., Saengchong, N., Kaewpanus, K., ruanto, P., & Thepnurat, M. (2023). Effects of magnetic flux density on germination and seedling growth in Oryza sativa var. Glutinosa. In Plant Physiology Reports (Vol. 28, Issue 1, pp. 1–7). Springer. https://doi.org/10.1007/s40502-022-00692-7Podleśna, A., Bojarszczuk, J., & Podleśny, J. (2019). Effect of Pre-sowing Magnetic Field Treatment on Some Biochemical and Physiological Processes in Faba Bean (Vicia faba L. spp. Minor). Journal of Plant Growth Regulation, 38(3), 1153–1160. https://doi.org/10.1007/s00344-019-09920-1Podleśny, J., Podleśna, A., Gładyszewska, B., & Bojarszczuk, J. (2021). Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum l.) seeds and seedlings. Agronomy, 11(3). https://doi.org/10.3390/agronomy11030494Rashad, R. T., Shaban, K. A. H., Ashmaye, S. H., Abd El-Kader, M. G., & Mahmoud, A. A. (2022). Effect of pre-sowing magnetic treatment of seeds with bio- and mineral fertilization on the soybean cultivated in a saline calcareous soil. SAINS TANAH - Journal of Soil Science and Agroclimatology, 19(2), 132–144. https://doi.org/10.20961/STJSSA.V19I2.59833Rathod, G. R., & Anand, A. (2016). Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology, 21(1), 15–22. https://doi.org/10.1007/s40502-015-0189-9Reina, A., Arza, L., & Fundora, I. A. (2001). Influence of a Stationary Magnetic Field on Wanter Relations in Lettuce Seeds. Part II: Experimental Results. In Bioelectromagnetics (Vol. 22).Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., Ihtisham, M., & Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. In Plants (Vol. 9, Issue 9, pp. 1–17). MDPI AG. https://doi.org/10.3390/plants9091139Satish C Bhatla & Manju A. Lal (2018). Plant Physiology, Development and Metabolism. Springer Nature Singapore https://link.springer.com/book/10.1007/978-981-13-2023-1Sherin, G., Aswathi, K. P. R., & Puthur, J. T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming. In Plant Stress (Vol. 4). Elsevier B.V. https://doi.org/10.1016/j.stress.2022.100079Singh, P., Agrawal, M., Gupta, N., & Khandelwal, A. (2021). Stimulation of Pithecellobium dulce (jungle jalebi) seed with electromagnetic exposure and its impact on biochemical parameter and growth. Materials Today: Proceedings, 42, 1513–1518. https://doi.org/10.1016/j.matpr.2021.01.649Taiz L., Zeiger E., Møller I., M., & Murphy A. (2015). Plant Physiology and Development. Sinauer AssociatesTorres-Osorio, J. I., Aranzazu-Osorio, J. E., & Carbonell-Padrino, M. V. (2015). Static homogeneous magnetic field effects on germination and water absorption in soybean seeds. In Tecno Lógicas (Vol. 18, Issue 35).Torres, J., Socorro, A., & Hincapié, E. (2018). Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics, 39(5), 343–351. https://doi.org/10.1002/bem.22120Yang, P., Gan, T., Pi, W., Cao, M., Chen, D., & Luo, J. (2021). Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Chemosphere, 280. https://doi.org/10.1016/j.chemosphere.2021.130724Zúñiga, U., Zúñiga, O., Benavides, J. A., Salazar, D. I., Jiménez, C. O., & Gutiérrez, M. A. (2016). Ingeniería y Competitividad Tratamiento magnético de agua de riego y semillas en agricultura Magnetic treatment of irrigation water and seeds in agriculture. 18(2), 217–232. http://www.redalyc.org/articulo.oa?id=291346311020https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/218322025-01-19T08:01:05Z