Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico

Se evaluaron las diferencias morfométricas entre sexos en individuos de Sicalis flaveola en el Valle del Cauca, suroccidente de Colombia. El sexo se determinó a partir de métodos moleculares, comportamiento reproductivo y caracteres morfológicos. Se realizó un análisis de función discriminante a par...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/22976
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/22976
https://doi.org/10.17151/bccm.2021.25.1.4
Palabra clave:
Canario silvestre
Colombia
función discriminante
morfometría
tamaño corporal
Thraupidae
trópico
Body size
Colombia
discriminant function analysis
morphometric
Saffron Finch
Thraupidae
tropical region
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUCALDA_db5dbd8d346c0ef7dcf93f87f84bad67
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/22976
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
Cryptic sexual dimorphism in saffron finch (Sicalis flaveola, Aves: Thraupidae) in the tropic
title Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
spellingShingle Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
Canario silvestre
Colombia
función discriminante
morfometría
tamaño corporal
Thraupidae
trópico
Body size
Colombia
discriminant function analysis
morphometric
Saffron Finch
Thraupidae
tropical region
title_short Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
title_full Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
title_fullStr Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
title_full_unstemmed Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
title_sort Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópico
dc.subject.none.fl_str_mv Canario silvestre
Colombia
función discriminante
morfometría
tamaño corporal
Thraupidae
trópico
Body size
Colombia
discriminant function analysis
morphometric
Saffron Finch
Thraupidae
tropical region
topic Canario silvestre
Colombia
función discriminante
morfometría
tamaño corporal
Thraupidae
trópico
Body size
Colombia
discriminant function analysis
morphometric
Saffron Finch
Thraupidae
tropical region
description Se evaluaron las diferencias morfométricas entre sexos en individuos de Sicalis flaveola en el Valle del Cauca, suroccidente de Colombia. El sexo se determinó a partir de métodos moleculares, comportamiento reproductivo y caracteres morfológicos. Se realizó un análisis de función discriminante a partir de 12 medidas corporales de individuos adultos con plumaje maduro. Las medidas corporales fueron muy similares entre los sexos, acorde a lo esperado en paserinos monógamos. Los machos fueron significativamente más grandes que las hembras en alas, rectrices y distancia entre primarias y secundarias; mientras que las hembras tuvieron picos significativamente más anchos que los machos. Se encontró una ecuación que permite identificar el sexo con una exactitud del 77,8 %. Se propone el método morfométrico como una alternativa de menor costo fisiológico y económico en comparación con métodos moleculares para la determinación del sexo de individuos de la especie.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-01-01T00:00:00Z
2021-01-01T00:00:00Z
2025-10-08T21:03:02Z
2025-10-08T21:03:02Z
dc.type.none.fl_str_mv Artículo de revista
http://purl.org/coar/resource_type/c_6501
Text
info:eu-repo/semantics/article
Journal article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.none.fl_str_mv 0123-3068
https://repositorio.ucaldas.edu.co/handle/ucaldas/22976
10.17151/bccm.2021.25.1.4
2462-8190
https://doi.org/10.17151/bccm.2021.25.1.4
identifier_str_mv 0123-3068
10.17151/bccm.2021.25.1.4
2462-8190
url https://repositorio.ucaldas.edu.co/handle/ucaldas/22976
https://doi.org/10.17151/bccm.2021.25.1.4
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv 70
1
55
25
Boletín Científico Centro de Museos Museo de Historia Natural
Alarcos, S., de la Cruz, C., Solís, E., Valencia, J., y García-Baquero, M. J. (2007). Sex determination of Iberian Azure-winged Magpies Cyanopica cyanus cooki by discriminant analysis of external measurements. Ringing y Migration, 23 (4), 211-216. https://doi.org/10.1080/03078698.2007.9674366
Andersson, M. (1982). Female choice selects for extreme tail length in a widowbird. Nature, 299(5886), 818. https://doi.org/10.1038/299818a0
Andersson, M. (1994). Sexual Selection. New Jersey: Princeton University Press. https://doi.org/10.1515/9780691207278
Andersson, S., y Andersson, M. (1994). Tail ornamentation, size dimorphism and wing length in the genus Euplectes (Ploceinae). Auk, 111(1), 80-86. https://doi.org/10.2307/4088507
Ardila-Téllez, J. D. y Cruz-Bernate, L. (2014). Aspectos ecológicos de las aves migratorias neárticas en el campus de la Universidad del Valle Bol. Cient. Mus. Hist. Nat. U. de Caldas, 18(2), 93-109. http://190.15.17.25/boletincientifico/downloads/Boletin(18)2_8.pdf
Baldwin, M. W., Winkler, H., Organ, C. L. y Helm, B. (2010). Wing pointedness associated with migratory distance in common- -garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol., 23(5), 1050-1063. https://doi.org/10.1111/j.1420-9101.2010.01975.x
Blanco, G., Tella, J. L. y Torre, I. (1996). Age and Sex Determination of Monomorphic Non-Breeding Choughs: A Long-Term Study. J. Field Ornithol., 67(3), 428-433. https://www.jstor.org/stable/4514134
Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. Q Rev Biol, 75(4), 385-407. https://doi.org/10.1086/393620
Blanckenhorn, W. U. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111(11), 977-1016. https://doi.org/10.1111/j.1439-0310.2005.01147.x
Bosch, M. (1996). Sexual Size Dimorphism and Determination of Sex in Yellow-Legged Gulls. J. Field Ornithology, 67(4) 534-541. https://www.jstor.org/stable/4514155
Bourgeois, K., Curé, C., Legrand, J., Gómez-Díaz, E., Vidal, E., Aubin, T. y Mathevon, N. (2007). Morphological versus acoustic analysis: what is the most efficient method for sexing yelkouan shearwaters Puffinus yelkouan?. J. Ornithol., 148(3), 261-269. https://doi.org/10.1007/s10336-007-0127-3
Burnham, H. (2019). Cuidado paternal en el Sicalis Coronado (Scalis flaveola): ¿A mayor inversión paternal mayor éxito reproductivo? (Tesis de maestría). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.
Catry, P., Phillips, R. A., Croxall, J. P., Ruckstuhl, K. y Neuhaus, P. (2006). Sexual segregation in birds: patterns, processes and implications for conservation. En K. Ruckstuhl y P. Neuhaus (eds). Sexual segregation in vertebrates: ecology of the two sexes (pp. 351-378). United Kingdom: Cambridge University Press. https://doi.org/10.1017/CBO9780511525629
Claramunt, S., Derryberry, E. P., Remsen JR, J. V. y Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567-1574. https://doi.org/10.1098/rspb.2011.1922
Conklin, J. R., Battley, P. F., Potter, M. A. y Ruthrauff, D. R. (2011). Geographic variation in morphology of Alaska-breeding Bar- -tailed Godwits (Limosa lapponica) is not maintained on their nonbreeding grounds in New Zealand. Auk., 128(2), 363-373. https://doi.org/10.1525/auk.2011.10231
Cuervo, J. J., De Lope, F. y Møiller, A. P. (1996). The function of long tails in female barn swallows (Hirundo rustica): an experimental study. Behavioral Ecology, 7(2), 132-136. https://doi.org/10.1093/beheco/7.2.132
Cuthill, I. C., Bennett, A. T., Partridge, J. C., y Maier, E. J. (1999). Plumage reflectance and the objective assessment of avian sexual dichromatism. Amer. Naturalist., 153(2), 183-200. https://doi.org/10.1086/303160
Cruz-Bernate, L., Riascos, Y. y Barreto, G. (2013). Dimorfismo sexual y determinación del sexo con DNA en el pellar común (Vanellus chilensis). Ornitol. Neotrop., 24(4), 433-444. https://sora.unm.edu/sites/default/files/ON%2024(4)%20433-444.pdf
Corporación Autónoma Regional del Valle del Cauca. (2019). Datos metereológicos 2017-2019, Estación La Independencia 2621900201, Villa Paz, Jamudí, Valle del Cauca.
Darwin, C. (1871). The descent of man and selection in relation to sex. London: Murray. https://books.google.com.co/books?id=caq1MaX56gsC&q
Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. y Böhning-Gaese, K. (2009). Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol., 78(2), 388-395. https://doi.org/10.1111/j.1365-2656.2008.01504.x
Dechaume-Moncharmont, F. X., Monceau, K., y Cezilly, F. (2011). Sexing birds using discriminant function analysis: a critical appraisal. Auk., 128(1), 78-86. https://doi.org/10.1525/auk.2011.10129
Delestrade, A. (2001). Sexual size dimorphism and positive assortative mating in Alpine Choughs (Pyrrhocorax graculus). Auk., 118(2), 553-556. https://doi.org/10.1093/auk/118.2.553
Derryberry, E. P., Claramunt, S., Derryberry, G., Chesser, R. T., Cracraft, J., Aleixo, A. y Brumfield, R. T. (2011). Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution Int. J. Org. Evolution, 65(10): 2973-2986. https://doi.org/10.1111/j.1558-5646.2011.01374.x
Donald, P. F. (2007). Adult sex ratios in wild bird populations. Ibis, 149(4), 671-692. https://doi.org/10.1111/j.1474-919X.2007.00724.x
Donohue, K. C. y Dufty JR, A. M. (2006). Sex determination of Red-tailed Hawks (Buteo jamaicensis calurus) using DNA analysis and morphometrics. J. Field Ornithol., 77(1), 74-79. https://doi.org/10.1111/j.1557-9263.2006.00003.x
Dubiec, A. y Zagalska-Neubauer, M. (2006). Molecular techniques for sex identification in birds. Biol. Lett., 43(1), 3-12. http://www.biollett.amu.edu.pl
Ellegren, H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R. Soc. Lond. [Biol]., 263(1377), 1635-1641. https://doi.org/10.1098/rspb.1996.0239
Espinal, L.S. (1967). Visión ecológica del departamento del Valle del Cauca. Santiago de Cali: Universidad del Valle.
Espinosa, C. (2015). Biología reproductiva del Canario silvestre (Sicalis flaveola) en el Valle del Cauca, Colombia (Tesis de pregrado). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.
Espinosa, C., Cruz-Bernate, L. y Barreto, G. (2017). Biología reproductiva de Sicalis flaveola (Aves: Thraupidae) en Cali, Colombia. Bol. Cient. Mus. Hist. Nat. U. de Caldas, 21(2), 101-114. DOI: 10.17151/bccm.2017.21.2.7
Evans, D. R., Hoopes, E. M. y Griffin, C. R. (1993). Discriminating the Sex of Laughing Gulls by Linear Measurements. J. Field Ornithol, 64(4), 472-476. https://www.jstor.org/stable/4513858
Francis, C. M., y Wood, D. S. (1989). Effects of Age and Wear on Wing Length of Wood-Warblers. J. Field Ornithol, 60(4), 495-503. https://www.jstor.org/stable/4513472
Frey, S. J., Rimmer, C. C., Mcfarland, K. P. y Menu, S. (2008). Identification and sex determination of Bicknell’s Thrushes using morphometric data. J. Field Ornithology, 79(4), 408-420. https://doi.org/10.1111/j.1557-9263.2008.00192.x
Fridolfsson, A. K. y Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol., 30(1), 116-121. https://doi.org/10.2307/3677252
Frith, C. B. (1997). Huia (Heteralocha acutirostris: Callaeidae) -like sexual bill dimorphism in some birds of paradise (Paradisaeidae) and its significance. Notornis, 44, 177-184. http://notornis.osnz.org.nz/system/files/Notornis_44_3_177.pdf
González-Solís, J., Croxall, J. P., y Afanasyev, V. (2007). Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(1), 22-36. https://doi.org/10.1002/aqc.911
Gosler, A. (1987). Some aspects of bill morphology in relation to ecology in the great tit Parus major (Doctoral dissertation). University of Oxford, United Kingdom.https://ora.ox.ac.uk/objects/uuid:db730e58-abdc-4b3f-8a6d-b18d18f77ef3
Gray, C. M., y Hamer, K. C. (2001). Food-provisioning behaviour of male and female Manx shearwaters, Puffinus puffinus. Anim. Behav., 62(1), 117-121. https://doi.org/10.1006/anbe.2001.1717
Greenwood, A. G. (1983). Avian sex determination by laparoscopy. Vet. Rec. 112, 105. http://dx.doi.org/10.1136/vr.112.5.105
Gunness, M. A., y Weatherhead, P. J. (2002). Variation in nest defense in ducks: methodological and biological insights. J. Avian Biol., 33(2), 191-198. https://doi.org/10.1034/j.1600-048X.2002.330211.x
Gustincich, S., Mamfioletti, G., del Sal, G., Schneider, C. y Carninci, P. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. Biotech., 11(3), 298-302. https://pubmed.ncbi.nlm.nih.gov/1931026/
Hilty, S. L., y Brown, W. L. (2001). Guía de las Aves de Colombia. Colombia: American Bird Conservancy-ABC.
Hughes, C. (1998). Integrating molecular techniques with field methods in studies of social behavior: a revolution results. Ecology, 79(2), 383-399. https://doi.org/10.1890/0012-9658(1998)079[0383:IMTWFM]2.0.CO;2
Jones, D. M., Samour, J. H., Knight, J. A. y Finch, J. M. (1984). Sex determination of monomorphic birds by fibreoptic endoscopy. Vet. Rec., 115(23), 596-598. http://dx.doi.org/10.1136/vr.115.23.596
Kissner, K. J., Weatherhead, P. J. y Francis, C. M. (2003). Sexual size dimorphism and timing of spring migration in birds. J. Evol. Biol., 16(1), 154-162. https://doi.org/10.1046/j.1420-9101.2003.00479.x
León, E., Beltzer, A. y Quiroga, M. (2014). El jilguero dorado (Sicalis flaveola) modifica la estructura de sus vocalizaciones para adaptarse a hábitats urbanos. Rev. Mex. Biodivers., 85(2), 546-552. https://doi.org/10.7550/rmb.32123
Lishman, G. S. (1985). The comparative breeding biology of Adélie and chinstrap penguins Pygoscelis adeliae and P. antarctica at Signy Island, South Orkney Islands. Ibis, 127(1), 84-99. https://doi.org/10.1111/j.1474-919X.1985.tb05039.x
Lockwood, R., Swaddle, J. P. y Rayner, J. M. (1998). Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J. Avian Biol., 29(3), 273-292. https://doi.org/10.2307/3677110
Lovich, J. E. y Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging., 56(4), 269-281. https://www.researchgate.net/profile/Jeff_Lovich/publication/21669086_Lovich_JE_Gibbons_JW_A_review_of_techniques_for_quantifying_sexual_size_dimorphism_Growth_Dev_Aging_56_269-281/links/0deec52824bd931cc4000000.pdf
Mawhinney, K. y Diamond, T. (1999). Sex determination of Great Black-Backed Gulls using morphometric characters. J. Field Ornithol., 70(2), 206-210. https://www.jstor.org/stable/4514402
Marcondes-Machado, L. O. (1982). Poliginia em Sicalis flaveola brasiliensis (Gmelin, 1789) (Passeriformes, Emberizidae). Rev Bras Zool., 1(1), 95-99. https://doi.org/10.1590/S0101-81751982000100014
Marcondes-Machado, L. O. (1997). Comportamento social de Sicalis flaveola brasiliensis em cativeiro (Passeriformes, Emberizidae). Iheringia, Sér. Zool., 82, 151-158. https://biblat.unam.mx/es/revista/iheringia-serie-zoologia/articulo/comportamento-social-de--sicalis-flaveola-brasiliensis-em-cativeiro-passeriformes-emberizidae
Marques-Santos, F., Wischhoff, U., Roper, J. J. y Rodrigues, M. (2018). Delayed plumage maturation explains differences in breeding performance of Saffron Finches. Emu., 118(4), 323-333. https://doi.org/10.1080/01584197.2018.1450637
Møller, A. P. (2002). Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. J. Evol. Biol., 15(3), 495-504. https://doi.org/10.1046/j.1420-9101.2002.00386.x
Møller, A. P., Chabi, Y., Cuervo, J. J., de Lope, F., Kilpimaa, J., Kose, M. y Schifferli, L. (2006). An analysis of continent-wide patterns of sexual selection in a passerine bird. Evolution, 60(4), 856-868. https://doi.org/10.1111/j.0014-3820.2006.tb01162.x
Moorhouse, R. J., Sibley, M. J., Lloyd, B. D., y Greene, T. C. (1999). Sexual dimorphism in the North Island Kaka Nestor meridionalis septentrionalis: selection for enhanced male provisioning ability?. Ibis, 141(4), 644-651. https://doi.org/10.1111/j.1474-919X.1999.tb07372.x
Morrison, D. F. (1976). Multivariate Statistical Methods. Auckland: McGraw-Hill series in probability and statistics. https://books.google.com.co/books/about/Multivariate_Statistical_Methods.html?id=9fAUAAAAIAAJ&redir_esc=y
Nebel, S. (2005). Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning?. Acta Oecologica, 28(1), 33-38. https://doi.org/10.1016/j.actao.2005.02.002
Norberg, U. M. (1995). How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology, 9(1), 48-54. https://doi.org/10.2307/2390089
Owens, I. P. y Hartley, I. R. (1998). Sexual dimorphism in birds: why are there so many different forms of dimorphism?. Proc R Soc Lond [Biol], 265(1394), 397-407. https://doi.org/10.1098/rspb.1998.0308
Palmerio, A. G. (2012). Maduración tardía del plumaje y costo reproductivo en el Jilguero Dorado Sicalis flaveola (Doctoral dissertation). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n5164_Palmerio
Palmerio, A. G. y Massoni, V. (2009). Reproductive biology of female Saffron Finches does not differ by the plumage of the mate. Condor., 111(4), 715-721. https://doi.org/10.1525/cond.2009.080044
Palmerio, A. G., y Massoni, V. (2011). Parental care does not vary with age-dependent plumage in male Saffron Finches Sicalis flaveola. Ibis, 153(2), 421-424. https://doi.org/10.1111/j.1474-919X.2011.01103.x
R CORE TEAM. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en http://www.R-project.org
Radford, A. N., y Du Plessis, M. A. (2003). Bill dimorphism and foraging niche partitioning in the Green Woodhoopoe. Journal of Animal Ecology, 72(2), 258-269. https://doi.org/10.1046/j.1365-2656.2003.00697.x
Radford, A. N., y Du Plessis, M. A. (2004). Extreme sexual dimorphism in Green Woodhoopoe (Phoeniculus purpureus) bill length: A case of sexual selection?. Auk., 121(1), 178-183. https://doi.org/10.1093/auk/121.1.178
Regosin, J. V., y Pruett-Jones, S. (2001). Sexual selection and tail-length dimorphism in Scissor-tailed Flycatchers. Auk., 118(1), 167-175. https://doi.org/10.1093/auk/118.1.167
Richner, H. (1989). Avian Laparoscopy as a Field Technique for Sexing Birds and an Assessment of Its Effects on Wild Birds. J. Field Ornithol., 60(2), 137-142. https://www.jstor.org/stable/4513412
Rising, J., Jaramillo, A., Copete, J. L., Madge, S. y Ryan, O. (2011). Family Emberizidae (Buntings and New World Sparrows). En J. Del Hoyo, A. Elliot y A. Christie (eds). Handbook of the Birds of the World (pp. 428-876). (Volume 16: Tanagers to New World Blackbirds). Barcelona: Lynx Editions. https://doi.org/10.1525/auk.2013.130.3.555
Romero-Pujante, M., Hoi, H., Blomqvist, D. y Valera, F. (2002). Tail length and mutual mate choice in bearded tits (Panurus biarmicus). Ethology, 108(10), 885-895. https://doi.org/10.1046/j.1439-0310.2002.00821.x
Saldivar, M. J. B. y Massoni, V. (2018). Lack of conspecific visual discrimination between second-year males and females in the Saffron Finch. PloS one, 13(12) e0209549. https://doi.org/10.1371/journal.pone.0209549
Saldívar, M. J. B., Miño, C. I. y Massoni, V. (2019). Genetic mating system, population genetics and effective size of Saffron Finches breeding in southern South America. Genetica, 147(3-4), 315-326. https://doi.org/10.1007/s10709-019-00072-4
Sambrook, J. y Russell, D. W. (2001). Molecular Cloning: A laboratory manual. New York: Cold spring Harbor Laboratory Press. https://www.cshlpress.com/pdf/sample/2013/MC4/MC4FM.pdf
Székely, T., Reynolds, J. D. y Figuerola, J. (2000). Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution, 54(4), 1404–1413. https://doi.org/10.1111/j.0014-3820.2000.tb00572.x
Székely, T., Lislevand, T. y Figuerola, J. (2007). Sexual size dimorphism in birds. In D. Fairbairn, W. Blanckenhorn, & T. Székely (eds.). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (pp. 27-37). United Kingdom: Oxford University Press. DOI:10.1093/acprof:oso/9780199208784.001.0001
Sokal, R. R., y Rohlf, E. J. (1995). Biometry. New York: W. H. Freeman and Co. https://doi.org/10.2307/2343822
Suhonen, J., y Kuitunen, M. (1991). Intersexual foraging niche differentiation within the breeding pair in the Common Treecreeper Certhia familiaris. Ornis Scandinavica, 22(4), 313-318. https://doi.org/10.2307/3676502
Suthers, H. B. (1994). Sex determination by wing and tail measurements in the Song Sparrow and Field Sparrow. N. Am. Bird-Bander, 19, 77-83. https://sora.unm.edu/sites/default/files/journals/nabb/v019n03/p0077-p0083.pdf
Symonds, M. R. y Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence for Allen’s rule. Amer. Naturalist., 176(2), 188-197. https://doi.org/10.1086/653666
Temeles, E. J., Pan, I. L., Brennan, J. L. y Horwitt, J. N. (2000). Evidence for ecological causation of sexual dimorphism in a hummingbird. Science, 289(5478), 441-443.
Thode, H. C. (2002). Testing for Normality (Vol. 164). New York: CRC press.
Thomas, A. L. (1996). The flight of birds that have wings and a tail: variable geometry expands the envelope of flight performance. J. Theor. Biol., 183 (3): 237-245. https://doi.org/10.1126/science.289.5478.441
Thomas, A. L. (1997). On the tails of birds. Bioscience, 47 (4): 215-225. https://doi.org/10.2307/1313075
Thomas, A. L., y Taylor, G. K. (2001). Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol., 212 (3): 399-424. https://doi.org/10.1006/jtbi.2001.2387
Venables, W. N., y Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer. https://doi.org/10.1007/b97626
Warrick, D. R., Bundle, M. W., y Dial, K. P. (2002). Bird maneuvering flight: blurred bodies, clear heads. Integrative and Comparative Biology, 42 (1): 141-148. https://doi.org/10.1093/icb/42.1.141
Webster, M. S. (1992). Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). Evolution, 46 (6): 1621-1641. https://doi.org/10.1111/j.1558-5646.1992.tb01158.x
Wilson, R. R. (1999). Sex Determination of the Acadian Flycatcher Using Discriminant Analysis. J. Field Ornithol., 70 (4): 514-519. https://www.jstor.org/stable/4514444
Yamazaki, Y., Yamato, A., Yamada, A., y Nishiwaki, K. (1994). Sex determination of Humboldt Penguins (Spheniscus humboldti) using an original designed restraint. Penguin Conserv, 7: 7-11. https://www.jstor.org/stable/4514199
Yan-Ping, F., Yan-Zhang, G., Affara, N. A., Xiu-Li, P., Jin-Feng, Y., Rui-Xia, Z., Yusuf, M., Jeffer, O., y Shu-Jun, Z. (2006). Analysis of the offspring sex ratio of chicken by using molecular sexing. Agric. Sci. in China, 5: 545–549. https://doi.org/10.1016/S1671-2927(06)60090-4
Zavalaga, C. B., y Paredes, R. (1997). Sex Determination of Adult Humboldt Penguins Using Morphometric Characters. J. Field Ornithol., 68 (1): 102-112. https://www.jstor.org/stable/4514199
Núm. 1 , Año 2021 : Enero - Junio
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/4334/3984
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletín Científico
publisher.none.fl_str_mv Boletín Científico
dc.source.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/4334
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532481620475904
spelling Dimorfismo sexual críptico en Sicalis flaveola (Aves: Thraupidae) en el trópicoCryptic sexual dimorphism in saffron finch (Sicalis flaveola, Aves: Thraupidae) in the tropicCanario silvestreColombiafunción discriminantemorfometríatamaño corporalThraupidaetrópicoBody sizeColombiadiscriminant function analysismorphometricSaffron FinchThraupidaetropical regionSe evaluaron las diferencias morfométricas entre sexos en individuos de Sicalis flaveola en el Valle del Cauca, suroccidente de Colombia. El sexo se determinó a partir de métodos moleculares, comportamiento reproductivo y caracteres morfológicos. Se realizó un análisis de función discriminante a partir de 12 medidas corporales de individuos adultos con plumaje maduro. Las medidas corporales fueron muy similares entre los sexos, acorde a lo esperado en paserinos monógamos. Los machos fueron significativamente más grandes que las hembras en alas, rectrices y distancia entre primarias y secundarias; mientras que las hembras tuvieron picos significativamente más anchos que los machos. Se encontró una ecuación que permite identificar el sexo con una exactitud del 77,8 %. Se propone el método morfométrico como una alternativa de menor costo fisiológico y económico en comparación con métodos moleculares para la determinación del sexo de individuos de la especie.The morphometric differences between the sexes in Sicalis flaveola from Valle del Cauca, southwest Colombia were evaluated. Sex was determined using molecular methods, reproductive behavior and morphological characters. A discriminant function analysis was carried out on 12 body measurements from individuals with mature plumage. Body measurements were very similar between the sexes in line with what was expected from monogamous passerines. Males were significantly larger than females in wings, rectrices, and distance between primary and secondary wing feathers while females had significantly wider beaks than males. An equation was found that that allows the identification of sex with an accuracy of 77.8 %. The morphometric method is proposed as an alternative of lower physiological and economic cost compared to molecular methods for determining the sex of individuals of the species.Boletín Científico2021-01-01T00:00:00Z2025-10-08T21:03:02Z2021-01-01T00:00:00Z2025-10-08T21:03:02Z2020-01-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf0123-3068https://repositorio.ucaldas.edu.co/handle/ucaldas/2297610.17151/bccm.2021.25.1.42462-8190https://doi.org/10.17151/bccm.2021.25.1.4https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/4334spa7015525Boletín Científico Centro de Museos Museo de Historia NaturalAlarcos, S., de la Cruz, C., Solís, E., Valencia, J., y García-Baquero, M. J. (2007). Sex determination of Iberian Azure-winged Magpies Cyanopica cyanus cooki by discriminant analysis of external measurements. Ringing y Migration, 23 (4), 211-216. https://doi.org/10.1080/03078698.2007.9674366Andersson, M. (1982). Female choice selects for extreme tail length in a widowbird. Nature, 299(5886), 818. https://doi.org/10.1038/299818a0Andersson, M. (1994). Sexual Selection. New Jersey: Princeton University Press. https://doi.org/10.1515/9780691207278Andersson, S., y Andersson, M. (1994). Tail ornamentation, size dimorphism and wing length in the genus Euplectes (Ploceinae). Auk, 111(1), 80-86. https://doi.org/10.2307/4088507Ardila-Téllez, J. D. y Cruz-Bernate, L. (2014). Aspectos ecológicos de las aves migratorias neárticas en el campus de la Universidad del Valle Bol. Cient. Mus. Hist. Nat. U. de Caldas, 18(2), 93-109. http://190.15.17.25/boletincientifico/downloads/Boletin(18)2_8.pdfBaldwin, M. W., Winkler, H., Organ, C. L. y Helm, B. (2010). Wing pointedness associated with migratory distance in common- -garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol., 23(5), 1050-1063. https://doi.org/10.1111/j.1420-9101.2010.01975.xBlanco, G., Tella, J. L. y Torre, I. (1996). Age and Sex Determination of Monomorphic Non-Breeding Choughs: A Long-Term Study. J. Field Ornithol., 67(3), 428-433. https://www.jstor.org/stable/4514134Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. Q Rev Biol, 75(4), 385-407. https://doi.org/10.1086/393620Blanckenhorn, W. U. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111(11), 977-1016. https://doi.org/10.1111/j.1439-0310.2005.01147.xBosch, M. (1996). Sexual Size Dimorphism and Determination of Sex in Yellow-Legged Gulls. J. Field Ornithology, 67(4) 534-541. https://www.jstor.org/stable/4514155Bourgeois, K., Curé, C., Legrand, J., Gómez-Díaz, E., Vidal, E., Aubin, T. y Mathevon, N. (2007). Morphological versus acoustic analysis: what is the most efficient method for sexing yelkouan shearwaters Puffinus yelkouan?. J. Ornithol., 148(3), 261-269. https://doi.org/10.1007/s10336-007-0127-3Burnham, H. (2019). Cuidado paternal en el Sicalis Coronado (Scalis flaveola): ¿A mayor inversión paternal mayor éxito reproductivo? (Tesis de maestría). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.Catry, P., Phillips, R. A., Croxall, J. P., Ruckstuhl, K. y Neuhaus, P. (2006). Sexual segregation in birds: patterns, processes and implications for conservation. En K. Ruckstuhl y P. Neuhaus (eds). Sexual segregation in vertebrates: ecology of the two sexes (pp. 351-378). United Kingdom: Cambridge University Press. https://doi.org/10.1017/CBO9780511525629Claramunt, S., Derryberry, E. P., Remsen JR, J. V. y Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567-1574. https://doi.org/10.1098/rspb.2011.1922Conklin, J. R., Battley, P. F., Potter, M. A. y Ruthrauff, D. R. (2011). Geographic variation in morphology of Alaska-breeding Bar- -tailed Godwits (Limosa lapponica) is not maintained on their nonbreeding grounds in New Zealand. Auk., 128(2), 363-373. https://doi.org/10.1525/auk.2011.10231Cuervo, J. J., De Lope, F. y Møiller, A. P. (1996). The function of long tails in female barn swallows (Hirundo rustica): an experimental study. Behavioral Ecology, 7(2), 132-136. https://doi.org/10.1093/beheco/7.2.132Cuthill, I. C., Bennett, A. T., Partridge, J. C., y Maier, E. J. (1999). Plumage reflectance and the objective assessment of avian sexual dichromatism. Amer. Naturalist., 153(2), 183-200. https://doi.org/10.1086/303160Cruz-Bernate, L., Riascos, Y. y Barreto, G. (2013). Dimorfismo sexual y determinación del sexo con DNA en el pellar común (Vanellus chilensis). Ornitol. Neotrop., 24(4), 433-444. https://sora.unm.edu/sites/default/files/ON%2024(4)%20433-444.pdfCorporación Autónoma Regional del Valle del Cauca. (2019). Datos metereológicos 2017-2019, Estación La Independencia 2621900201, Villa Paz, Jamudí, Valle del Cauca.Darwin, C. (1871). The descent of man and selection in relation to sex. London: Murray. https://books.google.com.co/books?id=caq1MaX56gsC&qDawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. y Böhning-Gaese, K. (2009). Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol., 78(2), 388-395. https://doi.org/10.1111/j.1365-2656.2008.01504.xDechaume-Moncharmont, F. X., Monceau, K., y Cezilly, F. (2011). Sexing birds using discriminant function analysis: a critical appraisal. Auk., 128(1), 78-86. https://doi.org/10.1525/auk.2011.10129Delestrade, A. (2001). Sexual size dimorphism and positive assortative mating in Alpine Choughs (Pyrrhocorax graculus). Auk., 118(2), 553-556. https://doi.org/10.1093/auk/118.2.553Derryberry, E. P., Claramunt, S., Derryberry, G., Chesser, R. T., Cracraft, J., Aleixo, A. y Brumfield, R. T. (2011). Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution Int. J. Org. Evolution, 65(10): 2973-2986. https://doi.org/10.1111/j.1558-5646.2011.01374.xDonald, P. F. (2007). Adult sex ratios in wild bird populations. Ibis, 149(4), 671-692. https://doi.org/10.1111/j.1474-919X.2007.00724.xDonohue, K. C. y Dufty JR, A. M. (2006). Sex determination of Red-tailed Hawks (Buteo jamaicensis calurus) using DNA analysis and morphometrics. J. Field Ornithol., 77(1), 74-79. https://doi.org/10.1111/j.1557-9263.2006.00003.xDubiec, A. y Zagalska-Neubauer, M. (2006). Molecular techniques for sex identification in birds. Biol. Lett., 43(1), 3-12. http://www.biollett.amu.edu.plEllegren, H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R. Soc. Lond. [Biol]., 263(1377), 1635-1641. https://doi.org/10.1098/rspb.1996.0239Espinal, L.S. (1967). Visión ecológica del departamento del Valle del Cauca. Santiago de Cali: Universidad del Valle.Espinosa, C. (2015). Biología reproductiva del Canario silvestre (Sicalis flaveola) en el Valle del Cauca, Colombia (Tesis de pregrado). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.Espinosa, C., Cruz-Bernate, L. y Barreto, G. (2017). Biología reproductiva de Sicalis flaveola (Aves: Thraupidae) en Cali, Colombia. Bol. Cient. Mus. Hist. Nat. U. de Caldas, 21(2), 101-114. DOI: 10.17151/bccm.2017.21.2.7Evans, D. R., Hoopes, E. M. y Griffin, C. R. (1993). Discriminating the Sex of Laughing Gulls by Linear Measurements. J. Field Ornithol, 64(4), 472-476. https://www.jstor.org/stable/4513858Francis, C. M., y Wood, D. S. (1989). Effects of Age and Wear on Wing Length of Wood-Warblers. J. Field Ornithol, 60(4), 495-503. https://www.jstor.org/stable/4513472Frey, S. J., Rimmer, C. C., Mcfarland, K. P. y Menu, S. (2008). Identification and sex determination of Bicknell’s Thrushes using morphometric data. J. Field Ornithology, 79(4), 408-420. https://doi.org/10.1111/j.1557-9263.2008.00192.xFridolfsson, A. K. y Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol., 30(1), 116-121. https://doi.org/10.2307/3677252Frith, C. B. (1997). Huia (Heteralocha acutirostris: Callaeidae) -like sexual bill dimorphism in some birds of paradise (Paradisaeidae) and its significance. Notornis, 44, 177-184. http://notornis.osnz.org.nz/system/files/Notornis_44_3_177.pdfGonzález-Solís, J., Croxall, J. P., y Afanasyev, V. (2007). Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(1), 22-36. https://doi.org/10.1002/aqc.911Gosler, A. (1987). Some aspects of bill morphology in relation to ecology in the great tit Parus major (Doctoral dissertation). University of Oxford, United Kingdom.https://ora.ox.ac.uk/objects/uuid:db730e58-abdc-4b3f-8a6d-b18d18f77ef3Gray, C. M., y Hamer, K. C. (2001). Food-provisioning behaviour of male and female Manx shearwaters, Puffinus puffinus. Anim. Behav., 62(1), 117-121. https://doi.org/10.1006/anbe.2001.1717Greenwood, A. G. (1983). Avian sex determination by laparoscopy. Vet. Rec. 112, 105. http://dx.doi.org/10.1136/vr.112.5.105Gunness, M. A., y Weatherhead, P. J. (2002). Variation in nest defense in ducks: methodological and biological insights. J. Avian Biol., 33(2), 191-198. https://doi.org/10.1034/j.1600-048X.2002.330211.xGustincich, S., Mamfioletti, G., del Sal, G., Schneider, C. y Carninci, P. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. Biotech., 11(3), 298-302. https://pubmed.ncbi.nlm.nih.gov/1931026/Hilty, S. L., y Brown, W. L. (2001). Guía de las Aves de Colombia. Colombia: American Bird Conservancy-ABC.Hughes, C. (1998). Integrating molecular techniques with field methods in studies of social behavior: a revolution results. Ecology, 79(2), 383-399. https://doi.org/10.1890/0012-9658(1998)079[0383:IMTWFM]2.0.CO;2Jones, D. M., Samour, J. H., Knight, J. A. y Finch, J. M. (1984). Sex determination of monomorphic birds by fibreoptic endoscopy. Vet. Rec., 115(23), 596-598. http://dx.doi.org/10.1136/vr.115.23.596Kissner, K. J., Weatherhead, P. J. y Francis, C. M. (2003). Sexual size dimorphism and timing of spring migration in birds. J. Evol. Biol., 16(1), 154-162. https://doi.org/10.1046/j.1420-9101.2003.00479.xLeón, E., Beltzer, A. y Quiroga, M. (2014). El jilguero dorado (Sicalis flaveola) modifica la estructura de sus vocalizaciones para adaptarse a hábitats urbanos. Rev. Mex. Biodivers., 85(2), 546-552. https://doi.org/10.7550/rmb.32123Lishman, G. S. (1985). The comparative breeding biology of Adélie and chinstrap penguins Pygoscelis adeliae and P. antarctica at Signy Island, South Orkney Islands. Ibis, 127(1), 84-99. https://doi.org/10.1111/j.1474-919X.1985.tb05039.xLockwood, R., Swaddle, J. P. y Rayner, J. M. (1998). Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J. Avian Biol., 29(3), 273-292. https://doi.org/10.2307/3677110Lovich, J. E. y Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging., 56(4), 269-281. https://www.researchgate.net/profile/Jeff_Lovich/publication/21669086_Lovich_JE_Gibbons_JW_A_review_of_techniques_for_quantifying_sexual_size_dimorphism_Growth_Dev_Aging_56_269-281/links/0deec52824bd931cc4000000.pdfMawhinney, K. y Diamond, T. (1999). Sex determination of Great Black-Backed Gulls using morphometric characters. J. Field Ornithol., 70(2), 206-210. https://www.jstor.org/stable/4514402Marcondes-Machado, L. O. (1982). Poliginia em Sicalis flaveola brasiliensis (Gmelin, 1789) (Passeriformes, Emberizidae). Rev Bras Zool., 1(1), 95-99. https://doi.org/10.1590/S0101-81751982000100014Marcondes-Machado, L. O. (1997). Comportamento social de Sicalis flaveola brasiliensis em cativeiro (Passeriformes, Emberizidae). Iheringia, Sér. Zool., 82, 151-158. https://biblat.unam.mx/es/revista/iheringia-serie-zoologia/articulo/comportamento-social-de--sicalis-flaveola-brasiliensis-em-cativeiro-passeriformes-emberizidaeMarques-Santos, F., Wischhoff, U., Roper, J. J. y Rodrigues, M. (2018). Delayed plumage maturation explains differences in breeding performance of Saffron Finches. Emu., 118(4), 323-333. https://doi.org/10.1080/01584197.2018.1450637Møller, A. P. (2002). Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. J. Evol. Biol., 15(3), 495-504. https://doi.org/10.1046/j.1420-9101.2002.00386.xMøller, A. P., Chabi, Y., Cuervo, J. J., de Lope, F., Kilpimaa, J., Kose, M. y Schifferli, L. (2006). An analysis of continent-wide patterns of sexual selection in a passerine bird. Evolution, 60(4), 856-868. https://doi.org/10.1111/j.0014-3820.2006.tb01162.xMoorhouse, R. J., Sibley, M. J., Lloyd, B. D., y Greene, T. C. (1999). Sexual dimorphism in the North Island Kaka Nestor meridionalis septentrionalis: selection for enhanced male provisioning ability?. Ibis, 141(4), 644-651. https://doi.org/10.1111/j.1474-919X.1999.tb07372.xMorrison, D. F. (1976). Multivariate Statistical Methods. Auckland: McGraw-Hill series in probability and statistics. https://books.google.com.co/books/about/Multivariate_Statistical_Methods.html?id=9fAUAAAAIAAJ&redir_esc=yNebel, S. (2005). Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning?. Acta Oecologica, 28(1), 33-38. https://doi.org/10.1016/j.actao.2005.02.002Norberg, U. M. (1995). How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology, 9(1), 48-54. https://doi.org/10.2307/2390089Owens, I. P. y Hartley, I. R. (1998). Sexual dimorphism in birds: why are there so many different forms of dimorphism?. Proc R Soc Lond [Biol], 265(1394), 397-407. https://doi.org/10.1098/rspb.1998.0308Palmerio, A. G. (2012). Maduración tardía del plumaje y costo reproductivo en el Jilguero Dorado Sicalis flaveola (Doctoral dissertation). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n5164_PalmerioPalmerio, A. G. y Massoni, V. (2009). Reproductive biology of female Saffron Finches does not differ by the plumage of the mate. Condor., 111(4), 715-721. https://doi.org/10.1525/cond.2009.080044Palmerio, A. G., y Massoni, V. (2011). Parental care does not vary with age-dependent plumage in male Saffron Finches Sicalis flaveola. Ibis, 153(2), 421-424. https://doi.org/10.1111/j.1474-919X.2011.01103.xR CORE TEAM. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en http://www.R-project.orgRadford, A. N., y Du Plessis, M. A. (2003). Bill dimorphism and foraging niche partitioning in the Green Woodhoopoe. Journal of Animal Ecology, 72(2), 258-269. https://doi.org/10.1046/j.1365-2656.2003.00697.xRadford, A. N., y Du Plessis, M. A. (2004). Extreme sexual dimorphism in Green Woodhoopoe (Phoeniculus purpureus) bill length: A case of sexual selection?. Auk., 121(1), 178-183. https://doi.org/10.1093/auk/121.1.178Regosin, J. V., y Pruett-Jones, S. (2001). Sexual selection and tail-length dimorphism in Scissor-tailed Flycatchers. Auk., 118(1), 167-175. https://doi.org/10.1093/auk/118.1.167Richner, H. (1989). Avian Laparoscopy as a Field Technique for Sexing Birds and an Assessment of Its Effects on Wild Birds. J. Field Ornithol., 60(2), 137-142. https://www.jstor.org/stable/4513412Rising, J., Jaramillo, A., Copete, J. L., Madge, S. y Ryan, O. (2011). Family Emberizidae (Buntings and New World Sparrows). En J. Del Hoyo, A. Elliot y A. Christie (eds). Handbook of the Birds of the World (pp. 428-876). (Volume 16: Tanagers to New World Blackbirds). Barcelona: Lynx Editions. https://doi.org/10.1525/auk.2013.130.3.555Romero-Pujante, M., Hoi, H., Blomqvist, D. y Valera, F. (2002). Tail length and mutual mate choice in bearded tits (Panurus biarmicus). Ethology, 108(10), 885-895. https://doi.org/10.1046/j.1439-0310.2002.00821.xSaldivar, M. J. B. y Massoni, V. (2018). Lack of conspecific visual discrimination between second-year males and females in the Saffron Finch. PloS one, 13(12) e0209549. https://doi.org/10.1371/journal.pone.0209549Saldívar, M. J. B., Miño, C. I. y Massoni, V. (2019). Genetic mating system, population genetics and effective size of Saffron Finches breeding in southern South America. Genetica, 147(3-4), 315-326. https://doi.org/10.1007/s10709-019-00072-4Sambrook, J. y Russell, D. W. (2001). Molecular Cloning: A laboratory manual. New York: Cold spring Harbor Laboratory Press. https://www.cshlpress.com/pdf/sample/2013/MC4/MC4FM.pdfSzékely, T., Reynolds, J. D. y Figuerola, J. (2000). Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution, 54(4), 1404–1413. https://doi.org/10.1111/j.0014-3820.2000.tb00572.xSzékely, T., Lislevand, T. y Figuerola, J. (2007). Sexual size dimorphism in birds. In D. Fairbairn, W. Blanckenhorn, & T. Székely (eds.). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (pp. 27-37). United Kingdom: Oxford University Press. DOI:10.1093/acprof:oso/9780199208784.001.0001Sokal, R. R., y Rohlf, E. J. (1995). Biometry. New York: W. H. Freeman and Co. https://doi.org/10.2307/2343822Suhonen, J., y Kuitunen, M. (1991). Intersexual foraging niche differentiation within the breeding pair in the Common Treecreeper Certhia familiaris. Ornis Scandinavica, 22(4), 313-318. https://doi.org/10.2307/3676502Suthers, H. B. (1994). Sex determination by wing and tail measurements in the Song Sparrow and Field Sparrow. N. Am. Bird-Bander, 19, 77-83. https://sora.unm.edu/sites/default/files/journals/nabb/v019n03/p0077-p0083.pdfSymonds, M. R. y Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence for Allen’s rule. Amer. Naturalist., 176(2), 188-197. https://doi.org/10.1086/653666Temeles, E. J., Pan, I. L., Brennan, J. L. y Horwitt, J. N. (2000). Evidence for ecological causation of sexual dimorphism in a hummingbird. Science, 289(5478), 441-443.Thode, H. C. (2002). Testing for Normality (Vol. 164). New York: CRC press.Thomas, A. L. (1996). The flight of birds that have wings and a tail: variable geometry expands the envelope of flight performance. J. Theor. Biol., 183 (3): 237-245. https://doi.org/10.1126/science.289.5478.441Thomas, A. L. (1997). On the tails of birds. Bioscience, 47 (4): 215-225. https://doi.org/10.2307/1313075Thomas, A. L., y Taylor, G. K. (2001). Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol., 212 (3): 399-424. https://doi.org/10.1006/jtbi.2001.2387Venables, W. N., y Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer. https://doi.org/10.1007/b97626Warrick, D. R., Bundle, M. W., y Dial, K. P. (2002). Bird maneuvering flight: blurred bodies, clear heads. Integrative and Comparative Biology, 42 (1): 141-148. https://doi.org/10.1093/icb/42.1.141Webster, M. S. (1992). Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). Evolution, 46 (6): 1621-1641. https://doi.org/10.1111/j.1558-5646.1992.tb01158.xWilson, R. R. (1999). Sex Determination of the Acadian Flycatcher Using Discriminant Analysis. J. Field Ornithol., 70 (4): 514-519. https://www.jstor.org/stable/4514444Yamazaki, Y., Yamato, A., Yamada, A., y Nishiwaki, K. (1994). Sex determination of Humboldt Penguins (Spheniscus humboldti) using an original designed restraint. Penguin Conserv, 7: 7-11. https://www.jstor.org/stable/4514199Yan-Ping, F., Yan-Zhang, G., Affara, N. A., Xiu-Li, P., Jin-Feng, Y., Rui-Xia, Z., Yusuf, M., Jeffer, O., y Shu-Jun, Z. (2006). Analysis of the offspring sex ratio of chicken by using molecular sexing. Agric. Sci. in China, 5: 545–549. https://doi.org/10.1016/S1671-2927(06)60090-4Zavalaga, C. B., y Paredes, R. (1997). Sex Determination of Adult Humboldt Penguins Using Morphometric Characters. J. Field Ornithol., 68 (1): 102-112. https://www.jstor.org/stable/4514199Núm. 1 , Año 2021 : Enero - Juniohttps://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/4334/3984https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Espinosa, CamiloCastro, IsabelCruz Bernate, Lorenaoai:repositorio.ucaldas.edu.co:ucaldas/229762025-10-08T21:03:02Z