Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores
Tablas, figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
eng
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22653
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22653
- Palabra clave:
- 620 - Ingeniería y operaciones afines
2. Ingeniería y Tecnología
Transporte Marítimo
Maritime Transport
Comercio Exterior
Optimización
Logística
Medio Ambiente
Foreign Trade
Optimization
Logistics
Environmental
Ingeniería
Transporte marítimo
Tecnología de materiales
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_d5b4e9eaac16cafb7a389043d8df4423 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22653 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores Multi-objective optimization of logistics and environmental processes in maritime container transportation |
| title |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| spellingShingle |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores 620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Transporte Marítimo Maritime Transport Comercio Exterior Optimización Logística Medio Ambiente Foreign Trade Optimization Logistics Environmental Ingeniería Transporte marítimo Tecnología de materiales |
| title_short |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| title_full |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| title_fullStr |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| title_full_unstemmed |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| title_sort |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedores |
| dc.contributor.none.fl_str_mv |
Isaza, Gustavo Toro-Ocampo, Eliana Mirledy Jaramillo-Garzón, Jorge Alberto Inteligencia Artificial Franco Baquero, John Fredy Villegas Ramírez, Juan Guillermo Gutiérrez Mosquera, Luis Fernando |
| dc.subject.none.fl_str_mv |
620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Transporte Marítimo Maritime Transport Comercio Exterior Optimización Logística Medio Ambiente Foreign Trade Optimization Logistics Environmental Ingeniería Transporte marítimo Tecnología de materiales |
| topic |
620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Transporte Marítimo Maritime Transport Comercio Exterior Optimización Logística Medio Ambiente Foreign Trade Optimization Logistics Environmental Ingeniería Transporte marítimo Tecnología de materiales |
| description |
Tablas, figuras |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09-04T21:24:06Z 2025-09-04T21:24:06Z 2025 2035-09-04 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 Text info:eu-repo/semantics/doctoralThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22653 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22653 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
Abbasi-Pooya A., Husseinzadeh Kashan A. (2017). New mathematical models and a hybrid Grouping Evolution Strategy algorithm for optimal helicopter routing and crew pickup and delivery. Computers and Industrial Engineering, 112: 35–56. https://doi.org/10.1016/j.cie.2017.08.007 Abu Aisha T., Ouhimmou M., Paquet M., Montecinos J. (2021). Developing the seaport container terminal layout to enhance efficiency of the intermodal transportation system and port operations - case of the Port of Montreal. Maritime Policy and Management,. https://doi.org/10.1080/03088839.2021.1875140 Acciaro M., McKinnon A.C. (2015). Carbon emissions from container shipping: An analysis of new empirical evidence. International Journal of Transport Economics, 42(2): 211–228. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84943624590&partnerID=40&md5=30c591c9a22673c70f76610c83d9685f. [Visitada en octubre de 2022]. Acciaro M., Sys C. (2020). Innovation in the maritime sector: aligning strategy with outcomes. Maritime Policy and Management, 47(8): 1045–1063. https://doi.org/10.1080/03088839.2020.1737335 Acosta A., Salcedo O., Rivas E. (2019). Programación dinámica en el cálculo de la ruta óptima de una topología de red: Caso de Estudio. Espacios, 40: 14–23. Adikari A.M.C., Amalan T.P. (2019). Distribution cost optimization using Big Data Analytics, Machine Learning and Computer Simulation for FMCG Sector. Conference on Smart Computing and Systems Engineering, 63–69. https://doi.org/10.23919/SCSE.2019.8842697 Adland R., Jia H., Lode T., Skontorp J. (2021). The value of meteorological data in marine risk assessment. Reliability Engineering & System Safety, 209: 1–10. https://doi.org/10.1016/j.ress.2021.107480 Agra A., Christiansen M., Hvattum L.M., Rodrigues F. (2016). A MIP based local search heuristic for a stochastic maritime inventory routing problem. Lecture Notes in Computer Science, 9855: 18–34. https://doi.org/10.1007/978-3-319-44896-1_2 Aguilar-Chinea R.M., Rodriguez I.C., Expósito C., Melian-Batista B., Moreno-Vega J.M. (2019). Using a decision tree algorithm to predict the robustness of a transshipment schedule. En P. V Ruiz Estrada M.A. Ginters E. (Ed.), Procedia Computer Science (Vol. 149, pp. 529–536). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.01.172 Akbarzadeh Khorshidi H., Aickelin U., Haffari G., Hassani-Mahmooei B. (2019). Multi-objective semi-supervised clustering to identify health service patterns for injured patients. Health Information Science and Systems, 7(1):. https://doi.org/10.1007/s13755-019-0080-6 Alpan G., Larbi R., Penz B. (2011). A bounded dynamic programming approach to schedule operations in a cross docking platform. Computers and Industrial Engineering, 60(3): 385– 396. https://doi.org/10.1016/j.cie.2010.08.012 Altiparmak F., Karaoglan I. (2007). A genetic ant colony optimization approach for concave cost transportation problems. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 1685–1692. https://doi.org/10.1109/CEC.2007.4424676 Alvarez J.A., Hurtado S.V., Trujillo H. (2021). Algoritmos genéticos (pp. 31–37). Ammi M., Chikhi S. (2015). A generalized island model based on parallel and cooperating metaheuristics for effective large capacitated vehicle routing problem solving. Journal of Computing and Information Technology, 23(2): 141–155. https://doi.org/10.2498/cit.1002465 Ang J.S.K., Cao C., Ye H.-Q. (2007). Model and algorithms for multi-period sea cargo mix problem. European Journal of Operational Research, 180(3): 1381–1393. https://doi.org/10.1016/j.ejor.2006.05.012 Antar A.D., Ahmed M., Ahad M.A.R. (2021). Recognition of human locomotion on various transportations fusing smartphone sensors. Pattern Recognition Letters, 148: 146–153. https://doi.org/10.1016/j.patrec.2021.04.015 Arias J.S. (2010). Aplicación de un modelo de optimización en la planeación de rutas de los buses escoalres del colegio de Cervantes Norte. Disponible en: https://repository.javeriana.edu.co/bitstream/handle/10554/7367/tesis403.pdf;sequence=1. [Visitada en febrero de 2022]. Arias M.A., Londoño J.I. (2009). Algoritmos Genéticos: Una solución alternativa para optimizar el modelo de inventario. Universidad EAFIT. Aringhieri R., Bigharaz S., Duma D., Guastalla A. (2021). Fairness in ambulance routing for post disaster management. Central European Journal of Operations Research,. https://doi.org/10.1007/s10100-021-00785-y Arjona Aroca J., Giménez Maldonado J.A., Ferrús Clari G., i García N., Calabria L., Lara J. (2020). Enabling a green just-in-time navigation through stakeholder collaboration. European Transport Research Review, 12(1):. https://doi.org/10.1186/s12544-020-00417-7 Asih A.M.S., Jatiningrum W.S., Sopha B.M. (2016). Collaborative distribution - Application to the city of Yogyakarta, Indonesia. IEEE International Conference on Industrial Engineering and Engineering Management, 1141–1145. https://doi.org/10.1109/IEEM.2016.7798056 Atak Ü., Kaya T., Arslanoğlu Y. (2021). Container Terminal Workload Modeling Using Machine Learning Techniques. Advances in Intelligent Systems and Computing, 1197: 1149–1155. https://doi.org/10.1007/978-3-030-51156-2_134 Bae J., Lee S., Kim S., Lee Y.H. (2019). An automatic logistics system using artificial intelligence. International Journal of Recent Technology and Engineering, 8(2): 924–926. https://doi.org/10.35940/ijrte.B1183.0782S419 Bélanger N., Desaulniers G., Soumis F., Desrosiers J., Lavigne J. (2006). Weekly airline fleet assignment with homogeneity. Transportation Research Part B: Methodological, 40(4): 306–318. https://doi.org/10.1016/j.trb.2005.03.004 Bengio Y., Lodi A., Prouvost A. (2020). Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon *. European Journal of Operational Research, 405-421. Benigno S., Guerriero F., Miglionico G. (2012). A revenue management approach to address a truck rental problem. Journal of the Operational Research Society, 63(10): 1421–1433. https://doi.org/10.1057/jors.2011.138 Bergantino A.S., Bolis S. (2008). Monetary values of transport service attributes: Land versus maritime ro-ro transport. An application using adaptive stated preferences. Maritime Policy and Management, 35(2): 159–174. https://doi.org/10.1080/03088830801956821 Bertazzi L., Speranza M.G. (1999). Minimizing logistic costs in multistage supply chains. Naval Research Logistics, 46(4): 399–417. https://doi.org/10.1002/(SICI)1520- 6750(199906)46:4<399::AID-NAV4>3.0.CO;2-9 Bettinelli A., Ceselli A., Righini G. (2014). A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows. Mathematical Programming Computation, 6(2): 171–197. https://doi.org/10.1007/s12532-014-0064-0 Bhattacharjee P., Ahmed N., Akbar S., Habib S. (2020). An efficient ant colony algorithm for multi-depot heterogeneous fleet green vehicle routing problem. Proceedings of the International Conference on Industrial Engineering and Operations Management, August. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85096534224&partnerID=40&md5=729464567d8440af5b38df0f9c338ce3. [Visitada en febrero de 2022]. Bian Z., Bai Y., Douglas W.S., Maher A., Liu X. (2022). Multi-year planning for optimal navigation channel dredging and dredged material management. Transportation Research Part E: Logistics and Transportation Review, 159:. https://doi.org/10.1016/j.tre.2022.102618 Bruzzone A., Orsoni A., Mosca R., Revetria R. (2002a). AI-based optimization for fleet management in maritime logistics. Winter Simulation Conference Proceedings, 2: 1174– 1182. https://doi.org/10.1109/WSC.2002.1166375 Bruzzone A., Orsoni A., Mosca R., Revetria R. (2002b). AI-based optimization for fleet management in maritime logistics. En S. J. L. C. J. M. Yucesan E. Chen C.H. (Ed.), Winter Simulation Conference Proceedings (Vol. 2, pp. 1174–1182). Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0036932248&partnerID=40&md5=4b136f129ae0a394bffe9f24d2b3c9d3. [Visitada en febrero de 2022]. Brzozowska A., Bubel D., Kalinichenko A. (2019). Analysis of the road traffic management system in the neural network development perspective. Eastern-European Journal of Enterprise Technologies, 2(3–98): 16–24. https://doi.org/10.15587/1729- 4061.2019.160049 Bu L., Yin C., Zhao Y. (2007). Model and algorithm of vehicle routing problem on railway baggage and parcel. Tongji Daxue Xuebao/Journal of Tongji University, 35(8): 1069–1073. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 35248847414&partnerID=40&md5=6dec4ee5fbdd69f786891bd4b2468625. [Visitada en diciembre de 2021]. Çakmak E., Önden İ., Acar A.Z., Eldemir F. (2021). Analyzing the location of city logistics centers in Istanbul by integrating Geographic Information Systems with Binary Particle Swarm Optimization algorithm. Case Studies on Transport Policy, 9(1): 59–67. https://doi.org/10.1016/j.cstp.2020.07.004 Calabrò G., Torrisi V., Inturri G., Ignaccolo M. (2020). Improving inbound logistic planning for large-scale real-world routing problems: a novel ant-colony simulation-based optimization. European Transport Research Review, 21(1): 12–21. https://doi.org/10.1186/s12544-020- 00409-7 Camur M.C., Sharkey T.C., Dorsey C., Grabowski M.R., Wallace W.A. (2021). Optimizing the response for Arctic mass rescue events. Transportation Research Part E: Logistics and Transportation Review, 152: 1–24. https://doi.org/10.1016/j.tre.2021.102368 Cardona D., Balza V., Henriquez G. (2017). Innovación en los procesos logísticos: Retos locales frente al desarrollo global (Universidad Libre (ed.); 1a ed.). Universidad Libre. Disponible en: https://repository.unilibre.edu.co/bitstream/handle/10901/10691/DINAMICA_E_INNOV ACION.pdf?sequence=1&isAllowed=y. [Visitada en mayo de 2022]. Carvalho F., Portugal‐pereira J., Junginger M., Szklo A. (2021). Biofuels for maritime transportation: A spatial, techno‐economic, and logistic analysis in brazil, europe, south africa, and the usa. Energies, 14(16): 1–27. https://doi.org/10.3390/en14164980 Castilla-Rodríguez I., Expósito-Izquierdo C., Melián-Batista B., Aguilar R.M., Moreno-Vega J.M. (2020). Simulation-optimization for the management of the transshipment operations at maritime container terminals. Expert Systems with Applications, 139:. https://doi.org/10.1016/j.eswa.2019.112852 Castro O., Soler E., Umaña R., Yepes C. (2017). Infraestructura portuaria en Colombia: asimetrías entre el puerto de Buenaventura y el puerto de Cartagena para el año 2015. Universidad & Empresa, 19(32): 100. https://doi.org/10.12804/HTTP://REVISTAS.UROSARIO.EDU.CO/INDEX.PHP/EMPRE SA/ARTICLE/VIEW/4788 CCA. (2022). Transporte Marítimo. CCA logistics group. Disponible en: https://www.ccalogisticsgroup.com/transporte-maritimo/. [Visitada en febrero de 2022]. CEUPE. (2021). ¿Cómo impactan los distintos tipos de transporte en el medio ambiente? CEUPE. Disponible en: https://www.ceupe.com/blog/como-impactan-los-distintos-tiposde- transporte-en-el-medio-ambiente.html. [Visitada en febrero de 2022]. Chaieb M., Ben Sassi D. (2021). Measuring and evaluating the Home Health Care Scheduling Problem with Simultaneous Pick-up and Delivery with Time Window using a Tabu Search metaheuristic solution. Applied Soft Computing, 113:. https://doi.org/10.1016/j.asoc.2021.107957 Chan F.T.S., Shekhar P., Tiwari M.K. (2014a). Dynamic scheduling of oil tankers with splitting of cargo at pickup and delivery locations: A Multi-objective Ant Colony-based approach. International Journal of Production Research, 52(24): 7436–7453. https://doi.org/10.1080/00207543.2014.932932 Chan F.T.S., Shekhar P., Tiwari M.K. (2014b). Dynamic scheduling of oil tankers with splitting of cargo at pickup and delivery locations: A Multi-objective Ant Colony-based approach. International Journal of Production Research, 52(24): 7436–7453. https://doi.org/10.1080/00207543.2014.932932 Chang S.-M., Huang Y.-Y., Shang K.-C., Chiang W.-T. (2020). Impacts of regional integration and maritime transport on trade: with special reference to RCEP. Maritime Business Review, 5(2): 143–158. https://doi.org/10.1108/MABR-03-2020-0013 Chen L., Ye C., Wang J. (2020). The location-routing problem in the agricultural production waste recycling logistics system. En Z. H. Zhang H. Tong Z. (Ed.), Proceedings of the 10th International Conference on Logistics and Systems Engineering 2020 (pp. 186–202). Aussino Academic Publishing House. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85103478324&partnerID=40&md5=87478f9f6aedae1d48bdc88fb8c271e6. [Visitada en diciembre de 2021]. Chen X., Shi C., Zhou A., Wu B., Cai Z. (2017). A decomposition based multiobjective evolutionary algorithm with semi-supervised classification. 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 797–804. https://doi.org/10.1109/CEC.2017.7969391 Chen Y., Song B., Zeng Y., Du X., Guizani M. (2021). Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation. Applied Soft Computing, 106907: 1–10. https://doi.org/10.1016/j.asoc.2020.106907 Chislov O., Zadorozhniy V., Lomash D., Chebotareva E., Solop I., Bogachev T. (2020). Methodological bases of modeling and optimization of transport processes in the interaction of railways and maritime transport. Advances in Intelligent Systems and Computing, 1083 AISC: 79–89. https://doi.org/10.1007/978-3-030-34069-8_7 Cho H., Lee J. (2020). Does transportation size matter for competitiveness in the logistics industry? The cases of maritime and air transportation. Asian Journal of Shipping and Logistics, 36(4): 214–223. https://doi.org/10.1016/j.ajsl.2020.04.002 Chu D., Li C., Xu X., Zhang X. (2015). A Graph Based Framework for Route Optimization in Sea-Trade Logistics. Mathematical Problems in Engineering, 2015:. https://doi.org/10.1155/2015/104326 Clarke S., Hollings T., Liu N., Hood G., Robinson A. (2017). Biosecurity risk factors presented by international vessels: a statistical analysis. Biological Invasions, 19(10): 2837–2850. https://doi.org/10.1007/S10530-017-1486-1 Ćirović G., Pamučar D., Božanić D. (2014). Green logistic vehicle routing problem: Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Systems with Applications, 41(9): 4245–4258. https://doi.org/10.1016/j.eswa.2014.01.005 Cui Y., Huang M., Dai Q. (2017). 4PL collaborative routing customization problem on the dynamic networks. IEEE International Conference on Automation Science and Engineering, 1345–1349. https://doi.org/10.1109/COASE.2017.8256289 Czermański E., Cirella G.T., Notteboom T., Oniszczuk-Jastrzabek A., Pawłowska B. (2021). An energy consumption approach to estimate air emission reductions in container shipping. Energies, 14(2):. https://doi.org/10.3390/en14020278 Dai X., Chen M., Zhou Y. (2021). Optimal logistics transportation and route planning based on fpga processor real-time system and machine learning. Microprocessors and Microsystems, 80: 1–7. https://doi.org/10.1016/j.micpro.2020.103621 Dang Y., Singh M., Allen T.T. (2021). Network mode optimization for the DHL supply chain. Interfaces, 51(3): 179–199. https://doi.org/10.1287/INTE.2020.1046 Darendeli A., Alparslan A., Erdoğan M.S., Kabadurmuş Ö. (2021). Container Demand Forecasting Using Machine Learning Methods: A Real Case Study from Turkey. Lecture Notes in Mechanical Engineering, 250869: 842–852. https://doi.org/10.1007/978-3-030- 62784-3_70 Das P., Hossain S., Gupta A. (2010). A meta-heuristic approach to car allocation problem to reduce transportation cost over a fixed number of routes. International Journal of Data Analysis Techniques and Strategies, 2(1): 85–102. https://doi.org/10.1504/IJDATS.2010.030013 Dasgupta S., Papadimitriou C.H., Vazirani U.V. (2006). Algorithms. Disponible en: http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf. [Visitada en diciembre de 2021 ]. De A., Choudhary A., Tiwari M.K. (2019). Multiobjective Approach for Sustainable Ship Routing and Scheduling with Draft Restrictions. IEEE Transactions on Engineering Management, 66(1): 35–51. https://doi.org/10.1109/TEM.2017.2766443 De A., Wang J., Tiwari M.K. (2021). Fuel Bunker Management Strategies within Sustainable Container Shipping Operation Considering Disruption and Recovery Policies. IEEE Transactions on Engineering Management, 68(4): 1089–1111. https://doi.org/10.1109/TEM.2019.2923342 De Água P.M.G.B., Da Silva Frias A.D., De Jesus Carrasqueira M., Daniel J.M.M. (2020). Future of maritime education and training: Blending hard and soft skills. Pomorstvo, 34(2): 345– 353. https://doi.org/10.31217/p.34.2.15 De Lavalle M.C. (2018). El transporte marítimo: su importancia para la economía mundial. Tendencias a medio y largo plazo. Información Comercial Española , 901: 9–26. Disponible en: http://www.revistasice.com/index.php/ICE/article/view/1999/1999. [Visitada en diciembre de 2021]. De León A.D., Lalla-Ruiz E., Melián-Batista B., Moreno-Vega J.M. (2021). A simulation– optimization framework for enhancing robustness in bulk berth scheduling. Engineering Applications of Artificial Intelligence, 103: 1–16. https://doi.org/10.1016/j.engappai.2021.104276 De M., Giri B.C. (2020). Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transportation Research Part E: Logistics and Transportation Review, 133:. https://doi.org/10.1016/j.tre.2019.11.007 De Sa F.P.G., Brandao D.N., Ogasawara E., Coutinho R.D.C., Toso R.F. (2020). Wind Turbine Fault Detection: A Semi-Supervised Learning Approach with Automatic Evolutionary Feature Selection. En B. G. A. J. D. S. F. L. A. F. Paiva A.C. Conci A. (Ed.), International Conference on Systems, Signals, and Image Processing (Vols. 2020-July, pp. 323–328). IEEE Computer Society. https://doi.org/10.1109/IWSSIP48289.2020.9145244 Demirag O.C., Swann J.L. (2007). Capacity allocation to sales agents in a decentralized logistics network. Naval Research Logistics, 54(7): 796–810. https://doi.org/10.1002/nav.20254 Desarrollo logístico. (2021). Departamento de transporte marítimo, fluvial y lacustre. Disponible en: http://www.logistica.mtt.cl/areas/2/departamento-de-transporte-maritimo-fluvial-ylacustre. [Visitada en febrero de 2022]. Dhanak M., Parr S., Kaisar E.I., Goulianou P., Russell H., Kristiansson F. (2021). Resilience assessment tool for port planning. Environment and Planning B: Urban Analytics and City Science, 48(5): 1126–1143. https://doi.org/10.1177/2399808321997824 Díaz E., Martínez A., Gálvez D. (2016). Una implementación de la meta-heurística “Optimización en Mallas Variables” en la arquitectura CUDA. Revista Cubana de Ciencias Informáticas, 10:. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300004. [Visitada en diciembre de 2021]. Diego F.J., González J.A., Carrasco J. (2008). Optimización por colonias de hormigas para la gestión de flotas de transporte de viajeros en sistemas logísticos avanzados Optimización por colonias de hormigas para la gestión de flotas de transporte de viajeros en sistemas logísticos avanzados. September. II International Conference on Industrial Engineering and Industrial Management XII Congreso de Ingeniería de Organización September 3-5, Burgos, Spain. Dimar. (2020). Estadística anuales de transporte marítimo en Colombia. Disponible en: https://www.dimar.mil.co/sites/default/files/noticias/Estadísticas Anuales de Transporte Marítimo en Colombia.pdf. [Visitada en diciembre de 2021]. Dinç D.T., Karamelikli H. (2021). Symmetric and asymmetric relationship between maritime transportation and foreign trade volume. International Journal of Shipping and Transport Logistics, 13(3): 260–274. https://doi.org/10.1504/IJSTL.2021.113983 Dolinskaya I.S. (2012). Optimal path finding in direction, location, and time dependent environments. Naval Research Logistics, 59(5): 325–339. https://doi.org/10.1002/nav.21492 Donati A. V, Montemanni R., Gambardella L.M., Rizzoli A.E. (2003). Integration of a robust shortest path algorithm with a time dependent vehicle routing model and applications. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, 26–31. https://doi.org/10.1109/CIMSA.2003.1227196 Dong B., Christiansen M., Fagerholt K., Chandra S. (2020). Design of a sustainable maritime multi-modal distribution network – Case study from automotive logistics. Transportation Research Part E: Logistics and Transportation Review, 143: 1–15. https://doi.org/10.1016/j.tre.2020.102086 Dong C., Transchel S. (2020). A dual sourcing inventory model for modal split transport: Structural properties and optimal solution. European Journal of Operational Research, 283(3): 883–900. https://doi.org/10.1016/j.ejor.2019.11.050 Dong X., Li W., Zheng L. (2013). Ant colony optimisation for a resource-constrained shortest path problem with applications in multimodal transport. International Journal of Modelling, Identification and Control, 18(3): 268–275. https://doi.org/10.1504/IJMIC.2013.052821 Donyavi Z., Asadi S. (2020). Using decomposition-based multi-objective evolutionary algorithm as synthetic example optimization for self-labeling. Swarm and Evolutionary Computation, 58:. https://doi.org/10.1016/j.swevo.2020.100736 Dulebenets M.A. (2022). Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design. Journal of Cleaner Production, 342: 130897. https://doi.org/10.1016/J.JCLEPRO.2022.130897 EAG. (2021). Algoritmos genéticos y su gran cantidad de aplicaciones. Enzyme Advising Group (EAG). Disponible en: https://blog.enzymeadvisinggroup.com/algoritmos-geneticos-y-susaplicaciones- para-soluciones. [Visitada en diciembre de 2021]. Echeverri E., Vélez E.A., Gómez S., Chaverra L., Escobar D.C., Zuluaga O. (2017). Benefits in the construction method of directional dikes and River transport of Cargo. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA,. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85039147499&partnerID=40&md5=a1304df17c32ed740131741d65e85792. [Visitada en diciembre de 2021]. Ekmekçioğlu A., Ünlügençoğlu K., Çelebi U.B. (2022a). Container ship emission estimation model for the concept of green port in Turkey. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 236(2): 504–518. https://doi.org/10.1177/14750902211024453 Ekmekçioğlu A., Ünlügençoğlu K., Çelebi U.B. (2022b). Estimation of shipping emissions based on real-time data with different methods: A case study of an oceangoing container ship. Environment, Development and Sustainability, 24(3): 4451–4470. https://doi.org/10.1007/s10668-021-01605-8 Encinar del Dedo S. (2015). Aplicación computacional de un nuevo algoritmo híbrido (ANNAGDC) en cinética química [Universidad de Salamanca]. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=76733. [Visitada en diciembre de 2021]. Fattahi P., Tanhatalab M. (2021). Stochastic inventory-routing problem with lateral transshipment for perishable product. Journal of Modelling in Management,. https://doi.org/10.1108/JM2-09-2019-0230 Fiorencio L., Oliveira F., Nunes P., Hamacher S. (2015). Investment planning in the petroleum downstream infrastructure. International Transactions in Operational Research, 22(2): 339–362. https://doi.org/10.1111/itor.12113 Fontalvo-Herrera T., De la Hoz-Granadillo E., Mendoza-Mendoza A. (2019). Los Procesos Logísticos y La Administración de la Cadena de Suministro. Univesidad Libre sede Cartagena, 14(2): 102–112. Disponible en: https://revistas.unilibre.edu.co/index.php/saber/article/view/5880/5458. [Visitada en diciembre de 2021]. Franchi L., Vanelslander T. (2021). Port greening: Discrete choice analysis investigation on environmental parameters affecting container shipping companies’ behaviors. Sustainability (Switzerland), 13(13):. https://doi.org/10.3390/su13137010 Freitó M., Cespón R. (2009). Optimización por colonia de hormigas selecting distribution routes using ant colony. Vector, 4: 59–66. Gao F., Gao W., Huang L., Xie J., Gong M. (2022). An effective knowledge transfer method based on semi-supervised learning for evolutionary optimization. Information Sciences, 612: 1127–1144. https://doi.org/10.1016/j.ins.2022.09.020 Gao J., Wang J.-W., Li L.-N. (2013). A combined model of Richards model and BP neural network to predict transportation carbon emission. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 33(4): 99–104. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84883472579&partnerID=40&md5=2572609d324ee6504b06a2c97e4a02c7. [Visitada en diciembre de 2021]. Gao L., Dou H. (2020). Inventory management of railway logistics park based on artificial neural network. Journal Europeen des Systemes Automatises, 53(5): 715–723. https://doi.org/10.18280/jesa.530514 Gaonkar R.S.P., Nigalye A. V, Pai S.P. (2021). Possibilistic Approach for Travel Time Reliability Evaluation. International Journal of Mathematical, Engineering and Management Sciences, 6(1): 223–243. https://doi.org/10.33889/IJMEMS.2021.6.1.014 Garduño R. (2018). Algoritmos genéticos. Conogasi. Disponible en: https://conogasi.org/articulos/algoritmos-geneticos/. [Visitada en diciembre de 2021]. Garg C.P., Kashav V. (2019). Evaluating value creating factors in greening the transportation of Global Maritime Supply Chains (GMSCs) of containerized freight. Transportation Research Part D: Transport and Environment, 73: 162–186. https://doi.org/10.1016/j.trd.2019.06.011 Ge J., Li Y.-F., Xia G.-P. (2005). Research on global supply chain production planning under uncertain environment. Computer Integrated Manufacturing Systems (CIMS), 11(8): 1120– 1126. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 24744448239&partnerID=40&md5=54abd27627e00a7bb521b53839cefbd9. [Visitada en diciembre de 2021]. Ghaffarinasab N. (2020). A tabu search heuristic for the bi-objective star hub location problem. International Journal of Management Science and Engineering Management, 15(3): 213– 225. https://doi.org/10.1080/17509653.2019.1709992 Gil S.F., Llave M.A., Munive J.C. (2016). Aplicación de modelo de programación dinámica para la asignación de recursos del área de fuerza de ventas de la empresa Total Potentials. Universidad Peruana de Ciencias Aplicadas. Goerlandt F., Islam S. (2021). A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia. Reliability Engineering and System Safety, 214:. https://doi.org/10.1016/j.ress.2021.107708 González A. (2021). ¿Qué es Machine Learning? Cleverdata. Disponible en: https://cleverdata.io/que-es-machine-learning-big-data/. [Visitada en diciembre de 2021]. González L.R. (2013). Las vías fluviales, infraestructuras y puertos: la industria del contenedor, sus aportes al transporte multimodal, visión en Colombia. Revista Humanismo y Sociedad, 1: 162–167. Disponible en: https://studylib.es/doc/4748899/las-vías-fluviales-- infraestructuras-y-puertos--la-indust. [Visitada en diciembre de 2021]. Gonzalez O.A., Koivisto H., Mustonen J.M., Keinänen‐toivola M.M. (2021). Digitalization in just‐in‐time approach as a sustainable solution for maritime logistics in the baltic sea region. Sustainability, 13(3): 1–24. https://doi.org/10.3390/su13031173 Greene S., Jia H., Rubio-Domingo G. (2020). Well-to-tank carbon emissions from crude oil maritime transportation. Transportation Research Part D: Transport and Environment, 88:. https://doi.org/10.1016/j.trd.2020.102587 Gu Y., Wallace S.W. (2021). Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen. Transportation Research Part E: Logistics and Transportation Review, 154:. https://doi.org/10.1016/j.tre.2021.102456 Guillermo J. (2016). Las redes neuronales: qué son y por qué están volviendo. Xataka. Disponible en: https://www.xataka.com/robotica-e-ia/las-redes-neuronales-que-son-y-por-que-estanvolviendo. [Visitada en diciembre de 2021 ]. Han Q., Sun Y., Wu Q., Bai Z. (2021). Research on Optimization Model of Logistics Transportation Truck Path considering Environmental Impact: Experimental Data from Xiqing District, Tianjin. Journal of Advanced Transportation, 2021:. https://doi.org/10.1155/2021/6665168 Handl J., Knowles J. (2006). On semi-supervised clustering via multiobjective optimization. GECCO 2006 - Genetic and Evolutionary Computation Conference, 2: 1465–1472. https://doi.org/10.1145/1143997.1144238 Hashemi R.R., Le Blanc L.A., Rucks C.T., Shearry A. (1995). A neural network for transportation safety modeling. Expert Systems With Applications, 9(3): 247–256. https://doi.org/10.1016/0957-4174(95)00002-Q Hatch M.L., Badinelli R.D. (1999). Concurrent optimization in designing for logistics support. European Journal of Operational Research, 115(1): 77–97. https://doi.org/10.1016/S0377- 2217(98)00082-4 Hernandez J.L. (2021). Algoritmos genéticos y su aplicación en optimización de redes. Universidad Nacional de la Plata. IBM. (2020). ¿Qué son las redes neuronales? International Business Machine (IBM). Disponible en: https://www.ibm.com/cloud/learn/neural-networks. [Visitada en diciembre de 2021]. IBM. (2021). ¿Qué es Machine Learning? International Business Machines Corporation (IBM). Disponible en: https://www.ibm.com/co-es/analytics/machine-learning. [Visitada en diciembre de 2021]. IONOS. (2020). ¿Qué es una neural network? IONOS. Disponible en: https://www.ionos.es/digitalguide/online-marketing/marketing-para-motores-debusqueda/ que-es-una-neural-network/. [Visitada en diciembre de 2021]. Islam M.A., Gajpal Y. (2021). Optimization of conventional and green vehicles composition under carbon emission cap. Sustainability, 13(12):. https://doi.org/10.3390/su13126940 Islam S., Goerlandt F., Feng X., Uddin M.J., Shi Y., Hilliard C. (2020). Improving disasters preparedness and response for coastal communities using AIS ship tracking data. International Journal of Disaster Risk Reduction, 51:. https://doi.org/10.1016/j.ijdrr.2020.101863 Jetlund A.S., Karimi I.A. (2004). Improving the logistics of multi-compartment chemical tankers. Computers and Chemical Engineering, 28(8): 1267–1283. https://doi.org/10.1016/j.compchemeng.2003.08.009 Ji H., Wu P. (2020). Sailing Route and Speed Optimization for Green Intermodal Transportation. 5th International Conference on Intelligent Transportation Engineering, ICITE 2020, 18– 22. https://doi.org/10.1109/ICITE50838.2020.9231520 Ju B., Kim M., Moon I. (2021). Vehicle routing problem considering reconnaissance and transportation. Sustainability, 13(6):. https://doi.org/10.3390/su13063188 Juvvala R., Sarmah S.P. (2021). Evaluation of policy options supporting electric vehicles in city logistics: a case study. Sustainable Cities and Society, 74:. https://doi.org/10.1016/j.scs.2021.103209 Kaasalainen S., Mäkela M., Ruotsalainen L., Malmivirta T., Fordell T., Hanhijärvi K., Wallin A., Lindvall T., Nikolskiy S., Olkkonen M.-K., Rantanen J., Lahtinen S., Zahidul H. Bhuiyan M., Koivula H. (2020). Reason - Resilience and security of geospatial data for critical infrastructures. En L. E.-S. T.-S. J. K. H. Ometov A. Nurmi J. (Ed.), CEUR Workshop Proceedings (Vol. 2880). CEUR-WS. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85108028232&partnerID=40&md5=84d84be0cf806e86d4a232a065c7955e. [Visitada en diciembre de 2021 ]. Kang K., Niu H., Zhu Y., Zhang W. (2010). Research on improved integrated optimization model for mode and route in multimodal transportation basing on the PSO-ACO. International Conference on Logistics Systems and Intelligent Management, ICLSIM 2010, 3: 1445–1449. https://doi.org/10.1109/ICLSIM.2010.5461206 Kang M.H., Choi H.R., Kim H.S., Park B.J. (2012). Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3): 585–604. https://doi.org/10.1007/s10489-011-0278-z Kantasa-ard A., Nouiri M., Bekrar A., el cadi A., Sallez Y. (2020). Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand. International Journal of Production Research,. https://doi.org/10.1080/00207543.2020.1844332 Karaduman H.A., Karaman-Akgül A., Çağlar M., Akbaş H.E. (2020). The relationship between logistics performance and carbon emissions: an empirical investigation on Balkan countries. International Journal of Climate Change Strategies and Management, 12(4): 449–461. https://doi.org/10.1108/IJCCSM-05-2020-0041 Kiba-Janiak M., Marcinkowski J., Jagoda A., Skowrońska A. (2021). Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review. Sustainable Cities and Society, 71:. https://doi.org/10.1016/j.scs.2021.102984 Kolen A.W., Lenstra K. (1995). Amsterdam: The MIT Press y North-Holland. En Handbook of combinatorics: Vol. II (pp. 1875–1910). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_nlinks&ref=000121&pid=S1794- 1237200700020000900022&lng=en. [Visitada en diciembre de 2021]. Kotcharin S., Maneenop S. (2020). Geopolitical risk and corporate cash holdings in the shipping industry. Transportation Research Part E: Logistics and Transportation Review, 136:. https://doi.org/10.1016/j.tre.2020.101862 Ku D., Arthanari T.S. (2016). Container relocation problem with time windows for container departure. European Journal of Operational Research, 252(3): 1031–1039. https://doi.org/10.1016/j.ejor.2016.01.055 Lai K.-H., Vejvar M., Lun V.Y.H. (2020). Risk in port logistics: Risk classification and mitigation framework. International Journal of Shipping and Transport Logistics, 12(6): 576–596. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85096131632&partnerID=40&md5=a1bfe578f19c96cbd280775f9c248618. [Visitada en diciembre de 2021 ]. Lam J.S.L. (2015). Designing a sustainable maritime supply chain: A hybrid QFD-ANP approach. Transportation Research Part E: Logistics and Transportation Review, 78: 70–81. https://doi.org/10.1016/j.tre.2014.10.003 Lapierre S.D., Ruiz A.B., Soriano P. (2004). Designing distribution networks: Formulations and solutions heuristic. Transportation Science, 38(2): 174–187. https://doi.org/10.1287/trsc.1030.0064 Le M.-L., Kohmura T. (2010). Compound method of solving logistics routes allocation. Journal of Shanghai Jiaotong University (Science), 15(1): 119–123. https://doi.org/10.1007/s12204- 010-9729-7 Le X., Bo L. (2009). A hybrid intelligent algorithm for grain logistics vehicle routing problem. Proceedings - 2009 International Conference on Environmental Science and Information Application Technology, ESIAT 2009, 2: 556–559. https://doi.org/10.1109/ESIAT.2009.312 Lee H., Aydin N., Choi Y., Lekhavat S., Irani Z. (2018). A decision support system for vessel speed decision in maritime logistics using weather archive big data. Computers and Operations Research, 98: 330–342. https://doi.org/10.1016/j.cor.2017.06.005 Lee J.-E., Gen M., Rhee K.-G. (2009). Network model and optimization of reverse logistics by hybrid genetic algorithm. Computers and Industrial Engineering, 56(3): 951–964. https://doi.org/10.1016/j.cie.2008.09.021 Lee S.W., Shin S.H., Bae H.S. (2020). Short sea shipping on the West Coast of Korea: Keys to activating the shipping industry in preparation for korea unification era. Journal of International Logistics and Trade, 18(2): 91–105. https://doi.org/10.24006/JILT.2020.18.2.091 Li H., He F., Chen Y. (2020). Learning dynamic simultaneous clustering and classification via automatic differential evolution and firework algorithm. Applied Soft Computing Journal, 96:. https://doi.org/10.1016/j.asoc.2020.106593 Li H., Zhang X., Fu S., Hu Y. (2021). A hybrid algorithm based on ant colony optimization and differential evolution for vehicle routing problem. Engineering Letters, 29(3): 1201–1211. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85114131109&partnerID=40&md5=6e304ca12ac1ac0005d19680caba31db. [Visitada en diciembre de 2021]. Li K., Li D., Wu D. (2020). Multi-objective optimization for location-routing-inventory problem in cold chain logistics network with soft time window constraint. Journal Europeen des Systemes Automatises, 53(6): 803–809. https://doi.org/10.18280/jesa.530606 Li L., Wang B., Cook D.P. (2015). Reprint of “Enhancing green supply chain initiatives via empty container reuse”. Transportation Research Part E: Logistics and Transportation Review, 74: 109–123. https://doi.org/10.1016/j.tre.2014.12.007 Li R., Mersch T.R., Wen O.X., Kaylani A., Anagnostopoulos G.C. (2010). Multi-objective memetic evolution of ART-based classifiers. 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010,. https://doi.org/10.1109/CEC.2010.5586385 Li R., Rose G., Chen H., Shen J. (2018). Effective long-term travel time prediction with fuzzy rules for tollway. Neural Computing and Applications, 30(9): 2921–2933. https://doi.org/10.1007/s00521-017-2899-6 Liao T.W. (2021). Integrated Inbound Vehicle Routing and Scheduling Under a Fixed Outbound Schedule at a Multi-Door Cross-Dock Terminal. IEEE Transactions on Intelligent Transportation Systems,. https://doi.org/10.1109/TITS.2021.3122396 Lin B., Ghaddar B., Nathwani J. (2021). Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows. IEEE Transactions on Intelligent Transportation Systems,. https://doi.org/10.1109/TITS.2021.3105232 Lister J. (2015). Green Shipping: Governing Sustainable Maritime Transport. Global Policy, 6(2): 118–129. https://doi.org/10.1111/1758-5899.12180 Liu L.-Z. (2012). The forecast of Qinhuangdao logistic based on BP neural network. International Journal of Digital Content Technology and its Applications, 6(8): 8–16. https://doi.org/10.4156/jdcta.vol6.issue8.2 Liu T., Yin Y., Yang X. (2020). Research on Logistics Distribution Routes Optimization Based on ACO. Proceedings - 2020 5th International Conference on Information Science, Computer Technology and Transportation, ISCTT 2020, 641–644. https://doi.org/10.1109/ISCTT51595.2020.00122 Logistec. (2021, junio). Los cinco pilares de la logística. Revista Logistec. Disponible en: https://www.revistalogistec.com/logistica/freight-management-2/3596-los-cinco-pilaresde- la-logistica. [Visitada en diciembre de 2021 ]. Longarela-Ares Á., Calvo-Silvosa A., Pérez-López J.-B. (2020). The influence of economic barriers and drivers on energy efficiency investments in maritime shipping, from the perspective of the principal-agent problem. Sustainability (Switzerland), 12(19): 1–42. https://doi.org/10.3390/su12197943 Lopes M.A. (2021). Negocios Globales. La oportunidad del Puerto Conectado, 16–17. Disponible en: http://www.microbyte.cl/nego/pdf/202110nego2.pdf. [Visitada en diciembre de 2021 ]. Lu X., Ota K., Dong M., Yu C., Jin H. (2017). Predicting Transportation Carbon Emission with Urban Big Data. IEEE Transactions on Sustainable Computing, 2(4): 333–344. https://doi.org/10.1109/TSUSC.2017.2728805 Lu Y.-R., Yang Y.-S., Lu F. (2006). Optimal vehicle routing problem based on fuzzy clustering analysis. Journal of Jilin University, 36(2): 147–151. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 33750205728&partnerID=40&md5=7c8e2739f89f61edbdc354999892aba7. [Visitada en diciembre de 2021 ]. Luo Q., Huang X. (2019). Multi-Agent Reinforcement Learning for Empty Container Repositioning. En W. L. Babu M.S.P. (Ed.), Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS (Vols. 2018-Novem, pp. 337–341). IEEE Computer Society. https://doi.org/10.1109/ICSESS.2018.8663934 Luong T. Van. (2016). Parallel Metaheuristics on GPU. https://doi.org/10.13140/RG.2.1.4017.5127 Ma H., Luo X. (2021). Logistics demand forecasting model based on improved neural network algorithm. Journal of Intelligent and Fuzzy Systems, 40(4): 6385–6395. https://doi.org/10.3233/JIFS-189479 Ma W., Ma D., Ma Y., Zhang J., Wang D. (2021). Green maritime: a routing and speed multiobjective optimization strategy. Journal of Cleaner Production, 305: 127179. https://doi.org/10.1016/J.JCLEPRO.2021.127179 Mahajan P.C., Kiwelekar A.W., Netak L.D., Ghodake A.B. (2022). Predicting Expected Time of Arrival of Shipments Through Multiple Linear Regression. Lecture Notes in Electrical Engineering, 783: 343–350. https://doi.org/10.1007/978-981-16-3690-5_30 Mahmoudzadeh A., Khodakarami M., Ma C., Mitchell K.N., Wang X.B., Zhang Y. (2021). Waterway maintenance budget allocation in a multimodal network. Transportation Research Part E: Logistics and Transportation Review, 146:. https://doi.org/10.1016/j.tre.2020.102215 Maneengam A., Udomsakdigool A. (2021). A Set Covering Model for a Green Ship Routing and Scheduling Problem with Berth Time-Window Constraints for Use in the Bulk Cargo Industry. Applied Sciences 2021, Vol. 11, Page 4840, 11(11): 4840. https://doi.org/10.3390/APP11114840 Mao W., Lenaers P., Salomonsson H., Brandholm P. (2016). Machine learning to predict a ship’s fuel consumption in seaways. PRADS 2016 - Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures. Marcos R., Cantú Ros O.G., Herranz R. (2017). Combining visual analytics and machine learning for route choice prediction: Application to pre-tactical traffic forecast. SESAR Innovation Days,. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85079014389&partnerID=40&md5=2b20e00476af058c0af7a666233a1247. [Visitada en diciembre de 2021]. Marine Traffic. (2022). MarineTraffic: Global Ship Tracking Intelligence. Disponible en: https://www.marinetraffic.com/en/ais/home/centerx:8.9/centery:53.3/zoom:8. [Visitada en mayo de 2022]. Matich D.J. (2001). Informática Aplicada a la Ingeniería de Procesos Martínez-López A., Caamaño Sobrino P., Chica González M., Trujillo L. (2019). Choice of propulsion plants for container vessels operating under Short Sea Shipping conditions in the European Union: An assessment focused on the environmental impact on the intermodal chains. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 233(2): 653–669. https://doi.org/10.1177/1475090218797179 Maurette M., Ojea I. (2006). Programación dinámica. Disponible en: http://cms.dm.uba.ar/materias/1ercuat2009/optimizacion/Maurette_Ojea.pdf. [Visitada en diciembre de 2021 ]. Mecalux. (2020). Machine learning y logística: aplicaciones clave. Mecalux. Disponible en: https://www.mecalux.com.co/blog/machine-learning-logistica. [Visitada en diciembre de 2021]. Megano T., Fukui K.-I., Numao M., Ono S. (2015). Evolutionary multi-objective distance metric learning for multi-label clustering. 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings, 2945–2952. https://doi.org/10.1109/CEC.2015.7257255 Ministerio de Educación Nacional. (2017). Logística portuaria: Marco nacional de cualificaciones. Disponible en: https://www.mineducacion.gov.co/1759/articles- 362825_recurso.pdf. [Visitada en diciembre de 2021 ]. Ministerio de Fomento. (2021). Análisis, información y divulgación sobre la aportación del transporte por carretera a la intermodalidad. Ministerio de Transporte. (2020). Transporte en cifras. Transporte en Cifras, 202. Disponible en: https://www.mintransporte.gov.co/descargar.php?idFile=53? [Visitada en diciembre de 2021 ]. Misra S., Kapadi M., Gudi R.D. (2020). A multi grid discrete time based framework for maritime distribution logistics & inventory planning for refinery products. Computers and Industrial Engineering, 146:. https://doi.org/10.1016/j.cie.2020.106568 MIT. (2021). Machine Learning: Tecnología en la toma de decisiones. Massachusetts Institute of Technology (MIT). Disponible en: https://prolearn.mit.edu/machine-learning-tecnologiaen- la-toma-de-decisiones-spanish. [Visitada en diciembre de 2021 ]. Moncayo C. (2020). Red Neuronal Profunda: nueva estrategia de recuperación de información. Instituto Nacional de Contadores Públicos de Colombia. Disponible en: https://incp.org.co/red-neuronal-profunda-nueva-estrategia-recuperacion-informacion/. [Visitada en diciembre de 2021 ]. Moshref-Javadi M., Hemmati A., Winkenbach M. (2020). A truck and drones model for last-mile delivery: A mathematical model and heuristic approach. Applied Mathematical Modelling, 80: 290–318. https://doi.org/10.1016/j.apm.2019.11.020 Mullaseril P.A., Dror M., Leung J. (1997). Split-delivery routeing heuristics in livestock feed distribution. Journal of the Operational Research Society, 48(2): 107–116. https://doi.org/10.1057/palgrave.jors.2600338 Müller-Merbach H. (1985). Heuristics: Intelligent search strategies for computer problem solving: Judea PEARL Addison-Wesley, Reading, 1984. European Journal of Operational Research, 21: 278–279. https://doi.org/10.1016/0377-2217(85)90047-5 Muñoz del Río A. (2021). Algoritmos genéticos: cómo funcionan y para qué se utilizan. International business school (IMF). Disponible en: https://blogs.imfformacion. com/blog/tecnologia/algoritmos-geneticos-como-funcionan-202010/. [Visitada en diciembre de 2021 ]. Munoz Hernandez A., Scarlatti D., Costas P. (2019). Real-Time Estimated Time of Arrival Prediction System using Historical Surveillance Data. En S. A. Staron M. Capilla R. (Ed.), Proceedings - 45th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2019 (pp. 174–177). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SEAA.2019.00035 Munyaka J.-C.B., Yadavalli V.S.S. (2021). Decision support framework for facility location and demand planning for humanitarian logistics. International Journal of Systems Assurance Engineering and Management, 12(1): 9–28. https://doi.org/10.1007/s13198-020-01037-z Muravev D., Hu H., Zhou H., Pamucar D. (2020). Location optimization of CR express international logistics centers. Symmetry, 12(1):. https://doi.org/10.3390/SYM12010143 Naciones Unidas. (2019). Informe Sobre El Transporte Maritimo 2019. Nadi A., Sharma S., Snelder M., Bakri T., van Lint H., Tavasszy L. (2021). Short-term prediction of outbound truck traffic from the exchange of information in logistics hubs: A case study for the port of Rotterdam. Transportation Research Part C: Emerging Technologies, 127:. https://doi.org/10.1016/j.trc.2021.103111 Nguyen S. (2020). A risk assessment model with systematical uncertainty treatment for container shipping operations. Maritime Policy and Management, 47(6): 778–796. https://doi.org/10.1080/03088839.2020.1729432 Nuñez L. (2019,). ¿Qué son los algoritmos genéticos? . El país. Disponible en: https://elpais.com/elpais/2019/01/31/ciencia/1548933080_909466.html. [Visitada en febrero de 2022]. Ogura T., Inoue T., Uchihira N. (2021). Prediction of arrival time of vessels considering future weather conditions. Applied Sciences, 11(10):. https://doi.org/10.3390/app11104410 Olabe X.B. (1998). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Publicaciones de la Escuela de Ingenieros,. OMI. (2020). Reducción de las emisiones de gases de efecto invernadero procedentes de los buques. Organización Marítima Internacional (OMI). Disponible en: https://www.imo.org/es/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gasemissions- from-ships.aspx. [Visitada en diciembre de 2021 ]. Ortega R.I. (2021). Machine learning e Inteligencia Artificial hacia la reducción de costos logísticos . El Financiero. Disponible en: https://www.elfinanciero.com.mx/transporte-ymovilidad/ 2021/05/14/machine-learning-e-inteligencia-artificial-hacia-la-reduccion-decostos- logisticos/. [Visitada en diciembre de 2021 ]. Ortega R.I. (2021). Machine learning e Inteligencia Artificial hacia la reducción de costos logísticos . El Financiero. Disponible en: https://www.elfinanciero.com.mx/transporte-ymovilidad/ 2021/05/14/machine-learning-e-inteligencia-artificial-hacia-la-reduccion-decostos- logisticos/. [Visitada en diciembre de 2021 ]. Oteiza P. (2015). Técnicas metaheurísticas aplicadas al diseño óptimo de redes de cañerías [Universidad Nacional del Sur]. Disponible en: https://repositoriodigital.uns.edu.ar/bitstream/handle/123456789/2552/TESIS PAOLA PATRICIA OTEIZA.pdf?sequence=1&isAllowed=y. [Visitada en diciembre de 2021 ]. PA. (2019). Aplicaciones de machine learning en el transporte y la logística. Penta Analytics (PA). Disponible en: https://www.analytics.cl/analytics/aplicaciones-de-machine-learningen- el-transporte-y-la-logistica/. [Visitada en diciembre de 2021 ]. Pacheco J. (2003). solución de un proceso markoviano por programación dinámica. Pan Y. (2017). Establishment and optimization of green logistics fuel consumption model based on ant colony algorithm. Chemical Engineering Transactions, 62: 1495–1500. https://doi.org/10.3303/CET1762250 Parola F., Satta G., Buratti N., Vitellaro F. (2021). Digital technologies and business opportunities for logistics centres in maritime supply chains. Maritime Policy and Management, 48(4): 461–477. https://doi.org/10.1080/03088839.2020.1802784 Parreño-Torres C., Alvarez-Valdes R., Ruiz R., Tierney K. (2020). Minimizing crane times in pre-marshalling problems. Transportation Research Part E: Logistics and Transportation Review, 137:. https://doi.org/10.1016/j.tre.2020.101917 Parthanadee P., Logendran R. (2006). Periodic product distribution from multi-depots under limited supplies. IIE Transactions (Institute of Industrial Engineers), 38(11): 1009–1026. https://doi.org/10.1080/07408170600575454 Persello C., Bruzzone L. (2009). A novel approach to the selection of spatially invariant features for classification of hyperspectral images. International Geoscience and Remote Sensing Symposium (IGARSS), 2: II61–II64. https://doi.org/10.1109/IGARSS.2009.5418001 Pimpanit P., Jarumaneeroj P. (2021). A Discrete Event Simulation Model for Evaluating Inland Terminal’s efficiency: A Case Study of Ladkrabang Inland Container Depot. 8th International Conference on Industrial Engineering and Applications (ICIEA), 627–631. https://doi.org/10.1109/ICIEA52957.2021.9436698 Pinakpani P., Polisetty A., N Rao G.B., Harrison Sunil D., Kumar B.M., Deepthi D., Sidhireddy A. (2020). An algorithmic approach for maritime transportation. International Journal of Advanced Computer Science and Applications, 2 764–775. https://doi.org/10.14569/ijacsa.2020.0110296 Piñero P.Y., Arco L., García M.M., Acevedo L. (2003). Algoritmos genéticos en la construcción de funciones de pertenencia borrosas. Revista Iberoamericana de Inteligencia Artificial, 7(18): 25–35. Disponible en: http://www.aepia.org/revista. [Visitada en diciembre de 2021 ]. Pitakaso R., Sethanan K., Jamrus T. (2020). Hybrid PSO and ALNS algorithm for software and mobile application for transportation in ice manufacturing industry 3.5. Computers and Industrial Engineering, 144:. https://doi.org/10.1016/j.cie.2020.106461 Powell W.B. (2010). Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming. INFORMS Journal on Computing, 22(1): 2–17. https://doi.org/10.1287/ijoc.1090.0349 Prabhu Gaonkar R.S., Mariappan V. (2020). Transportation time reliability appraisal in maritime context. International Journal of Systems Assurance Engineering and Management, 11(3): 736–746. https://doi.org/10.1007/s13198-020-00996-7 Pro L., Mamani Z., Clamet R., Del Pino L. (2004). Algoritmos genéticos, sus propuestas de aplicación: aprendizaje corporativo. Revista investigación sistemas informáticos, 1(1): 59– 67. Disponible en: https://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/risi/N1_2004/a08.pdf. [Visitada en diciembre de 2021 ]. Qi J., Zheng J., Yang L., Yao F. (2021). Impact analysis of different container arrival patterns on ship scheduling in liner shipping. Maritime Policy and Management, 48(3): 331–353. https://doi.org/10.1080/03088839.2020.1768316 Quintero R., Ramírez Y.A., Cortázar A. (2020). Transporte fluvial en Colombia: Operación, infraestructura, ambiente, normativa y potencial de desarrollo. Revista Ciudades, Estados y Política, 7(1): 49–68. Disponible en: https://revistas.unal.edu.co/index.php/revcep/article/view/72778. [Visitada en diciembre de 2021 ]. Rabanal P.M. (2010). Algoritmos heurísticos y aplicaciones a métodos formales. Universidad Complutense de Madrid. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=22153. [Visitada en diciembre de 2021 ]. Ramalho M.M., Santos T.A. (2021). Numerical modeling of air pollutants and greenhouse gases emissions in intermodal transport chains. Journal of Marine Science and Engineering, 9(6):. https://doi.org/10.3390/jmse9060679 Ramalho M.M., Santos T.A. (2021). Numerical modeling of air pollutants and greenhouse gases emissions in intermodal transport chains. Journal of Marine Science and Engineering, 9(6):. https://doi.org/10.3390/jmse9060679 Ren X.Y., Chen C.F., Xiao Y.L., Du S.C. (2019). Path optimization of cold chain distribution with multiple distribution centers considering carbon emissions. Applied Ecology and Environmental Research, 17(4): 9437–9453. https://doi.org/10.15666/aeer/1704_94379453 Rigot-Muller P., Lalwani C., Mangan J., Gregory O., Gibbs D. (2013). Optimising end-to-end maritime supply chains: A carbon footprint perspective. International Journal of Logistics Management, 24(3): 407–425. https://doi.org/10.1108/IJLM-01-2013-0002 Rincón N. (2022). Informe tráfico portuario en Colombia del 2021. ANALDEX. Disponible en: https://www.analdex.org/2022/03/14/informe-trafico-portuario-en-colombia-del-2021/. [Visitada en mayo de 2022 ]. Rivera E. (2007). Introduccion a redes neuronales artificiales. En Científica 6 (p. 11). Robles Algarín C.A. (2010). Optimización por colonia de hormigas: aplicaciones y tendencias. Ingeniería Solidaria, 6: 83–89. Rodrigues V.P., Morabito R., Yamashita D., da Silva B.J. V, Ribas P.C. (2016). Ship routing with pickup and delivery for a maritime oil transportation system: Mip model and heuristics. Systems, 4(3):. https://doi.org/10.3390/systems4030031 Rodriguez C. (2009). Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores [Universidad Rey Juan Carlos]. Disponible en: https://burjcdigital.urjc.es/bitstream/handle/10115/4129/memoriaPFC Carlos Rodríguez.pdf?sequence=1&isAllowed=y. [Visitada en diciembre de 2021 ]. Rouari A., Moussaoui A., Chahir Y., Rauf H.T., Kadry S. (2021). Deep CNN-based autonomous system for safety measures in logistics transportation. Soft Computing, 25(18): 12357– 12370. https://doi.org/10.1007/s00500-021-05949-1 Rouky N., Couzon P., Boukachour J., Boudebous D., Hilali Alaoui A.E. (2018). Optimization of Containers Transfer in Le Havre Port: a New Algorithm for the Railway Transportation System. 51(11): 1676–1681. https://doi.org/10.1016/j.ifacol.2018.08.215 Ruan X., Feng X., Pang K. (2018). Development of port service network in OBOR via capacity sharing: an idea from Zhejiang province in China. Maritime Policy and Management, 45(1): 105–124. https://doi.org/10.1080/03088839.2017.1391412 Rui X., Wu J., Zhao J., Khamesinia M.S. (2021). Load balancing in the internet of things using fuzzy logic and shark smell optimization algorithm. Circuit World, 47(4): 335–344. https://doi.org/10.1108/CW-09-2019-0117 Sadeghi-Niaraki A., Mirshafiei P., Shakeri M., Choi S.-M. (2020). Short-Term Traffic Flow Prediction Using the Modified Elman Recurrent Neural Network Optimized through a Genetic Algorithm. IEEE Access, 8: 217526–217540. https://doi.org/10.1109/ACCESS.2020.3039410 Sahoo L., Bhunia A.K. (2021). Optimization of plant location problem in interval domain via particle swarm optimization. International Journal of Systems Assurance Engineering and Management, 12(6): 1094–1105. https://doi.org/10.1007/s13198-021-01275-9 Sánchez R.J., Jaimurzina A., Wilmsmeier G., Pérez Salas G., Doerr O., Pinto F. (2015). Transporte marítimo y puertos: Desafíos y oportunidades en busca de un desarrollo sostenible en América Latina y el Caribe. Disponible en: https://repositorio.cepal.org/bitstream/handle/11362/39708/1/S1501003_es.pdf. [Visitada en diciembre de 2021 ]. Sánchez R.J., Weikert F. (2020). Logística internacional pospandemia: Análisis de las industrias aérea y de transporte marítimo de contenedores. Disponible en: www.cepal.org/apps. [Visitada en diciembre de 2021 ]. Shafique R., Siddiqui H.-U.-R., Rustam F., Ullah S., Siddique M.A., Lee E., Ashraf I., Dudley S. (2021). A novel approach to railway track faults detection using acoustic analysis. Sensors, 21(18):. https://doi.org/10.3390/s21186221 Siahaan J.J.A., Pratiwi E., Setyorini P.D. (2020). Study of Green-Ship Routing Problem (G-VRP) Optimization for Indonesia LNG Distribution. IOP Conference Series: Earth and Environmental Science, 557(1):. https://doi.org/10.1088/1755-1315/557/1/012018 Sicilia J.-A., Escuín D., Royo B., Larrodé E., Medrano J. (2014). A hybrid algorithm for solving the general vehicle routing problem in the case of the urban freight distribution. Advances in Intelligent Systems and Computing, 262: 463–475. https://doi.org/10.1007/978-3-319- 04630-3_34 Silva C., Santos J.S., Wanner E.F., Carrano E.G., Takahashi R.H.C. (2009). Semi-supervised training of least squares support vector machine using a multiobjective evolutionary algorithm. 2009 IEEE Congress on Evolutionary Computation, CEC 2009, 2996–3002. https://doi.org/10.1109/CEC.2009.4983321 Simoni M.D., Kutanoglu E., Claudel C.G. (2020). Optimization and analysis of a robot-assisted last mile delivery system. Transportation Research Part E: Logistics and Transportation Review, 142:. https://doi.org/10.1016/j.tre.2020.102049 Solumat. (2022). Los cinco procesos de la logística. Solumat. Disponible en: https://www.solumat.com.co/blog/los-cinco-procesos-de-la-logistica. [Visitada en febrero de 2022]. Soto-Orozco O.A., Corral-Sáenz A.D., Rojo-González C.E., Ramírez-Quintana J.A. (2019). Análisis del desempeño de redes neuronales profundas para segmentación semántica en hardware limitado. Revista electrónica de computación, informática, biomédica y electrónica, 8(2): 1–21. https://doi.org/10.1016/J.PATREC.2008.04.005 Sriratanawilai S., Erjongmanee S. (2018). Route prediction in air travel network using socioeconomic factors and learning models. 5th International Conference on Business and Industrial Research: Smart Technology for Next Generation of Information, Engineering, Business and Social Science, 100–105. https://doi.org/10.1109/ICBIR.2018.8391174 Sugimura Y., Murakami S. (2021). Designing a Resilient International Reverse Logistics Network for Material Cycles: A Japanese Case Study. Resources, Conservation and Recycling, 170:. https://doi.org/10.1016/j.resconrec.2021.105603 Sugrue D., Adriaens P. (2021a). A data fusion approach to predict shipping efficiency for bulk carriers. Transportation Research Part E: Logistics and Transportation Review, 149:. https://doi.org/10.1016/j.tre.2021.102326 Sugrue D., Adriaens P. (2021b). A data fusion approach to predict shipping efficiency for bulk carriers. Transportation Research Part E: Logistics and Transportation Review, 149:. https://doi.org/10.1016/j.tre.2021.102326 Svindland M. (2018). The environmental effects of emission control area regulations on short sea shipping in Northern Europe: The case of container feeder vessels. Transportation Research Part D: Transport and Environment, 61: 423–430. https://doi.org/10.1016/j.trd.2016.11.008 Svindland M., Hjelle H.M. (2019). The comparative CO2 efficiency of short sea container transport. Transportation Research Part D: Transport and Environment, 77: 11–20. https://doi.org/10.1016/j.trd.2019.08.025 Syam S., Shetty B. (1998). Coordinated replenishments from multiple suppliers with price discounts. Naval Research Logistics, 45(6): 579–598. https://doi.org/10.1002/(SICI)1520- 6750(199809)45:6<579::AID-NAV3>3.0.CO;2-# Taha H. (2012). Investigación de operaciones (Novena edi). Pearson. Tamayo D. (2017). Algoritmos Heurísticos Híbridos para el diseño de S-Cajas [Universidad de la Habana]. Disponible en: https://www.researchgate.net/publication/318542854_Algoritmos_Heuristicos_Hibridos_p ara_el_diseno_de_S-Cajas. [Visitada en diciembre de 2021 ]. Tang G., Guo Z., Song X., Wang W., Li N. (2010). Dynamic robustness analysis of container marine transportation network using improved ACO approach. 3rd International Workshop on Advanced Computational Intelligence, IWACI 2010, 333–338. https://doi.org/10.1109/IWACI.2010.5585183 Tang R., Qin Y., Zhang L. (2011). Research on heuristics logistics distribution algorithm based on parallel multi-ant colonies. Journal of Software, 6(4): 612–619. https://doi.org/10.4304/jsw.6.4.612-619 Tavakkoli-Moghaddam R., Alinaghian M., Salamat-Bakhsh A., Norouzi N. (2012). A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver’s satisfaction. Journal of Industrial Engineering International, 8(1):. https://doi.org/10.1186/2251-712X-8-4 Teng S. (2021). Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network. Soft Computing, 25(18): 12107–12116. https://doi.org/10.1007/s00500-021-05861-8 Theeraviriya C., Ruamboon K., Praseeratasang N. (2021). Solving the multi-level location routing problem considering the environmental impact using a hybrid metaheuristic. International Journal of Engineering Business Management, 13:. https://doi.org/10.1177/18479790211017353 Tillig F., Ringsberg J.W., Psaraftis H.N., Zis T. (2020). Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion. Transportation Research Part D: Transport and Environment, 83: 102380. https://doi.org/https://doi.org/10.1016/j.trd.2020.102380 Toro Ocampo E., Santa Chávez J., Granada Echeverri M. (2013). Solución del problema de ruteamiento de vehículos en la distribución de papa en Colombia. Scientia et Technica, 18(1): 139–148. https://doi.org/10.22517/23447214.8373 Trapp A.C., Harris I., Sanchez Rodrigues V., Sarkis J. (2020). Maritime container shipping: Does coopetition improve cost and environmental efficiencies? Transportation Research Part D: Transport and Environment, 87:. https://doi.org/10.1016/j.trd.2020.102507 Tryana Sembiring M., Chailes S. (2020). Ant Colony Optimization Implementation on Traveling Salesman Problem to Achieve the Shortest Logistic Route. En bin Ali A.Y. (Ed.), IOP Conference Series: Materials Science and Engineering. IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/1003/1/012045 Tsadiras A., Zitopoulos G. (2017). Fuzzy cognitive maps as a decision support tool for container transport logistics. Evolving Systems, 8(1): 19–33. https://doi.org/10.1007/s12530-016- 9161-9 Tsoi K.H., Loo B.P.Y. (2021). Cutting the loss: International benchmarking of a sustainable ferry business model. Transportation Research Part A: Policy and Practice, 145: 167–188. https://doi.org/10.1016/j.tra.2021.01.007 UMNG. (2021). Programación dinámica. Disponible en: http://virtual.umng.edu.co/distancia/ecosistema/ovas/ingenieria_civil/investigacion_de_op eraciones_ii/unidad_4/DM.pdf. [Visitada en diciembre de 2021 ]. UNCTAD. (2021a). Informe sobre el transporte marítimo. Naciones Unidas,. Disponible en: https://unctad.org/system/files/official-document/rmt2021summary_es.pdf. [Visitada en diciembre de 2021 ]. UNCTAD. (2021b, abril 23). El transporte marítimo durante el COVID-19: por qué se han disparado los fletes de los contenedores. UNCTAD. Disponible en: https://unctad.org/es/news/el-transporte-maritimo-durante-el-covid-19-por-que-se-handisparado- los-fletes-de-los. [Visitada en diciembre de 2021 ]. Ursavas E., Zhu S.X., Savelsbergh M. (2020). LNG bunkering network design in inland waterways. Transportation Research Part C: Emerging Technologies, 120:. https://doi.org/10.1016/j.trc.2020.102779 Valderrama C. (2020). En 2019 se movilizaron más de 195 millones de toneladas en las zonas portuarias de Colombia: Supertransporte. Mintransporte. Disponible en: https://www.mintransporte.gov.co/publicaciones/8154/en-2019-se-movilizaron-más-de- 195-millones-de-toneladas-en-las-zonas-portuarias-de-colombia-supertransporte/. [Visitada en diciembre de 2021 ]. Van Hassel E., Meersman H., de Voorde E., Vanelslander T. (2021). The impact of the expanded Panama Canal on port range choice for cargo flows from the U.S. to Europe. Maritime Policy and Management, 48(5): 610–628. https://doi.org/10.1080/03088839.2020.1718230 Venturini G., Iris Ç., Kontovas C.A., Larsen A. (2017). The multi-port berth allocation problem with speed optimization and emission considerations. Transportation Research Part D: Transport and Environment, 54: 142–159. https://doi.org/10.1016/j.trd.2017.05.002 Verschuur J., Koks E.E., Hall J.W. (2020). Port disruptions due to natural disasters: Insights into port and logistics resilience. Transportation Research Part D: Transport and Environment, 85:. https://doi.org/10.1016/j.trd.2020.102393 Vicentiy A.V. (2021). Digitalization of Arctic shipping along the Northern Sea Route. IOP Conference Series: Earth and Environmental Science, 816(1):. https://doi.org/10.1088/1755-1315/816/1/012023 Vleugel J.M., Bal F. (2014). Cleaner air in seaport container terminals: Assessing fuel(s). WIT Transactions on Ecology and the Environment, 181: 25–36. https://doi.org/10.2495/EID140031 Wan J., Wei S. (2019). Multi-Objective Multimodal Transportation Path Selection Based on Hybrid Algorithm. Journal of Tianjin University Science and Technology, 52(3): 285–292. https://doi.org/10.11784/tdxbz201807034 Wang C., Chen Q., Huang R. (2018). Locating dry ports on a network: a case study on Tianjin Port. Maritime Policy and Management, 45(1): 71–88. https://doi.org/10.1080/03088839.2017.1330558 Wang C., Kim Y.-S., Kim C.Y. (2021). Causality between logistics infrastructure and economic development in China. Transport Policy, 100: 49–58. https://doi.org/10.1016/j.tranpol.2020.10.005 Wang J., Liu J., Wang F., Yue X. (2021). Blockchain technology for port logistics capability: Exclusive or sharing. Transportation Research Part B: Methodological, 149: 347–392. https://doi.org/10.1016/j.trb.2021.05.010 Wang X., Li H., Yang J., Yang C., Gui H. (2020). Optimal path selection for logistics transportation based on an improved ant colony algorithm. International Journal of Embedded Systems, 13(2): 200–208. https://doi.org/10.1504/IJES.2020.108869 Wang Y., Ma X., Li Z., Liu Y., Xu M., Wang Y. (2017). Profit distribution in collaborative multiple centers vehicle routing problem. Journal of Cleaner Production, 144: 203–219. https://doi.org/10.1016/j.jclepro.2017.01.001 Wang Y., Peng S., Xu C., Assogba K., Wang H., Xu M., Wang Y. (2018). Two-echelon logistics delivery and pickup network optimization based on integrated cooperation and transportation fleet sharing. Expert Systems with Applications, 113: 44–65. https://doi.org/10.1016/j.eswa.2018.06.037 Wang Y., Ren Y.-J., Liu Y., Xu M.-Z. (2018). Profit Allocation Optimization Based on Multicenter Vehicle Routing Problem. Journal of Transportation Systems Engineering and Information Technology, 18(3): 210–217. https://doi.org/10.16097/j.cnki.1009- 6744.2018.03.032 Wang Y., Sun Y., Guan X., Fan J., Xu M., Wang H. (2021). Two-echelon multi-period location routing problem with shared transportation resource. Knowledge-Based Systems, 226:. https://doi.org/10.1016/j.knosys.2021.107168 Wang Y., Zhang J., Assogba K., Liu Y., Xu M., Wang Y. (2018). Collaboration and transportation resource sharing in multiple centers vehicle routing optimization with delivery and pickup. Knowledge-Based Systems, 160: 296–310. https://doi.org/10.1016/j.knosys.2018.07.024 Wang Y., Zhang J., Liu Y., Xu M.-Z. (2020). Optimization method study of fresh good logistics distribution based on time window and temperature control. Control and Decision, 35(7): 1606–1614. https://doi.org/10.13195/j.kzyjc.2018.1662 Wang Y., Zhang S., Guan X., Fan J., Wang H., Liu Y. (2021). Cooperation and profit allocation for two-echelon logistics pickup and delivery problems with state–space–time networks. Applied Soft Computing, 109:. https://doi.org/10.1016/j.asoc.2021.107528 Wang Z., Leng L., Wang S., Li G., Zhao Y. (2020). A Hyperheuristic Approach for Location- Routing Problem of Cold Chain Logistics considering Fuel Consumption. Computational Intelligence and Neuroscience, 2020:. https://doi.org/10.1155/2020/8395754 Werbos L., Kozma R., Silva-Lugo R., Pazienza G.E., Werbos P.J. (2012). Metamodeling and the Critic-based approach to multi-level optimization. Neural Networks, 32: 179–185. https://doi.org/10.1016/j.neunet.2012.02.036 WET. (2020, noviembre 2). Tendencias que marcarán la logística en 2021: camino hacia la “Transformación Digital” . World Energy Trade (WET). Disponible en: https://www.worldenergytrade.com/logistica/transporte/tendencias-que-marcaran-lalogistica- en-2021-camino-hacia-la-transformacion-digital. [Visitada en diciembre de 2021]. World Bank Group. (2018). Country Score Card: Afghanistan 2018. Logistics Performance Index. Disponible en: https://lpi.worldbank.org/international/scorecard.[Visitada en enero de 2023]. Wu H., Tao F., Qiao Q., Zhang M. (2020). A chance-constrained vehicle routing problem for wet waste collection and transportation considering carbon emissions. International Journal of Environmental Research and Public Health, 17(2):. https://doi.org/10.3390/ijerph17020458 Xiao B., Walker P.D., Zhou S., Yang W., Zhang N. (2021). A Power Consumption and Total Cost of Ownership Analysis of Extended Range System for a Logistics Van. IEEE Transactions on Transportation Electrification,. https://doi.org/10.1109/TTE.2021.3084196 Xiao K., Hu X. (2017). Study on maritime logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model. Polish Maritime Research, 24(2): 30–38. https://doi.org/10.1515/pomr-2017-0061 Xiao Y., Konak A. (2017). A genetic algorithm with exact dynamic programming for the green vehicle routing & scheduling problem. Journal of Cleaner Production, 167: 1450–1463. https://doi.org/10.1016/j.jclepro.2016.11.115 Xiong H. (2021). Research on Cold Chain Logistics Distribution Route Based on Ant Colony Optimization Algorithm. Discrete Dynamics in Nature and Society, 2021:. https://doi.org/10.1155/2021/6623563 Xu Q., Li N., Jin Z.-H. (2012). Combined optimization of allocation for full and empty containers. Journal of Transportation Systems Engineering and Information Technology, 12(1): 145– 152. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84863414093&partnerID=40&md5=987acc27577e0c45a97ec7bbf663913f. [Visitada en diciembre de 2021 ]. Xu R., Wang Y., Wang F., He M., Wang M., Xie Y. (2018). Prediction of package volume based on improved PSO-BP. Computer Integrated Manufacturing Systems, CIMS, 24(7): 1871– 1879. https://doi.org/10.13196/j.cims.2018.07.029 Xu X., Wang S., Tang P., Shi G. (2006). Algorithm of multi-objective prediction on logistics volume of combined transportation. Journal of Beijing University of Aeronautics and Astronautics, 32(10): 1209–1214. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 33845726699&partnerID=40&md5=74c99564ad12f851d61db8b3dd0baa76. [Visitada en diciembre de 2021 ]. Yaghoubi A., Akrami F. (2019). Proposing a new model for location - routing problem of perishable raw material suppliers with using meta-heuristic algorithms. Heliyon, 5(12):. https://doi.org/10.1016/j.heliyon.2019.e03020 Yan X., Xiao B., Xiao Y., Zhao Z., Ma L., Wang N. (2019). Skill Vehicle Routing Problem with Time Windows Considering Dynamic Service Times and Time-Skill-Dependent Costs. IEEE Access, 7: 77208–77221. https://doi.org/10.1109/ACCESS.2019.2919963 Yang F. (2018). A research on deep neural network based airline market share prediction model in aviation market network evaluation. 4th International Conference on Computer and Communications (ICCC), 2158–2162. https://doi.org/10.1109/CompComm.2018.8780832 Yang F., Tang L. (2009). A scatter search optimization for ship consolidation plan for strip coils to reduce the number of shuffling. IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, 1: 367–371. https://doi.org/10.1109/ICICISYS.2009.5357826 Yang H., Akiyama T., Sasaki T. (1998). Estimation of time-varying origin-destination flows from traffic counts: A neural network approach. Mathematical and Computer Modelling, 27(9– 11): 323–334. https://doi.org/10.1016/S0895-7177(98)00067-3 Yang S.-Y., Ning L.-J., Shang P. (2021). Electric Logistics Vehicle Routing Optimization Based on Space-time-state Network. Journal of Transportation Systems Engineering and Information Technology, 21(2): 196–204. https://doi.org/10.16097/j.cnki.1009- 6744.2021.02.028 Yang Y., Zhang G., Du M. (2020). Research on Seafood Logistics Path Based on Ant Colony Optimization Algorithm. Journal of Coastal Research, 108(1): 211–214. https://doi.org/10.2112/JCR-SI108-041.1 Yao D., Liu Z. (2020). Research on Multimodal Transportation Path Optimization with Time Window Based on Ant Colony Algorithm in Low Carbon Background. Lecture Notes in Electrical Engineering, 617: 991–1008. https://doi.org/10.1007/978-981-15-0644-4_77 Yu J.J.Q., Yu W., Gu J. (2019). Online Vehicle Routing with Neural Combinatorial Optimization and Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 20(10): 3806–3817. https://doi.org/10.1109/TITS.2019.2909109 Yu Y., Sun R., Sun Y., Wu J., Zhu W. (2022). China’s Port Carbon Emission Reduction: A Study of Emission-Driven Factors. Atmosphere, 13(4):. https://doi.org/10.3390/atmos13040550 Zahraee S.M., Rahimpour Golroudbary S., Shiwakoti N., Stasinopoulos P. (2021). Particle- Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model. Applied Energy, 303:. https://doi.org/10.1016/j.apenergy.2021.117687 Zhang H., Chen Z., Holguin-Veras J. (2020). Optimization of Evaluation Model for Ocean Logistics Enterprises Based on Sparse Neural Network. Journal of Coastal Research, 115(1): 575–578. https://doi.org/10.2112/JCR-SI115-154.1 Zhang H., Li Y., Zhang Q., Chen D. (2021). Route Selection of Multimodal Transport Based on China Railway Transportation. Journal of Advanced Transportation, 2021:. https://doi.org/10.1155/2021/9984659 Zhang L., Lu J., Yang Z. (2021). Dynamic optimization of emergency resource scheduling in a large-scale maritime oil spill accident. Computers and Industrial Engineering, 152:. https://doi.org/10.1016/j.cie.2020.107028 Zhang P., Dou Y. (2018). A fast dynamic programming algorithm to a varied capacity problem in vehicle routing. International Journal of Applied Decision Sciences, 11(2): 146–167. https://doi.org/10.1504/IJADS.2018.090924 Zhang P., Xiao K., Fu C., Yang K. (2016). Fast dynamic programming algorithm for the large scale VCVRP problem. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 36(3): 694–705. https://doi.org/10.12011/1000-6788(2016)03-0694-12 Zhang S., Lee C.K.M., Choy K.L., Ho W., Ip W.H. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31: 85–99. https://doi.org/10.1016/j.trd.2014.05.015 Zhao S., Ashraf M.A. (2021). Study on optimization of multimodal transportation of marine container considering carbon emission. Desalination and Water Treatment, 219: 84–89. https://doi.org/10.5004/dwt.2021.26876 Zhao Y., Mata G.E. (2020). Leverage Artificial Intelligence to Learn, Optimize, and Win (LAILOW) for the Marine Maintenance and Supply Complex System. En M. R. Atzmuller M. Coscia M. (Ed.), ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 678–684). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ASONAM49781.2020.9381319 Zhao Z.-X., Li X.-M. (2020). Electric Vehicle Route Optimization for Fresh Logistics Distribution Based on Time-varying Traffic Congestion. Journal of Transportation Systems Engineering and Information Technology, 20(5): 218–225 and 239. https://doi.org/10.16097/j.cnki.1009-6744.2020.05.032 Zheng C., Gu Y., Shen J., Du M. (2021). Urban logistics delivery route planning based on a single metro line. IEEE Access, 9: 50819–50830. https://doi.org/10.1109/ACCESS.2021.3069415 Zheng F., Man X., Chu F., Liu M., Chu C. (2018). Two yard crane scheduling with dynamic processing time and interference. IEEE Transactions on Intelligent Transportation Systems, 19(12): 3775–3784. https://doi.org/10.1109/TITS.2017.2780256 Zheng F., Man X., Chu F., Liu M., Chu C. (2019). A two-stage stochastic programming for single yard crane scheduling with uncertain release times of retrieval tasks. International Journal of Production Research, 57(13): 4132–4147. https://doi.org/10.1080/00207543.2018.1516903 Zhu S., Fu H., Li Y. (2021). Optimization research on vehicle routing for fresh agricultural products based on the investment of freshness-keeping cost in the distribution process. Sustainability, 13(14):. https://doi.org/10.3390/su13148110 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
| dc.format.none.fl_str_mv |
308 páginas application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Inteligencia Artificial e Ingenierías Colombia, Caldas, Manizales Doctorado en Ingeniería |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Inteligencia Artificial e Ingenierías Colombia, Caldas, Manizales Doctorado en Ingeniería |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532509297639424 |
| spelling |
Optimización multiobjetivo de procesos logístico-ambientales aplicados al transporte marítimo de contenedoresMulti-objective optimization of logistics and environmental processes in maritime container transportation620 - Ingeniería y operaciones afines2. Ingeniería y TecnologíaTransporte MarítimoMaritime TransportComercio ExteriorOptimizaciónLogísticaMedio AmbienteForeign TradeOptimizationLogisticsEnvironmentalIngenieríaTransporte marítimoTecnología de materialesTablas, figurasEl transporte marítimo de contenedores constituye una columna vertebral del comercio internacional, pero enfrenta crecientes presiones para reducir sus costos logísticos y su impacto ambiental. En este contexto, la presente tesis doctoral aborda de forma integral el diseño e implementación de un modelo matemático y computacional orientado a la optimización logística bajo principios de sostenibilidad ambiental, dentro del marco de la logística verde. El trabajo se fundamenta en una perspectiva multiobjetivo que considera simultáneamente la eficiencia operativa y la reducción de emisiones, integrando variables logísticas y ambientales en un solo sistema de decisión. Para lograr este propósito, se desarrolló una metodología estructurada en tres fases, alineadas con los objetivos específicos: la identificación y validación de datos relevantes, el modelado matemático y la construcción de una solución aproximada basada en inteligencia artificial. La primera fase permitió clasificar y validar las variables logísticas y ambientales críticas para el transporte marítimo de contenedores, generando un conjunto de datos aplicables a escenarios reales. En la segunda fase, se formularon dos enfoques multiobjetivo complementarios. El primero consistió en un modelo de programación lineal entera mixta (MILP), en el que los costos logísticos y ambientales fueron ponderados mediante los parámetros α y β, otorgando la posibilidad de ajustar las prioridades entre eficiencia económica y sostenibilidad ambiental, condición que relaja la complejidad del problema y constituye uno de los aportes clave de la investigación, al ofrecer una herramienta adaptable a diferentes contextos estratégicos y operativos. El segundo correspondió a una formulación explícita bajo el enfoque ε-constraint, en la que se optimizó uno de los objetivos mientras se imponían límites al otro, permitiendo explorar el frente de Pareto y comprender el comportamiento del sistema bajo diferentes niveles de restricción ambiental. Para resolver la complejidad del problema, se diseñó una técnica bioinspirada denominada Foam 2- Echelon Ship Routing Problem (F2-ESRP), que simula el comportamiento dinámico de la espuma al buscar las conexiones más cercanas y eficientes dentro de una red de 90 puertos marítimos. Esta metodología se estructuró en tres etapas: agrupamiento geográfico de puertos (clustering), ruteo intra-clúster y ruteo inter-clúster mediante el algoritmo de Christofides, permitiendo una asignación optimizada de flotas que van desde embarcaciones tipo feeder hasta buques Panamax y Post-Panamax. El modelo también incorporó estimaciones de costos y emisiones utilizando modelos de regresión exponencial y potencial, considerando variables como tarifas de flete, factores de ajuste por combustible (BAF) y emisiones de CO2, SO2, NOx y PM10, capturando las relaciones no lineales entre distancia, costo y huella ambiental. Los resultados obtenidos demostraron que la configuración óptima (α = 0.8, β = 0.2) permitió alcanzar un equilibrio eficiente entre sostenibilidad y rendimiento logístico, logrando reducciones significativas tanto en los costos totales como en las emisiones. Además, se evidenció una mejora notable en la eficiencia computacional, con tiempos de ejecución que disminuyeron de 2 minutos a 16 segundos en rutas específicas, y con resolución de componentes tipo TSP en apenas 2 segundos. Estos hallazgos confirman la viabilidad práctica del modelo y su potencial como herramienta robusta, escalable y adaptable para la planificación logística en operaciones marítimas a gran escala. La tesis ha sido ampliamente divulgada mediante múltiples publicaciones científicas que abordan desde revisiones de puertos inteligentes hasta análisis de estrategias sostenibles en transporte marítimo, consolidando así una contribución científica y metodológica relevante para el avance de la logística verde y la gestión sostenible de cadenas de suministro globales.Containerized maritime transport serves as a fundamental backbone of international trade but faces increasing pressure to reduce both logistical costs and environmental impacts. In this context, this doctoral thesis presents a comprehensive approach to the design and implementation of a mathematical and computational model aimed at logistics optimization grounded in environmental sustainability principles, within the framework of green logistics. The work is based on a multi-objective perspective that simultaneously considers operational efficiency and emission reduction, integrating logistical and environmental variables into a unified decision- making system. To achieve this objective, a methodology structured in three phases was developed, aligned with the specific research goals: data identification and validation, mathematical modeling, and the construction of an approximate solution leveraging artificial intelligence techniques. The first phase enabled the classification and validation of critical logistical and environmental variables relevant to container maritime transport, producing a dataset applicable to real-world scenarios. In the second phase, two complementary multi- objective modeling approaches were formulated. The first approach involved a Mixed-Integer Linear Programming (MILP) model where logistical and environmental costs were weighted using parameters α and β, allowing for flexible prioritization between economic efficiency and environmental sustainability. This relaxation of problem complexity constitutes a key contribution of the research by providing an adaptable tool suitable for diverse strategic and operational contexts. The second approach employed an explicit ε-constraint formulation, optimizing one objective while imposing limits on the other, facilitating exploration of the Pareto front and enhancing understanding of system behavior under varying environmental restrictions. To address the problem’s inherent complexity, a bioinspired technique termed the Foam 2- Echelon Ship Routing Problem (F2-ESRP) was developed. This method simulates the dynamic behavior of foam as it seeks the shortest and most efficient connections within a network of 90 maritime ports. The methodology comprises three stages: geographic clustering of ports, intra- cluster routing, and inter-cluster routing via the Christofides algorithm, enabling optimized fleet allocation spanning feeder vessels to Panamax and Post-Panamax ships. The model also incorporated cost and emission estimates using exponential and power regression models, considering variables such as freight rates, Bunker Adjustment Factors (BAF), and emissions of CO2, SO2, NOx, and PM10, thereby capturing nonlinear relationships among distance, cost, and environmental footprint. Results demonstrated that the optimal configuration (α = 0.8, β = 0.2) achieved an effective balance between sustainability and logistical performance, yielding significant reductions in both total costs and emissions. Moreover, computational efficiency improved markedly, with execution times for specific routes reduced from 2 minutes to 16 seconds, and Traveling Salesman Problem (TSP)-type components solved in just 2 seconds. These findings validate the practical viability of the model and underscore its potential as a robust, scalable, and adaptable tool for logistics planning in large-scale maritime operations. The thesis has been widely disseminated through multiple scientific publications, covering topics ranging from smart port reviews to sustainable maritime transport strategies, thus consolidating a significant scientific and methodological contribution toward advancing green logistics and sustainable management of global supply chains.Introducción -- Planteamiento del problema -- Justificación -- Marco teórico y antecedentes -- Generalidades del transporte marítimo -- Análisis de las investigaciones en logística del transporte marítimo -- Generalidades logísticas del transporte marítimo -- Logística verde en el transporte marítimo de contenedores -- Técnicas de inteligencia artificial en la logística del transporte -- Objetivos -- Metodología -- Identificación y validación de variables ambientales y logísticas -- Integración de variables en un modelo matemático -- Metodología de optimización logística -- Estructura del documento -- Resultados de investigación -- Operational efficiency and sustainability in smart ports: A comprehensive review -- Advances and emerging research trends in maritime transport logistics: environment, port competitiveness and foreign trade -- Mathematical models for the optimization of maritime routes in container transportation -- Trends and strategies in sustainable maritime transport: Insights from global research -- Scientific mapping and research perspectives of the vehicle routing problem: An approach from sustainability strategies -- Cost and variable analysis in international maritime transport: Strategies for logistic optimization -- Optimisation of maritime routes: An intelligent approach to logistics efficiency -- Foam 2-Echelon Ship Routing Problem: A bioinspired methodology for route optimization and ship allocation in maritime transport -- Conclusiones generales -- Referencias -- Annex 1. Actual and estimated costs for parameter calibration -- Annex 2. Results of the sensitivity analysis by instancesDoctoradoPara el desarrollo de la presente tesis doctoral y el logro de los objetivos se consideró una secuencia de actividades agrupadas de forma lógica como se detalla en la Figura 3. El esquema metodológico se encuentra dividido en tres secciones, cada una relacionada con los objetivos específicos de la siguiente manera: identificación y validación de variables ambientales y logísticas, integración de variables en un modelo matemático, y construcción y validación de una metodología de solución aproximada para la optimización logística de actividades de transporte marítimo de contenedores. La primera sección, variables ambientales y logísticas, considera tres etapas para la definición, identificación y validación de las variables de estudio. En su desarrollo se realizó la identificación y análisis de las variables ambientales y logísticas que intervienen en los procesos asociados al transporte marítimo; además de la construcción de un conjunto de datos, los cuales corresponden al insumo para las siguientes actividades. La determinación de las variables y su clasificación fueron operaciones críticas para la optimización de los procesos considerados en las etapas posteriores. La siguiente sección, denominada modelamiento matemático, englobó las actividades relacionadas con la construcción y validación de un modelo matemático para la optimización de las variables identificadas en la primera parte. Dos etapas se desarrollaron para su cumplimiento, la construcción y la aplicación, donde se definieron las particularidades de las variables a introducir en el modelo matemático, y la posterior implementación y validación en un conjunto de datos obtenidos en un caso de aplicación real. La sección final integró el análisis de las técnicas de inteligencia artificial para resolver problemas de optimización de actividades logísticas asociadas al transporte marítimo. Durante esta fase se realizaron tres procesos, evaluación, construcción y validación de metodologías de solución. La evaluación permitió identificar las técnicas a implementar de acuerdo a los parámetros, variables y criterios de inclusión. Seguidamente, se diseñó una metodología de solución aproximada para los procesos asociados a la logística verde previamente identificados. Finalmente, se desarrolló una etapa de validación para evaluar la eficiencia de la metodología desarrollada.Doctor(a) en IngenieríaUniversidad de CaldasFacultad de Inteligencia Artificial e IngenieríasColombia, Caldas, ManizalesDoctorado en IngenieríaIsaza, GustavoToro-Ocampo, Eliana MirledyJaramillo-Garzón, Jorge AlbertoInteligencia ArtificialFranco Baquero, John FredyVillegas Ramírez, Juan GuillermoGutiérrez Mosquera, Luis FernandoALZATE, PAOLA2025-09-04T21:24:06Z2035-09-042025-09-04T21:24:06Z2025Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesis308 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22653Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaengAbbasi-Pooya A., Husseinzadeh Kashan A. (2017). New mathematical models and a hybrid Grouping Evolution Strategy algorithm for optimal helicopter routing and crew pickup and delivery. Computers and Industrial Engineering, 112: 35–56. https://doi.org/10.1016/j.cie.2017.08.007Abu Aisha T., Ouhimmou M., Paquet M., Montecinos J. (2021). Developing the seaport container terminal layout to enhance efficiency of the intermodal transportation system and port operations - case of the Port of Montreal. Maritime Policy and Management,. https://doi.org/10.1080/03088839.2021.1875140Acciaro M., McKinnon A.C. (2015). Carbon emissions from container shipping: An analysis of new empirical evidence. International Journal of Transport Economics, 42(2): 211–228. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84943624590&partnerID=40&md5=30c591c9a22673c70f76610c83d9685f. [Visitada en octubre de 2022].Acciaro M., Sys C. (2020). Innovation in the maritime sector: aligning strategy with outcomes. Maritime Policy and Management, 47(8): 1045–1063. https://doi.org/10.1080/03088839.2020.1737335Acosta A., Salcedo O., Rivas E. (2019). Programación dinámica en el cálculo de la ruta óptima de una topología de red: Caso de Estudio. Espacios, 40: 14–23.Adikari A.M.C., Amalan T.P. (2019). Distribution cost optimization using Big Data Analytics, Machine Learning and Computer Simulation for FMCG Sector. Conference on Smart Computing and Systems Engineering, 63–69. https://doi.org/10.23919/SCSE.2019.8842697Adland R., Jia H., Lode T., Skontorp J. (2021). The value of meteorological data in marine risk assessment. Reliability Engineering & System Safety, 209: 1–10. https://doi.org/10.1016/j.ress.2021.107480Agra A., Christiansen M., Hvattum L.M., Rodrigues F. (2016). A MIP based local search heuristic for a stochastic maritime inventory routing problem. Lecture Notes in Computer Science, 9855: 18–34. https://doi.org/10.1007/978-3-319-44896-1_2Aguilar-Chinea R.M., Rodriguez I.C., Expósito C., Melian-Batista B., Moreno-Vega J.M. (2019). Using a decision tree algorithm to predict the robustness of a transshipment schedule. En P. V Ruiz Estrada M.A. Ginters E. (Ed.), Procedia Computer Science (Vol. 149, pp. 529–536). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.01.172Akbarzadeh Khorshidi H., Aickelin U., Haffari G., Hassani-Mahmooei B. (2019). Multi-objective semi-supervised clustering to identify health service patterns for injured patients. Health Information Science and Systems, 7(1):. https://doi.org/10.1007/s13755-019-0080-6Alpan G., Larbi R., Penz B. (2011). A bounded dynamic programming approach to schedule operations in a cross docking platform. Computers and Industrial Engineering, 60(3): 385– 396. https://doi.org/10.1016/j.cie.2010.08.012Altiparmak F., Karaoglan I. (2007). A genetic ant colony optimization approach for concave cost transportation problems. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 1685–1692. https://doi.org/10.1109/CEC.2007.4424676Alvarez J.A., Hurtado S.V., Trujillo H. (2021). Algoritmos genéticos (pp. 31–37).Ammi M., Chikhi S. (2015). A generalized island model based on parallel and cooperating metaheuristics for effective large capacitated vehicle routing problem solving. Journal of Computing and Information Technology, 23(2): 141–155. https://doi.org/10.2498/cit.1002465Ang J.S.K., Cao C., Ye H.-Q. (2007). Model and algorithms for multi-period sea cargo mix problem. European Journal of Operational Research, 180(3): 1381–1393. https://doi.org/10.1016/j.ejor.2006.05.012Antar A.D., Ahmed M., Ahad M.A.R. (2021). Recognition of human locomotion on various transportations fusing smartphone sensors. Pattern Recognition Letters, 148: 146–153. https://doi.org/10.1016/j.patrec.2021.04.015Arias J.S. (2010). Aplicación de un modelo de optimización en la planeación de rutas de los buses escoalres del colegio de Cervantes Norte. Disponible en: https://repository.javeriana.edu.co/bitstream/handle/10554/7367/tesis403.pdf;sequence=1. [Visitada en febrero de 2022].Arias M.A., Londoño J.I. (2009). Algoritmos Genéticos: Una solución alternativa para optimizar el modelo de inventario. Universidad EAFIT.Aringhieri R., Bigharaz S., Duma D., Guastalla A. (2021). Fairness in ambulance routing for post disaster management. Central European Journal of Operations Research,. https://doi.org/10.1007/s10100-021-00785-yArjona Aroca J., Giménez Maldonado J.A., Ferrús Clari G., i García N., Calabria L., Lara J. (2020). Enabling a green just-in-time navigation through stakeholder collaboration. European Transport Research Review, 12(1):. https://doi.org/10.1186/s12544-020-00417-7Asih A.M.S., Jatiningrum W.S., Sopha B.M. (2016). Collaborative distribution - Application to the city of Yogyakarta, Indonesia. IEEE International Conference on Industrial Engineering and Engineering Management, 1141–1145. https://doi.org/10.1109/IEEM.2016.7798056Atak Ü., Kaya T., Arslanoğlu Y. (2021). Container Terminal Workload Modeling Using Machine Learning Techniques. Advances in Intelligent Systems and Computing, 1197: 1149–1155. https://doi.org/10.1007/978-3-030-51156-2_134Bae J., Lee S., Kim S., Lee Y.H. (2019). An automatic logistics system using artificial intelligence. International Journal of Recent Technology and Engineering, 8(2): 924–926. https://doi.org/10.35940/ijrte.B1183.0782S419Bélanger N., Desaulniers G., Soumis F., Desrosiers J., Lavigne J. (2006). Weekly airline fleet assignment with homogeneity. Transportation Research Part B: Methodological, 40(4): 306–318. https://doi.org/10.1016/j.trb.2005.03.004Bengio Y., Lodi A., Prouvost A. (2020). Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon *. European Journal of Operational Research, 405-421.Benigno S., Guerriero F., Miglionico G. (2012). A revenue management approach to address a truck rental problem. Journal of the Operational Research Society, 63(10): 1421–1433. https://doi.org/10.1057/jors.2011.138Bergantino A.S., Bolis S. (2008). Monetary values of transport service attributes: Land versus maritime ro-ro transport. An application using adaptive stated preferences. Maritime Policy and Management, 35(2): 159–174. https://doi.org/10.1080/03088830801956821Bertazzi L., Speranza M.G. (1999). Minimizing logistic costs in multistage supply chains. Naval Research Logistics, 46(4): 399–417. https://doi.org/10.1002/(SICI)1520- 6750(199906)46:4<399::AID-NAV4>3.0.CO;2-9Bettinelli A., Ceselli A., Righini G. (2014). A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows. Mathematical Programming Computation, 6(2): 171–197. https://doi.org/10.1007/s12532-014-0064-0Bhattacharjee P., Ahmed N., Akbar S., Habib S. (2020). An efficient ant colony algorithm for multi-depot heterogeneous fleet green vehicle routing problem. Proceedings of the International Conference on Industrial Engineering and Operations Management, August. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85096534224&partnerID=40&md5=729464567d8440af5b38df0f9c338ce3. [Visitada en febrero de 2022].Bian Z., Bai Y., Douglas W.S., Maher A., Liu X. (2022). Multi-year planning for optimal navigation channel dredging and dredged material management. Transportation Research Part E: Logistics and Transportation Review, 159:. https://doi.org/10.1016/j.tre.2022.102618Bruzzone A., Orsoni A., Mosca R., Revetria R. (2002a). AI-based optimization for fleet management in maritime logistics. Winter Simulation Conference Proceedings, 2: 1174– 1182. https://doi.org/10.1109/WSC.2002.1166375Bruzzone A., Orsoni A., Mosca R., Revetria R. (2002b). AI-based optimization for fleet management in maritime logistics. En S. J. L. C. J. M. Yucesan E. Chen C.H. (Ed.), Winter Simulation Conference Proceedings (Vol. 2, pp. 1174–1182). Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0036932248&partnerID=40&md5=4b136f129ae0a394bffe9f24d2b3c9d3. [Visitada en febrero de 2022].Brzozowska A., Bubel D., Kalinichenko A. (2019). Analysis of the road traffic management system in the neural network development perspective. Eastern-European Journal of Enterprise Technologies, 2(3–98): 16–24. https://doi.org/10.15587/1729- 4061.2019.160049Bu L., Yin C., Zhao Y. (2007). Model and algorithm of vehicle routing problem on railway baggage and parcel. Tongji Daxue Xuebao/Journal of Tongji University, 35(8): 1069–1073. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 35248847414&partnerID=40&md5=6dec4ee5fbdd69f786891bd4b2468625. [Visitada en diciembre de 2021].Çakmak E., Önden İ., Acar A.Z., Eldemir F. (2021). Analyzing the location of city logistics centers in Istanbul by integrating Geographic Information Systems with Binary Particle Swarm Optimization algorithm. Case Studies on Transport Policy, 9(1): 59–67. https://doi.org/10.1016/j.cstp.2020.07.004Calabrò G., Torrisi V., Inturri G., Ignaccolo M. (2020). Improving inbound logistic planning for large-scale real-world routing problems: a novel ant-colony simulation-based optimization. European Transport Research Review, 21(1): 12–21. https://doi.org/10.1186/s12544-020- 00409-7Camur M.C., Sharkey T.C., Dorsey C., Grabowski M.R., Wallace W.A. (2021). Optimizing the response for Arctic mass rescue events. Transportation Research Part E: Logistics and Transportation Review, 152: 1–24. https://doi.org/10.1016/j.tre.2021.102368Cardona D., Balza V., Henriquez G. (2017). Innovación en los procesos logísticos: Retos locales frente al desarrollo global (Universidad Libre (ed.); 1a ed.). Universidad Libre. Disponible en: https://repository.unilibre.edu.co/bitstream/handle/10901/10691/DINAMICA_E_INNOV ACION.pdf?sequence=1&isAllowed=y. [Visitada en mayo de 2022].Carvalho F., Portugal‐pereira J., Junginger M., Szklo A. (2021). Biofuels for maritime transportation: A spatial, techno‐economic, and logistic analysis in brazil, europe, south africa, and the usa. Energies, 14(16): 1–27. https://doi.org/10.3390/en14164980Castilla-Rodríguez I., Expósito-Izquierdo C., Melián-Batista B., Aguilar R.M., Moreno-Vega J.M. (2020). Simulation-optimization for the management of the transshipment operations at maritime container terminals. Expert Systems with Applications, 139:. https://doi.org/10.1016/j.eswa.2019.112852Castro O., Soler E., Umaña R., Yepes C. (2017). Infraestructura portuaria en Colombia: asimetrías entre el puerto de Buenaventura y el puerto de Cartagena para el año 2015. Universidad & Empresa, 19(32): 100. https://doi.org/10.12804/HTTP://REVISTAS.UROSARIO.EDU.CO/INDEX.PHP/EMPRE SA/ARTICLE/VIEW/4788CCA. (2022). Transporte Marítimo. CCA logistics group. Disponible en: https://www.ccalogisticsgroup.com/transporte-maritimo/. [Visitada en febrero de 2022].CEUPE. (2021). ¿Cómo impactan los distintos tipos de transporte en el medio ambiente? CEUPE. Disponible en: https://www.ceupe.com/blog/como-impactan-los-distintos-tiposde- transporte-en-el-medio-ambiente.html. [Visitada en febrero de 2022].Chaieb M., Ben Sassi D. (2021). Measuring and evaluating the Home Health Care Scheduling Problem with Simultaneous Pick-up and Delivery with Time Window using a Tabu Search metaheuristic solution. Applied Soft Computing, 113:. https://doi.org/10.1016/j.asoc.2021.107957Chan F.T.S., Shekhar P., Tiwari M.K. (2014a). Dynamic scheduling of oil tankers with splitting of cargo at pickup and delivery locations: A Multi-objective Ant Colony-based approach. International Journal of Production Research, 52(24): 7436–7453. https://doi.org/10.1080/00207543.2014.932932Chan F.T.S., Shekhar P., Tiwari M.K. (2014b). Dynamic scheduling of oil tankers with splitting of cargo at pickup and delivery locations: A Multi-objective Ant Colony-based approach. International Journal of Production Research, 52(24): 7436–7453. https://doi.org/10.1080/00207543.2014.932932Chang S.-M., Huang Y.-Y., Shang K.-C., Chiang W.-T. (2020). Impacts of regional integration and maritime transport on trade: with special reference to RCEP. Maritime Business Review, 5(2): 143–158. https://doi.org/10.1108/MABR-03-2020-0013Chen L., Ye C., Wang J. (2020). The location-routing problem in the agricultural production waste recycling logistics system. En Z. H. Zhang H. Tong Z. (Ed.), Proceedings of the 10th International Conference on Logistics and Systems Engineering 2020 (pp. 186–202). Aussino Academic Publishing House. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85103478324&partnerID=40&md5=87478f9f6aedae1d48bdc88fb8c271e6. [Visitada en diciembre de 2021].Chen X., Shi C., Zhou A., Wu B., Cai Z. (2017). A decomposition based multiobjective evolutionary algorithm with semi-supervised classification. 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings, 797–804. https://doi.org/10.1109/CEC.2017.7969391Chen Y., Song B., Zeng Y., Du X., Guizani M. (2021). Fault diagnosis based on deep learning for current-carrying ring of catenary system in sustainable railway transportation. Applied Soft Computing, 106907: 1–10. https://doi.org/10.1016/j.asoc.2020.106907Chislov O., Zadorozhniy V., Lomash D., Chebotareva E., Solop I., Bogachev T. (2020). Methodological bases of modeling and optimization of transport processes in the interaction of railways and maritime transport. Advances in Intelligent Systems and Computing, 1083 AISC: 79–89. https://doi.org/10.1007/978-3-030-34069-8_7Cho H., Lee J. (2020). Does transportation size matter for competitiveness in the logistics industry? The cases of maritime and air transportation. Asian Journal of Shipping and Logistics, 36(4): 214–223. https://doi.org/10.1016/j.ajsl.2020.04.002Chu D., Li C., Xu X., Zhang X. (2015). A Graph Based Framework for Route Optimization in Sea-Trade Logistics. Mathematical Problems in Engineering, 2015:. https://doi.org/10.1155/2015/104326Clarke S., Hollings T., Liu N., Hood G., Robinson A. (2017). Biosecurity risk factors presented by international vessels: a statistical analysis. Biological Invasions, 19(10): 2837–2850. https://doi.org/10.1007/S10530-017-1486-1Ćirović G., Pamučar D., Božanić D. (2014). Green logistic vehicle routing problem: Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Systems with Applications, 41(9): 4245–4258. https://doi.org/10.1016/j.eswa.2014.01.005Cui Y., Huang M., Dai Q. (2017). 4PL collaborative routing customization problem on the dynamic networks. IEEE International Conference on Automation Science and Engineering, 1345–1349. https://doi.org/10.1109/COASE.2017.8256289Czermański E., Cirella G.T., Notteboom T., Oniszczuk-Jastrzabek A., Pawłowska B. (2021). An energy consumption approach to estimate air emission reductions in container shipping. Energies, 14(2):. https://doi.org/10.3390/en14020278Dai X., Chen M., Zhou Y. (2021). Optimal logistics transportation and route planning based on fpga processor real-time system and machine learning. Microprocessors and Microsystems, 80: 1–7. https://doi.org/10.1016/j.micpro.2020.103621Dang Y., Singh M., Allen T.T. (2021). Network mode optimization for the DHL supply chain. Interfaces, 51(3): 179–199. https://doi.org/10.1287/INTE.2020.1046Darendeli A., Alparslan A., Erdoğan M.S., Kabadurmuş Ö. (2021). Container Demand Forecasting Using Machine Learning Methods: A Real Case Study from Turkey. Lecture Notes in Mechanical Engineering, 250869: 842–852. https://doi.org/10.1007/978-3-030- 62784-3_70Das P., Hossain S., Gupta A. (2010). A meta-heuristic approach to car allocation problem to reduce transportation cost over a fixed number of routes. International Journal of Data Analysis Techniques and Strategies, 2(1): 85–102. https://doi.org/10.1504/IJDATS.2010.030013Dasgupta S., Papadimitriou C.H., Vazirani U.V. (2006). Algorithms. Disponible en: http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf. [Visitada en diciembre de 2021 ].De A., Choudhary A., Tiwari M.K. (2019). Multiobjective Approach for Sustainable Ship Routing and Scheduling with Draft Restrictions. IEEE Transactions on Engineering Management, 66(1): 35–51. https://doi.org/10.1109/TEM.2017.2766443De A., Wang J., Tiwari M.K. (2021). Fuel Bunker Management Strategies within Sustainable Container Shipping Operation Considering Disruption and Recovery Policies. IEEE Transactions on Engineering Management, 68(4): 1089–1111. https://doi.org/10.1109/TEM.2019.2923342De Água P.M.G.B., Da Silva Frias A.D., De Jesus Carrasqueira M., Daniel J.M.M. (2020). Future of maritime education and training: Blending hard and soft skills. Pomorstvo, 34(2): 345– 353. https://doi.org/10.31217/p.34.2.15De Lavalle M.C. (2018). El transporte marítimo: su importancia para la economía mundial. Tendencias a medio y largo plazo. Información Comercial Española , 901: 9–26. Disponible en: http://www.revistasice.com/index.php/ICE/article/view/1999/1999. [Visitada en diciembre de 2021].De León A.D., Lalla-Ruiz E., Melián-Batista B., Moreno-Vega J.M. (2021). A simulation– optimization framework for enhancing robustness in bulk berth scheduling. Engineering Applications of Artificial Intelligence, 103: 1–16. https://doi.org/10.1016/j.engappai.2021.104276De M., Giri B.C. (2020). Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transportation Research Part E: Logistics and Transportation Review, 133:. https://doi.org/10.1016/j.tre.2019.11.007De Sa F.P.G., Brandao D.N., Ogasawara E., Coutinho R.D.C., Toso R.F. (2020). Wind Turbine Fault Detection: A Semi-Supervised Learning Approach with Automatic Evolutionary Feature Selection. En B. G. A. J. D. S. F. L. A. F. Paiva A.C. Conci A. (Ed.), International Conference on Systems, Signals, and Image Processing (Vols. 2020-July, pp. 323–328). IEEE Computer Society. https://doi.org/10.1109/IWSSIP48289.2020.9145244Demirag O.C., Swann J.L. (2007). Capacity allocation to sales agents in a decentralized logistics network. Naval Research Logistics, 54(7): 796–810. https://doi.org/10.1002/nav.20254Desarrollo logístico. (2021). Departamento de transporte marítimo, fluvial y lacustre. Disponible en: http://www.logistica.mtt.cl/areas/2/departamento-de-transporte-maritimo-fluvial-ylacustre. [Visitada en febrero de 2022].Dhanak M., Parr S., Kaisar E.I., Goulianou P., Russell H., Kristiansson F. (2021). Resilience assessment tool for port planning. Environment and Planning B: Urban Analytics and City Science, 48(5): 1126–1143. https://doi.org/10.1177/2399808321997824Díaz E., Martínez A., Gálvez D. (2016). Una implementación de la meta-heurística “Optimización en Mallas Variables” en la arquitectura CUDA. Revista Cubana de Ciencias Informáticas, 10:. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300004. [Visitada en diciembre de 2021].Diego F.J., González J.A., Carrasco J. (2008). Optimización por colonias de hormigas para la gestión de flotas de transporte de viajeros en sistemas logísticos avanzados Optimización por colonias de hormigas para la gestión de flotas de transporte de viajeros en sistemas logísticos avanzados. September. II International Conference on Industrial Engineering and Industrial Management XII Congreso de Ingeniería de Organización September 3-5, Burgos, Spain.Dimar. (2020). Estadística anuales de transporte marítimo en Colombia. Disponible en: https://www.dimar.mil.co/sites/default/files/noticias/Estadísticas Anuales de Transporte Marítimo en Colombia.pdf. [Visitada en diciembre de 2021].Dinç D.T., Karamelikli H. (2021). Symmetric and asymmetric relationship between maritime transportation and foreign trade volume. International Journal of Shipping and Transport Logistics, 13(3): 260–274. https://doi.org/10.1504/IJSTL.2021.113983Dolinskaya I.S. (2012). Optimal path finding in direction, location, and time dependent environments. Naval Research Logistics, 59(5): 325–339. https://doi.org/10.1002/nav.21492Donati A. V, Montemanni R., Gambardella L.M., Rizzoli A.E. (2003). Integration of a robust shortest path algorithm with a time dependent vehicle routing model and applications. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, 26–31. https://doi.org/10.1109/CIMSA.2003.1227196Dong B., Christiansen M., Fagerholt K., Chandra S. (2020). Design of a sustainable maritime multi-modal distribution network – Case study from automotive logistics. Transportation Research Part E: Logistics and Transportation Review, 143: 1–15. https://doi.org/10.1016/j.tre.2020.102086Dong C., Transchel S. (2020). A dual sourcing inventory model for modal split transport: Structural properties and optimal solution. European Journal of Operational Research, 283(3): 883–900. https://doi.org/10.1016/j.ejor.2019.11.050Dong X., Li W., Zheng L. (2013). Ant colony optimisation for a resource-constrained shortest path problem with applications in multimodal transport. International Journal of Modelling, Identification and Control, 18(3): 268–275. https://doi.org/10.1504/IJMIC.2013.052821Donyavi Z., Asadi S. (2020). Using decomposition-based multi-objective evolutionary algorithm as synthetic example optimization for self-labeling. Swarm and Evolutionary Computation, 58:. https://doi.org/10.1016/j.swevo.2020.100736Dulebenets M.A. (2022). Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design. Journal of Cleaner Production, 342: 130897. https://doi.org/10.1016/J.JCLEPRO.2022.130897EAG. (2021). Algoritmos genéticos y su gran cantidad de aplicaciones. Enzyme Advising Group (EAG). Disponible en: https://blog.enzymeadvisinggroup.com/algoritmos-geneticos-y-susaplicaciones- para-soluciones. [Visitada en diciembre de 2021].Echeverri E., Vélez E.A., Gómez S., Chaverra L., Escobar D.C., Zuluaga O. (2017). Benefits in the construction method of directional dikes and River transport of Cargo. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA,. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85039147499&partnerID=40&md5=a1304df17c32ed740131741d65e85792. [Visitada en diciembre de 2021].Ekmekçioğlu A., Ünlügençoğlu K., Çelebi U.B. (2022a). Container ship emission estimation model for the concept of green port in Turkey. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 236(2): 504–518. https://doi.org/10.1177/14750902211024453Ekmekçioğlu A., Ünlügençoğlu K., Çelebi U.B. (2022b). Estimation of shipping emissions based on real-time data with different methods: A case study of an oceangoing container ship. Environment, Development and Sustainability, 24(3): 4451–4470. https://doi.org/10.1007/s10668-021-01605-8Encinar del Dedo S. (2015). Aplicación computacional de un nuevo algoritmo híbrido (ANNAGDC) en cinética química [Universidad de Salamanca]. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=76733. [Visitada en diciembre de 2021].Fattahi P., Tanhatalab M. (2021). Stochastic inventory-routing problem with lateral transshipment for perishable product. Journal of Modelling in Management,. https://doi.org/10.1108/JM2-09-2019-0230Fiorencio L., Oliveira F., Nunes P., Hamacher S. (2015). Investment planning in the petroleum downstream infrastructure. International Transactions in Operational Research, 22(2): 339–362. https://doi.org/10.1111/itor.12113Fontalvo-Herrera T., De la Hoz-Granadillo E., Mendoza-Mendoza A. (2019). Los Procesos Logísticos y La Administración de la Cadena de Suministro. Univesidad Libre sede Cartagena, 14(2): 102–112. Disponible en: https://revistas.unilibre.edu.co/index.php/saber/article/view/5880/5458. [Visitada en diciembre de 2021].Franchi L., Vanelslander T. (2021). Port greening: Discrete choice analysis investigation on environmental parameters affecting container shipping companies’ behaviors. Sustainability (Switzerland), 13(13):. https://doi.org/10.3390/su13137010Freitó M., Cespón R. (2009). Optimización por colonia de hormigas selecting distribution routes using ant colony. Vector, 4: 59–66.Gao F., Gao W., Huang L., Xie J., Gong M. (2022). An effective knowledge transfer method based on semi-supervised learning for evolutionary optimization. Information Sciences, 612: 1127–1144. https://doi.org/10.1016/j.ins.2022.09.020Gao J., Wang J.-W., Li L.-N. (2013). A combined model of Richards model and BP neural network to predict transportation carbon emission. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 33(4): 99–104. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84883472579&partnerID=40&md5=2572609d324ee6504b06a2c97e4a02c7. [Visitada en diciembre de 2021].Gao L., Dou H. (2020). Inventory management of railway logistics park based on artificial neural network. Journal Europeen des Systemes Automatises, 53(5): 715–723. https://doi.org/10.18280/jesa.530514Gaonkar R.S.P., Nigalye A. V, Pai S.P. (2021). Possibilistic Approach for Travel Time Reliability Evaluation. International Journal of Mathematical, Engineering and Management Sciences, 6(1): 223–243. https://doi.org/10.33889/IJMEMS.2021.6.1.014Garduño R. (2018). Algoritmos genéticos. Conogasi. Disponible en: https://conogasi.org/articulos/algoritmos-geneticos/. [Visitada en diciembre de 2021].Garg C.P., Kashav V. (2019). Evaluating value creating factors in greening the transportation of Global Maritime Supply Chains (GMSCs) of containerized freight. Transportation Research Part D: Transport and Environment, 73: 162–186. https://doi.org/10.1016/j.trd.2019.06.011Ge J., Li Y.-F., Xia G.-P. (2005). Research on global supply chain production planning under uncertain environment. Computer Integrated Manufacturing Systems (CIMS), 11(8): 1120– 1126. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 24744448239&partnerID=40&md5=54abd27627e00a7bb521b53839cefbd9. [Visitada en diciembre de 2021].Ghaffarinasab N. (2020). A tabu search heuristic for the bi-objective star hub location problem. International Journal of Management Science and Engineering Management, 15(3): 213– 225. https://doi.org/10.1080/17509653.2019.1709992Gil S.F., Llave M.A., Munive J.C. (2016). Aplicación de modelo de programación dinámica para la asignación de recursos del área de fuerza de ventas de la empresa Total Potentials. Universidad Peruana de Ciencias Aplicadas.Goerlandt F., Islam S. (2021). A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia. Reliability Engineering and System Safety, 214:. https://doi.org/10.1016/j.ress.2021.107708González A. (2021). ¿Qué es Machine Learning? Cleverdata. Disponible en: https://cleverdata.io/que-es-machine-learning-big-data/. [Visitada en diciembre de 2021].González L.R. (2013). Las vías fluviales, infraestructuras y puertos: la industria del contenedor, sus aportes al transporte multimodal, visión en Colombia. Revista Humanismo y Sociedad, 1: 162–167. Disponible en: https://studylib.es/doc/4748899/las-vías-fluviales-- infraestructuras-y-puertos--la-indust. [Visitada en diciembre de 2021].Gonzalez O.A., Koivisto H., Mustonen J.M., Keinänen‐toivola M.M. (2021). Digitalization in just‐in‐time approach as a sustainable solution for maritime logistics in the baltic sea region. Sustainability, 13(3): 1–24. https://doi.org/10.3390/su13031173Greene S., Jia H., Rubio-Domingo G. (2020). Well-to-tank carbon emissions from crude oil maritime transportation. Transportation Research Part D: Transport and Environment, 88:. https://doi.org/10.1016/j.trd.2020.102587Gu Y., Wallace S.W. (2021). Operational benefits of autonomous vessels in logistics—A case of autonomous water-taxis in Bergen. Transportation Research Part E: Logistics and Transportation Review, 154:. https://doi.org/10.1016/j.tre.2021.102456Guillermo J. (2016). Las redes neuronales: qué son y por qué están volviendo. Xataka. Disponible en: https://www.xataka.com/robotica-e-ia/las-redes-neuronales-que-son-y-por-que-estanvolviendo. [Visitada en diciembre de 2021 ].Han Q., Sun Y., Wu Q., Bai Z. (2021). Research on Optimization Model of Logistics Transportation Truck Path considering Environmental Impact: Experimental Data from Xiqing District, Tianjin. Journal of Advanced Transportation, 2021:. https://doi.org/10.1155/2021/6665168Handl J., Knowles J. (2006). On semi-supervised clustering via multiobjective optimization. GECCO 2006 - Genetic and Evolutionary Computation Conference, 2: 1465–1472. https://doi.org/10.1145/1143997.1144238Hashemi R.R., Le Blanc L.A., Rucks C.T., Shearry A. (1995). A neural network for transportation safety modeling. Expert Systems With Applications, 9(3): 247–256. https://doi.org/10.1016/0957-4174(95)00002-QHatch M.L., Badinelli R.D. (1999). Concurrent optimization in designing for logistics support. European Journal of Operational Research, 115(1): 77–97. https://doi.org/10.1016/S0377- 2217(98)00082-4Hernandez J.L. (2021). Algoritmos genéticos y su aplicación en optimización de redes. Universidad Nacional de la Plata.IBM. (2020). ¿Qué son las redes neuronales? International Business Machine (IBM). Disponible en: https://www.ibm.com/cloud/learn/neural-networks. [Visitada en diciembre de 2021].IBM. (2021). ¿Qué es Machine Learning? International Business Machines Corporation (IBM). Disponible en: https://www.ibm.com/co-es/analytics/machine-learning. [Visitada en diciembre de 2021].IONOS. (2020). ¿Qué es una neural network? IONOS. Disponible en: https://www.ionos.es/digitalguide/online-marketing/marketing-para-motores-debusqueda/ que-es-una-neural-network/. [Visitada en diciembre de 2021].Islam M.A., Gajpal Y. (2021). Optimization of conventional and green vehicles composition under carbon emission cap. Sustainability, 13(12):. https://doi.org/10.3390/su13126940Islam S., Goerlandt F., Feng X., Uddin M.J., Shi Y., Hilliard C. (2020). Improving disasters preparedness and response for coastal communities using AIS ship tracking data. International Journal of Disaster Risk Reduction, 51:. https://doi.org/10.1016/j.ijdrr.2020.101863Jetlund A.S., Karimi I.A. (2004). Improving the logistics of multi-compartment chemical tankers. Computers and Chemical Engineering, 28(8): 1267–1283. https://doi.org/10.1016/j.compchemeng.2003.08.009Ji H., Wu P. (2020). Sailing Route and Speed Optimization for Green Intermodal Transportation. 5th International Conference on Intelligent Transportation Engineering, ICITE 2020, 18– 22. https://doi.org/10.1109/ICITE50838.2020.9231520Ju B., Kim M., Moon I. (2021). Vehicle routing problem considering reconnaissance and transportation. Sustainability, 13(6):. https://doi.org/10.3390/su13063188Juvvala R., Sarmah S.P. (2021). Evaluation of policy options supporting electric vehicles in city logistics: a case study. Sustainable Cities and Society, 74:. https://doi.org/10.1016/j.scs.2021.103209Kaasalainen S., Mäkela M., Ruotsalainen L., Malmivirta T., Fordell T., Hanhijärvi K., Wallin A., Lindvall T., Nikolskiy S., Olkkonen M.-K., Rantanen J., Lahtinen S., Zahidul H. Bhuiyan M., Koivula H. (2020). Reason - Resilience and security of geospatial data for critical infrastructures. En L. E.-S. T.-S. J. K. H. Ometov A. Nurmi J. (Ed.), CEUR Workshop Proceedings (Vol. 2880). CEUR-WS. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85108028232&partnerID=40&md5=84d84be0cf806e86d4a232a065c7955e. [Visitada en diciembre de 2021 ].Kang K., Niu H., Zhu Y., Zhang W. (2010). Research on improved integrated optimization model for mode and route in multimodal transportation basing on the PSO-ACO. International Conference on Logistics Systems and Intelligent Management, ICLSIM 2010, 3: 1445–1449. https://doi.org/10.1109/ICLSIM.2010.5461206Kang M.H., Choi H.R., Kim H.S., Park B.J. (2012). Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3): 585–604. https://doi.org/10.1007/s10489-011-0278-zKantasa-ard A., Nouiri M., Bekrar A., el cadi A., Sallez Y. (2020). Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand. International Journal of Production Research,. https://doi.org/10.1080/00207543.2020.1844332Karaduman H.A., Karaman-Akgül A., Çağlar M., Akbaş H.E. (2020). The relationship between logistics performance and carbon emissions: an empirical investigation on Balkan countries. International Journal of Climate Change Strategies and Management, 12(4): 449–461. https://doi.org/10.1108/IJCCSM-05-2020-0041Kiba-Janiak M., Marcinkowski J., Jagoda A., Skowrońska A. (2021). Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review. Sustainable Cities and Society, 71:. https://doi.org/10.1016/j.scs.2021.102984Kolen A.W., Lenstra K. (1995). Amsterdam: The MIT Press y North-Holland. En Handbook of combinatorics: Vol. II (pp. 1875–1910). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_nlinks&ref=000121&pid=S1794- 1237200700020000900022&lng=en. [Visitada en diciembre de 2021].Kotcharin S., Maneenop S. (2020). Geopolitical risk and corporate cash holdings in the shipping industry. Transportation Research Part E: Logistics and Transportation Review, 136:. https://doi.org/10.1016/j.tre.2020.101862Ku D., Arthanari T.S. (2016). Container relocation problem with time windows for container departure. European Journal of Operational Research, 252(3): 1031–1039. https://doi.org/10.1016/j.ejor.2016.01.055Lai K.-H., Vejvar M., Lun V.Y.H. (2020). Risk in port logistics: Risk classification and mitigation framework. International Journal of Shipping and Transport Logistics, 12(6): 576–596. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85096131632&partnerID=40&md5=a1bfe578f19c96cbd280775f9c248618. [Visitada en diciembre de 2021 ].Lam J.S.L. (2015). Designing a sustainable maritime supply chain: A hybrid QFD-ANP approach. Transportation Research Part E: Logistics and Transportation Review, 78: 70–81. https://doi.org/10.1016/j.tre.2014.10.003Lapierre S.D., Ruiz A.B., Soriano P. (2004). Designing distribution networks: Formulations and solutions heuristic. Transportation Science, 38(2): 174–187. https://doi.org/10.1287/trsc.1030.0064Le M.-L., Kohmura T. (2010). Compound method of solving logistics routes allocation. Journal of Shanghai Jiaotong University (Science), 15(1): 119–123. https://doi.org/10.1007/s12204- 010-9729-7Le X., Bo L. (2009). A hybrid intelligent algorithm for grain logistics vehicle routing problem. Proceedings - 2009 International Conference on Environmental Science and Information Application Technology, ESIAT 2009, 2: 556–559. https://doi.org/10.1109/ESIAT.2009.312Lee H., Aydin N., Choi Y., Lekhavat S., Irani Z. (2018). A decision support system for vessel speed decision in maritime logistics using weather archive big data. Computers and Operations Research, 98: 330–342. https://doi.org/10.1016/j.cor.2017.06.005Lee J.-E., Gen M., Rhee K.-G. (2009). Network model and optimization of reverse logistics by hybrid genetic algorithm. Computers and Industrial Engineering, 56(3): 951–964. https://doi.org/10.1016/j.cie.2008.09.021Lee S.W., Shin S.H., Bae H.S. (2020). Short sea shipping on the West Coast of Korea: Keys to activating the shipping industry in preparation for korea unification era. Journal of International Logistics and Trade, 18(2): 91–105. https://doi.org/10.24006/JILT.2020.18.2.091Li H., He F., Chen Y. (2020). Learning dynamic simultaneous clustering and classification via automatic differential evolution and firework algorithm. Applied Soft Computing Journal, 96:. https://doi.org/10.1016/j.asoc.2020.106593Li H., Zhang X., Fu S., Hu Y. (2021). A hybrid algorithm based on ant colony optimization and differential evolution for vehicle routing problem. Engineering Letters, 29(3): 1201–1211. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85114131109&partnerID=40&md5=6e304ca12ac1ac0005d19680caba31db. [Visitada en diciembre de 2021].Li K., Li D., Wu D. (2020). Multi-objective optimization for location-routing-inventory problem in cold chain logistics network with soft time window constraint. Journal Europeen des Systemes Automatises, 53(6): 803–809. https://doi.org/10.18280/jesa.530606Li L., Wang B., Cook D.P. (2015). Reprint of “Enhancing green supply chain initiatives via empty container reuse”. Transportation Research Part E: Logistics and Transportation Review, 74: 109–123. https://doi.org/10.1016/j.tre.2014.12.007Li R., Mersch T.R., Wen O.X., Kaylani A., Anagnostopoulos G.C. (2010). Multi-objective memetic evolution of ART-based classifiers. 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010,. https://doi.org/10.1109/CEC.2010.5586385Li R., Rose G., Chen H., Shen J. (2018). Effective long-term travel time prediction with fuzzy rules for tollway. Neural Computing and Applications, 30(9): 2921–2933. https://doi.org/10.1007/s00521-017-2899-6Liao T.W. (2021). Integrated Inbound Vehicle Routing and Scheduling Under a Fixed Outbound Schedule at a Multi-Door Cross-Dock Terminal. IEEE Transactions on Intelligent Transportation Systems,. https://doi.org/10.1109/TITS.2021.3122396Lin B., Ghaddar B., Nathwani J. (2021). Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows. IEEE Transactions on Intelligent Transportation Systems,. https://doi.org/10.1109/TITS.2021.3105232Lister J. (2015). Green Shipping: Governing Sustainable Maritime Transport. Global Policy, 6(2): 118–129. https://doi.org/10.1111/1758-5899.12180Liu L.-Z. (2012). The forecast of Qinhuangdao logistic based on BP neural network. International Journal of Digital Content Technology and its Applications, 6(8): 8–16. https://doi.org/10.4156/jdcta.vol6.issue8.2Liu T., Yin Y., Yang X. (2020). Research on Logistics Distribution Routes Optimization Based on ACO. Proceedings - 2020 5th International Conference on Information Science, Computer Technology and Transportation, ISCTT 2020, 641–644. https://doi.org/10.1109/ISCTT51595.2020.00122Logistec. (2021, junio). Los cinco pilares de la logística. Revista Logistec. Disponible en: https://www.revistalogistec.com/logistica/freight-management-2/3596-los-cinco-pilaresde- la-logistica. [Visitada en diciembre de 2021 ].Longarela-Ares Á., Calvo-Silvosa A., Pérez-López J.-B. (2020). The influence of economic barriers and drivers on energy efficiency investments in maritime shipping, from the perspective of the principal-agent problem. Sustainability (Switzerland), 12(19): 1–42. https://doi.org/10.3390/su12197943Lopes M.A. (2021). Negocios Globales. La oportunidad del Puerto Conectado, 16–17. Disponible en: http://www.microbyte.cl/nego/pdf/202110nego2.pdf. [Visitada en diciembre de 2021 ].Lu X., Ota K., Dong M., Yu C., Jin H. (2017). Predicting Transportation Carbon Emission with Urban Big Data. IEEE Transactions on Sustainable Computing, 2(4): 333–344. https://doi.org/10.1109/TSUSC.2017.2728805Lu Y.-R., Yang Y.-S., Lu F. (2006). Optimal vehicle routing problem based on fuzzy clustering analysis. Journal of Jilin University, 36(2): 147–151. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 33750205728&partnerID=40&md5=7c8e2739f89f61edbdc354999892aba7. [Visitada en diciembre de 2021 ].Luo Q., Huang X. (2019). Multi-Agent Reinforcement Learning for Empty Container Repositioning. En W. L. Babu M.S.P. (Ed.), Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS (Vols. 2018-Novem, pp. 337–341). IEEE Computer Society. https://doi.org/10.1109/ICSESS.2018.8663934Luong T. Van. (2016). Parallel Metaheuristics on GPU. https://doi.org/10.13140/RG.2.1.4017.5127Ma H., Luo X. (2021). Logistics demand forecasting model based on improved neural network algorithm. Journal of Intelligent and Fuzzy Systems, 40(4): 6385–6395. https://doi.org/10.3233/JIFS-189479Ma W., Ma D., Ma Y., Zhang J., Wang D. (2021). Green maritime: a routing and speed multiobjective optimization strategy. Journal of Cleaner Production, 305: 127179. https://doi.org/10.1016/J.JCLEPRO.2021.127179Mahajan P.C., Kiwelekar A.W., Netak L.D., Ghodake A.B. (2022). Predicting Expected Time of Arrival of Shipments Through Multiple Linear Regression. Lecture Notes in Electrical Engineering, 783: 343–350. https://doi.org/10.1007/978-981-16-3690-5_30Mahmoudzadeh A., Khodakarami M., Ma C., Mitchell K.N., Wang X.B., Zhang Y. (2021). Waterway maintenance budget allocation in a multimodal network. Transportation Research Part E: Logistics and Transportation Review, 146:. https://doi.org/10.1016/j.tre.2020.102215Maneengam A., Udomsakdigool A. (2021). A Set Covering Model for a Green Ship Routing and Scheduling Problem with Berth Time-Window Constraints for Use in the Bulk Cargo Industry. Applied Sciences 2021, Vol. 11, Page 4840, 11(11): 4840. https://doi.org/10.3390/APP11114840Mao W., Lenaers P., Salomonsson H., Brandholm P. (2016). Machine learning to predict a ship’s fuel consumption in seaways. PRADS 2016 - Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures.Marcos R., Cantú Ros O.G., Herranz R. (2017). Combining visual analytics and machine learning for route choice prediction: Application to pre-tactical traffic forecast. SESAR Innovation Days,. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85079014389&partnerID=40&md5=2b20e00476af058c0af7a666233a1247. [Visitada en diciembre de 2021].Marine Traffic. (2022). MarineTraffic: Global Ship Tracking Intelligence. Disponible en: https://www.marinetraffic.com/en/ais/home/centerx:8.9/centery:53.3/zoom:8. [Visitada en mayo de 2022].Matich D.J. (2001). Informática Aplicada a la Ingeniería de ProcesosMartínez-López A., Caamaño Sobrino P., Chica González M., Trujillo L. (2019). Choice of propulsion plants for container vessels operating under Short Sea Shipping conditions in the European Union: An assessment focused on the environmental impact on the intermodal chains. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 233(2): 653–669. https://doi.org/10.1177/1475090218797179Maurette M., Ojea I. (2006). Programación dinámica. Disponible en: http://cms.dm.uba.ar/materias/1ercuat2009/optimizacion/Maurette_Ojea.pdf. [Visitada en diciembre de 2021 ].Mecalux. (2020). Machine learning y logística: aplicaciones clave. Mecalux. Disponible en: https://www.mecalux.com.co/blog/machine-learning-logistica. [Visitada en diciembre de 2021].Megano T., Fukui K.-I., Numao M., Ono S. (2015). Evolutionary multi-objective distance metric learning for multi-label clustering. 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings, 2945–2952. https://doi.org/10.1109/CEC.2015.7257255Ministerio de Educación Nacional. (2017). Logística portuaria: Marco nacional de cualificaciones. Disponible en: https://www.mineducacion.gov.co/1759/articles- 362825_recurso.pdf. [Visitada en diciembre de 2021 ].Ministerio de Fomento. (2021). Análisis, información y divulgación sobre la aportación del transporte por carretera a la intermodalidad.Ministerio de Transporte. (2020). Transporte en cifras. Transporte en Cifras, 202. Disponible en: https://www.mintransporte.gov.co/descargar.php?idFile=53? [Visitada en diciembre de 2021 ].Misra S., Kapadi M., Gudi R.D. (2020). A multi grid discrete time based framework for maritime distribution logistics & inventory planning for refinery products. Computers and Industrial Engineering, 146:. https://doi.org/10.1016/j.cie.2020.106568MIT. (2021). Machine Learning: Tecnología en la toma de decisiones. Massachusetts Institute of Technology (MIT). Disponible en: https://prolearn.mit.edu/machine-learning-tecnologiaen- la-toma-de-decisiones-spanish. [Visitada en diciembre de 2021 ].Moncayo C. (2020). Red Neuronal Profunda: nueva estrategia de recuperación de información. Instituto Nacional de Contadores Públicos de Colombia. Disponible en: https://incp.org.co/red-neuronal-profunda-nueva-estrategia-recuperacion-informacion/. [Visitada en diciembre de 2021 ].Moshref-Javadi M., Hemmati A., Winkenbach M. (2020). A truck and drones model for last-mile delivery: A mathematical model and heuristic approach. Applied Mathematical Modelling, 80: 290–318. https://doi.org/10.1016/j.apm.2019.11.020Mullaseril P.A., Dror M., Leung J. (1997). Split-delivery routeing heuristics in livestock feed distribution. Journal of the Operational Research Society, 48(2): 107–116. https://doi.org/10.1057/palgrave.jors.2600338Müller-Merbach H. (1985). Heuristics: Intelligent search strategies for computer problem solving: Judea PEARL Addison-Wesley, Reading, 1984. European Journal of Operational Research, 21: 278–279. https://doi.org/10.1016/0377-2217(85)90047-5Muñoz del Río A. (2021). Algoritmos genéticos: cómo funcionan y para qué se utilizan. International business school (IMF). Disponible en: https://blogs.imfformacion. com/blog/tecnologia/algoritmos-geneticos-como-funcionan-202010/. [Visitada en diciembre de 2021 ].Munoz Hernandez A., Scarlatti D., Costas P. (2019). Real-Time Estimated Time of Arrival Prediction System using Historical Surveillance Data. En S. A. Staron M. Capilla R. (Ed.), Proceedings - 45th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2019 (pp. 174–177). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SEAA.2019.00035Munyaka J.-C.B., Yadavalli V.S.S. (2021). Decision support framework for facility location and demand planning for humanitarian logistics. International Journal of Systems Assurance Engineering and Management, 12(1): 9–28. https://doi.org/10.1007/s13198-020-01037-zMuravev D., Hu H., Zhou H., Pamucar D. (2020). Location optimization of CR express international logistics centers. Symmetry, 12(1):. https://doi.org/10.3390/SYM12010143Naciones Unidas. (2019). Informe Sobre El Transporte Maritimo 2019.Nadi A., Sharma S., Snelder M., Bakri T., van Lint H., Tavasszy L. (2021). Short-term prediction of outbound truck traffic from the exchange of information in logistics hubs: A case study for the port of Rotterdam. Transportation Research Part C: Emerging Technologies, 127:. https://doi.org/10.1016/j.trc.2021.103111Nguyen S. (2020). A risk assessment model with systematical uncertainty treatment for container shipping operations. Maritime Policy and Management, 47(6): 778–796. https://doi.org/10.1080/03088839.2020.1729432Nuñez L. (2019,). ¿Qué son los algoritmos genéticos? . El país. Disponible en: https://elpais.com/elpais/2019/01/31/ciencia/1548933080_909466.html. [Visitada en febrero de 2022].Ogura T., Inoue T., Uchihira N. (2021). Prediction of arrival time of vessels considering future weather conditions. Applied Sciences, 11(10):. https://doi.org/10.3390/app11104410Olabe X.B. (1998). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Publicaciones de la Escuela de Ingenieros,.OMI. (2020). Reducción de las emisiones de gases de efecto invernadero procedentes de los buques. Organización Marítima Internacional (OMI). Disponible en: https://www.imo.org/es/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gasemissions- from-ships.aspx. [Visitada en diciembre de 2021 ].Ortega R.I. (2021). Machine learning e Inteligencia Artificial hacia la reducción de costos logísticos . El Financiero. Disponible en: https://www.elfinanciero.com.mx/transporte-ymovilidad/ 2021/05/14/machine-learning-e-inteligencia-artificial-hacia-la-reduccion-decostos- logisticos/. [Visitada en diciembre de 2021 ].Ortega R.I. (2021). Machine learning e Inteligencia Artificial hacia la reducción de costos logísticos . El Financiero. Disponible en: https://www.elfinanciero.com.mx/transporte-ymovilidad/ 2021/05/14/machine-learning-e-inteligencia-artificial-hacia-la-reduccion-decostos- logisticos/. [Visitada en diciembre de 2021 ].Oteiza P. (2015). Técnicas metaheurísticas aplicadas al diseño óptimo de redes de cañerías [Universidad Nacional del Sur]. Disponible en: https://repositoriodigital.uns.edu.ar/bitstream/handle/123456789/2552/TESIS PAOLA PATRICIA OTEIZA.pdf?sequence=1&isAllowed=y. [Visitada en diciembre de 2021 ].PA. (2019). Aplicaciones de machine learning en el transporte y la logística. Penta Analytics (PA). Disponible en: https://www.analytics.cl/analytics/aplicaciones-de-machine-learningen- el-transporte-y-la-logistica/. [Visitada en diciembre de 2021 ].Pacheco J. (2003). solución de un proceso markoviano por programación dinámica.Pan Y. (2017). Establishment and optimization of green logistics fuel consumption model based on ant colony algorithm. Chemical Engineering Transactions, 62: 1495–1500. https://doi.org/10.3303/CET1762250Parola F., Satta G., Buratti N., Vitellaro F. (2021). Digital technologies and business opportunities for logistics centres in maritime supply chains. Maritime Policy and Management, 48(4): 461–477. https://doi.org/10.1080/03088839.2020.1802784Parreño-Torres C., Alvarez-Valdes R., Ruiz R., Tierney K. (2020). Minimizing crane times in pre-marshalling problems. Transportation Research Part E: Logistics and Transportation Review, 137:. https://doi.org/10.1016/j.tre.2020.101917Parthanadee P., Logendran R. (2006). Periodic product distribution from multi-depots under limited supplies. IIE Transactions (Institute of Industrial Engineers), 38(11): 1009–1026. https://doi.org/10.1080/07408170600575454Persello C., Bruzzone L. (2009). A novel approach to the selection of spatially invariant features for classification of hyperspectral images. International Geoscience and Remote Sensing Symposium (IGARSS), 2: II61–II64. https://doi.org/10.1109/IGARSS.2009.5418001Pimpanit P., Jarumaneeroj P. (2021). A Discrete Event Simulation Model for Evaluating Inland Terminal’s efficiency: A Case Study of Ladkrabang Inland Container Depot. 8th International Conference on Industrial Engineering and Applications (ICIEA), 627–631. https://doi.org/10.1109/ICIEA52957.2021.9436698Pinakpani P., Polisetty A., N Rao G.B., Harrison Sunil D., Kumar B.M., Deepthi D., Sidhireddy A. (2020). An algorithmic approach for maritime transportation. International Journal of Advanced Computer Science and Applications, 2 764–775. https://doi.org/10.14569/ijacsa.2020.0110296Piñero P.Y., Arco L., García M.M., Acevedo L. (2003). Algoritmos genéticos en la construcción de funciones de pertenencia borrosas. Revista Iberoamericana de Inteligencia Artificial, 7(18): 25–35. Disponible en: http://www.aepia.org/revista. [Visitada en diciembre de 2021 ].Pitakaso R., Sethanan K., Jamrus T. (2020). Hybrid PSO and ALNS algorithm for software and mobile application for transportation in ice manufacturing industry 3.5. Computers and Industrial Engineering, 144:. https://doi.org/10.1016/j.cie.2020.106461Powell W.B. (2010). Merging AI and OR to solve high-dimensional stochastic optimization problems using approximate dynamic programming. INFORMS Journal on Computing, 22(1): 2–17. https://doi.org/10.1287/ijoc.1090.0349Prabhu Gaonkar R.S., Mariappan V. (2020). Transportation time reliability appraisal in maritime context. International Journal of Systems Assurance Engineering and Management, 11(3): 736–746. https://doi.org/10.1007/s13198-020-00996-7Pro L., Mamani Z., Clamet R., Del Pino L. (2004). Algoritmos genéticos, sus propuestas de aplicación: aprendizaje corporativo. Revista investigación sistemas informáticos, 1(1): 59– 67. Disponible en: https://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/risi/N1_2004/a08.pdf. [Visitada en diciembre de 2021 ].Qi J., Zheng J., Yang L., Yao F. (2021). Impact analysis of different container arrival patterns on ship scheduling in liner shipping. Maritime Policy and Management, 48(3): 331–353. https://doi.org/10.1080/03088839.2020.1768316Quintero R., Ramírez Y.A., Cortázar A. (2020). Transporte fluvial en Colombia: Operación, infraestructura, ambiente, normativa y potencial de desarrollo. Revista Ciudades, Estados y Política, 7(1): 49–68. Disponible en: https://revistas.unal.edu.co/index.php/revcep/article/view/72778. [Visitada en diciembre de 2021 ].Rabanal P.M. (2010). Algoritmos heurísticos y aplicaciones a métodos formales. Universidad Complutense de Madrid. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=22153. [Visitada en diciembre de 2021 ].Ramalho M.M., Santos T.A. (2021). Numerical modeling of air pollutants and greenhouse gases emissions in intermodal transport chains. Journal of Marine Science and Engineering, 9(6):. https://doi.org/10.3390/jmse9060679Ramalho M.M., Santos T.A. (2021). Numerical modeling of air pollutants and greenhouse gases emissions in intermodal transport chains. Journal of Marine Science and Engineering, 9(6):. https://doi.org/10.3390/jmse9060679Ren X.Y., Chen C.F., Xiao Y.L., Du S.C. (2019). Path optimization of cold chain distribution with multiple distribution centers considering carbon emissions. Applied Ecology and Environmental Research, 17(4): 9437–9453. https://doi.org/10.15666/aeer/1704_94379453Rigot-Muller P., Lalwani C., Mangan J., Gregory O., Gibbs D. (2013). Optimising end-to-end maritime supply chains: A carbon footprint perspective. International Journal of Logistics Management, 24(3): 407–425. https://doi.org/10.1108/IJLM-01-2013-0002Rincón N. (2022). Informe tráfico portuario en Colombia del 2021. ANALDEX. Disponible en: https://www.analdex.org/2022/03/14/informe-trafico-portuario-en-colombia-del-2021/. [Visitada en mayo de 2022 ].Rivera E. (2007). Introduccion a redes neuronales artificiales. En Científica 6 (p. 11).Robles Algarín C.A. (2010). Optimización por colonia de hormigas: aplicaciones y tendencias. Ingeniería Solidaria, 6: 83–89.Rodrigues V.P., Morabito R., Yamashita D., da Silva B.J. V, Ribas P.C. (2016). Ship routing with pickup and delivery for a maritime oil transportation system: Mip model and heuristics. Systems, 4(3):. https://doi.org/10.3390/systems4030031Rodriguez C. (2009). Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores [Universidad Rey Juan Carlos]. Disponible en: https://burjcdigital.urjc.es/bitstream/handle/10115/4129/memoriaPFC Carlos Rodríguez.pdf?sequence=1&isAllowed=y. [Visitada en diciembre de 2021 ].Rouari A., Moussaoui A., Chahir Y., Rauf H.T., Kadry S. (2021). Deep CNN-based autonomous system for safety measures in logistics transportation. Soft Computing, 25(18): 12357– 12370. https://doi.org/10.1007/s00500-021-05949-1Rouky N., Couzon P., Boukachour J., Boudebous D., Hilali Alaoui A.E. (2018). Optimization of Containers Transfer in Le Havre Port: a New Algorithm for the Railway Transportation System. 51(11): 1676–1681. https://doi.org/10.1016/j.ifacol.2018.08.215Ruan X., Feng X., Pang K. (2018). Development of port service network in OBOR via capacity sharing: an idea from Zhejiang province in China. Maritime Policy and Management, 45(1): 105–124. https://doi.org/10.1080/03088839.2017.1391412Rui X., Wu J., Zhao J., Khamesinia M.S. (2021). Load balancing in the internet of things using fuzzy logic and shark smell optimization algorithm. Circuit World, 47(4): 335–344. https://doi.org/10.1108/CW-09-2019-0117Sadeghi-Niaraki A., Mirshafiei P., Shakeri M., Choi S.-M. (2020). Short-Term Traffic Flow Prediction Using the Modified Elman Recurrent Neural Network Optimized through a Genetic Algorithm. IEEE Access, 8: 217526–217540. https://doi.org/10.1109/ACCESS.2020.3039410Sahoo L., Bhunia A.K. (2021). Optimization of plant location problem in interval domain via particle swarm optimization. International Journal of Systems Assurance Engineering and Management, 12(6): 1094–1105. https://doi.org/10.1007/s13198-021-01275-9Sánchez R.J., Jaimurzina A., Wilmsmeier G., Pérez Salas G., Doerr O., Pinto F. (2015). Transporte marítimo y puertos: Desafíos y oportunidades en busca de un desarrollo sostenible en América Latina y el Caribe. Disponible en: https://repositorio.cepal.org/bitstream/handle/11362/39708/1/S1501003_es.pdf. [Visitada en diciembre de 2021 ].Sánchez R.J., Weikert F. (2020). Logística internacional pospandemia: Análisis de las industrias aérea y de transporte marítimo de contenedores. Disponible en: www.cepal.org/apps. [Visitada en diciembre de 2021 ].Shafique R., Siddiqui H.-U.-R., Rustam F., Ullah S., Siddique M.A., Lee E., Ashraf I., Dudley S. (2021). A novel approach to railway track faults detection using acoustic analysis. Sensors, 21(18):. https://doi.org/10.3390/s21186221Siahaan J.J.A., Pratiwi E., Setyorini P.D. (2020). Study of Green-Ship Routing Problem (G-VRP) Optimization for Indonesia LNG Distribution. IOP Conference Series: Earth and Environmental Science, 557(1):. https://doi.org/10.1088/1755-1315/557/1/012018Sicilia J.-A., Escuín D., Royo B., Larrodé E., Medrano J. (2014). A hybrid algorithm for solving the general vehicle routing problem in the case of the urban freight distribution. Advances in Intelligent Systems and Computing, 262: 463–475. https://doi.org/10.1007/978-3-319- 04630-3_34Silva C., Santos J.S., Wanner E.F., Carrano E.G., Takahashi R.H.C. (2009). Semi-supervised training of least squares support vector machine using a multiobjective evolutionary algorithm. 2009 IEEE Congress on Evolutionary Computation, CEC 2009, 2996–3002. https://doi.org/10.1109/CEC.2009.4983321Simoni M.D., Kutanoglu E., Claudel C.G. (2020). Optimization and analysis of a robot-assisted last mile delivery system. Transportation Research Part E: Logistics and Transportation Review, 142:. https://doi.org/10.1016/j.tre.2020.102049Solumat. (2022). Los cinco procesos de la logística. Solumat. Disponible en: https://www.solumat.com.co/blog/los-cinco-procesos-de-la-logistica. [Visitada en febrero de 2022].Soto-Orozco O.A., Corral-Sáenz A.D., Rojo-González C.E., Ramírez-Quintana J.A. (2019). Análisis del desempeño de redes neuronales profundas para segmentación semántica en hardware limitado. Revista electrónica de computación, informática, biomédica y electrónica, 8(2): 1–21. https://doi.org/10.1016/J.PATREC.2008.04.005Sriratanawilai S., Erjongmanee S. (2018). Route prediction in air travel network using socioeconomic factors and learning models. 5th International Conference on Business and Industrial Research: Smart Technology for Next Generation of Information, Engineering, Business and Social Science, 100–105. https://doi.org/10.1109/ICBIR.2018.8391174Sugimura Y., Murakami S. (2021). Designing a Resilient International Reverse Logistics Network for Material Cycles: A Japanese Case Study. Resources, Conservation and Recycling, 170:. https://doi.org/10.1016/j.resconrec.2021.105603Sugrue D., Adriaens P. (2021a). A data fusion approach to predict shipping efficiency for bulk carriers. Transportation Research Part E: Logistics and Transportation Review, 149:. https://doi.org/10.1016/j.tre.2021.102326Sugrue D., Adriaens P. (2021b). A data fusion approach to predict shipping efficiency for bulk carriers. Transportation Research Part E: Logistics and Transportation Review, 149:. https://doi.org/10.1016/j.tre.2021.102326Svindland M. (2018). The environmental effects of emission control area regulations on short sea shipping in Northern Europe: The case of container feeder vessels. Transportation Research Part D: Transport and Environment, 61: 423–430. https://doi.org/10.1016/j.trd.2016.11.008Svindland M., Hjelle H.M. (2019). The comparative CO2 efficiency of short sea container transport. Transportation Research Part D: Transport and Environment, 77: 11–20. https://doi.org/10.1016/j.trd.2019.08.025Syam S., Shetty B. (1998). Coordinated replenishments from multiple suppliers with price discounts. Naval Research Logistics, 45(6): 579–598. https://doi.org/10.1002/(SICI)1520- 6750(199809)45:6<579::AID-NAV3>3.0.CO;2-#Taha H. (2012). Investigación de operaciones (Novena edi). Pearson.Tamayo D. (2017). Algoritmos Heurísticos Híbridos para el diseño de S-Cajas [Universidad de la Habana]. Disponible en: https://www.researchgate.net/publication/318542854_Algoritmos_Heuristicos_Hibridos_p ara_el_diseno_de_S-Cajas. [Visitada en diciembre de 2021 ].Tang G., Guo Z., Song X., Wang W., Li N. (2010). Dynamic robustness analysis of container marine transportation network using improved ACO approach. 3rd International Workshop on Advanced Computational Intelligence, IWACI 2010, 333–338. https://doi.org/10.1109/IWACI.2010.5585183Tang R., Qin Y., Zhang L. (2011). Research on heuristics logistics distribution algorithm based on parallel multi-ant colonies. Journal of Software, 6(4): 612–619. https://doi.org/10.4304/jsw.6.4.612-619Tavakkoli-Moghaddam R., Alinaghian M., Salamat-Bakhsh A., Norouzi N. (2012). A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver’s satisfaction. Journal of Industrial Engineering International, 8(1):. https://doi.org/10.1186/2251-712X-8-4Teng S. (2021). Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network. Soft Computing, 25(18): 12107–12116. https://doi.org/10.1007/s00500-021-05861-8Theeraviriya C., Ruamboon K., Praseeratasang N. (2021). Solving the multi-level location routing problem considering the environmental impact using a hybrid metaheuristic. International Journal of Engineering Business Management, 13:. https://doi.org/10.1177/18479790211017353Tillig F., Ringsberg J.W., Psaraftis H.N., Zis T. (2020). Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion. Transportation Research Part D: Transport and Environment, 83: 102380. https://doi.org/https://doi.org/10.1016/j.trd.2020.102380Toro Ocampo E., Santa Chávez J., Granada Echeverri M. (2013). Solución del problema de ruteamiento de vehículos en la distribución de papa en Colombia. Scientia et Technica, 18(1): 139–148. https://doi.org/10.22517/23447214.8373Trapp A.C., Harris I., Sanchez Rodrigues V., Sarkis J. (2020). Maritime container shipping: Does coopetition improve cost and environmental efficiencies? Transportation Research Part D: Transport and Environment, 87:. https://doi.org/10.1016/j.trd.2020.102507Tryana Sembiring M., Chailes S. (2020). Ant Colony Optimization Implementation on Traveling Salesman Problem to Achieve the Shortest Logistic Route. En bin Ali A.Y. (Ed.), IOP Conference Series: Materials Science and Engineering. IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/1003/1/012045Tsadiras A., Zitopoulos G. (2017). Fuzzy cognitive maps as a decision support tool for container transport logistics. Evolving Systems, 8(1): 19–33. https://doi.org/10.1007/s12530-016- 9161-9Tsoi K.H., Loo B.P.Y. (2021). Cutting the loss: International benchmarking of a sustainable ferry business model. Transportation Research Part A: Policy and Practice, 145: 167–188. https://doi.org/10.1016/j.tra.2021.01.007UMNG. (2021). Programación dinámica. Disponible en: http://virtual.umng.edu.co/distancia/ecosistema/ovas/ingenieria_civil/investigacion_de_op eraciones_ii/unidad_4/DM.pdf. [Visitada en diciembre de 2021 ].UNCTAD. (2021a). Informe sobre el transporte marítimo. Naciones Unidas,. Disponible en: https://unctad.org/system/files/official-document/rmt2021summary_es.pdf. [Visitada en diciembre de 2021 ].UNCTAD. (2021b, abril 23). El transporte marítimo durante el COVID-19: por qué se han disparado los fletes de los contenedores. UNCTAD. Disponible en: https://unctad.org/es/news/el-transporte-maritimo-durante-el-covid-19-por-que-se-handisparado- los-fletes-de-los. [Visitada en diciembre de 2021 ].Ursavas E., Zhu S.X., Savelsbergh M. (2020). LNG bunkering network design in inland waterways. Transportation Research Part C: Emerging Technologies, 120:. https://doi.org/10.1016/j.trc.2020.102779Valderrama C. (2020). En 2019 se movilizaron más de 195 millones de toneladas en las zonas portuarias de Colombia: Supertransporte. Mintransporte. Disponible en: https://www.mintransporte.gov.co/publicaciones/8154/en-2019-se-movilizaron-más-de- 195-millones-de-toneladas-en-las-zonas-portuarias-de-colombia-supertransporte/. [Visitada en diciembre de 2021 ].Van Hassel E., Meersman H., de Voorde E., Vanelslander T. (2021). The impact of the expanded Panama Canal on port range choice for cargo flows from the U.S. to Europe. Maritime Policy and Management, 48(5): 610–628. https://doi.org/10.1080/03088839.2020.1718230Venturini G., Iris Ç., Kontovas C.A., Larsen A. (2017). The multi-port berth allocation problem with speed optimization and emission considerations. Transportation Research Part D: Transport and Environment, 54: 142–159. https://doi.org/10.1016/j.trd.2017.05.002Verschuur J., Koks E.E., Hall J.W. (2020). Port disruptions due to natural disasters: Insights into port and logistics resilience. Transportation Research Part D: Transport and Environment, 85:. https://doi.org/10.1016/j.trd.2020.102393Vicentiy A.V. (2021). Digitalization of Arctic shipping along the Northern Sea Route. IOP Conference Series: Earth and Environmental Science, 816(1):. https://doi.org/10.1088/1755-1315/816/1/012023Vleugel J.M., Bal F. (2014). Cleaner air in seaport container terminals: Assessing fuel(s). WIT Transactions on Ecology and the Environment, 181: 25–36. https://doi.org/10.2495/EID140031Wan J., Wei S. (2019). Multi-Objective Multimodal Transportation Path Selection Based on Hybrid Algorithm. Journal of Tianjin University Science and Technology, 52(3): 285–292. https://doi.org/10.11784/tdxbz201807034Wang C., Chen Q., Huang R. (2018). Locating dry ports on a network: a case study on Tianjin Port. Maritime Policy and Management, 45(1): 71–88. https://doi.org/10.1080/03088839.2017.1330558Wang C., Kim Y.-S., Kim C.Y. (2021). Causality between logistics infrastructure and economic development in China. Transport Policy, 100: 49–58. https://doi.org/10.1016/j.tranpol.2020.10.005Wang J., Liu J., Wang F., Yue X. (2021). Blockchain technology for port logistics capability: Exclusive or sharing. Transportation Research Part B: Methodological, 149: 347–392. https://doi.org/10.1016/j.trb.2021.05.010Wang X., Li H., Yang J., Yang C., Gui H. (2020). Optimal path selection for logistics transportation based on an improved ant colony algorithm. International Journal of Embedded Systems, 13(2): 200–208. https://doi.org/10.1504/IJES.2020.108869Wang Y., Ma X., Li Z., Liu Y., Xu M., Wang Y. (2017). Profit distribution in collaborative multiple centers vehicle routing problem. Journal of Cleaner Production, 144: 203–219. https://doi.org/10.1016/j.jclepro.2017.01.001Wang Y., Peng S., Xu C., Assogba K., Wang H., Xu M., Wang Y. (2018). Two-echelon logistics delivery and pickup network optimization based on integrated cooperation and transportation fleet sharing. Expert Systems with Applications, 113: 44–65. https://doi.org/10.1016/j.eswa.2018.06.037Wang Y., Ren Y.-J., Liu Y., Xu M.-Z. (2018). Profit Allocation Optimization Based on Multicenter Vehicle Routing Problem. Journal of Transportation Systems Engineering and Information Technology, 18(3): 210–217. https://doi.org/10.16097/j.cnki.1009- 6744.2018.03.032Wang Y., Sun Y., Guan X., Fan J., Xu M., Wang H. (2021). Two-echelon multi-period location routing problem with shared transportation resource. Knowledge-Based Systems, 226:. https://doi.org/10.1016/j.knosys.2021.107168Wang Y., Zhang J., Assogba K., Liu Y., Xu M., Wang Y. (2018). Collaboration and transportation resource sharing in multiple centers vehicle routing optimization with delivery and pickup. Knowledge-Based Systems, 160: 296–310. https://doi.org/10.1016/j.knosys.2018.07.024Wang Y., Zhang J., Liu Y., Xu M.-Z. (2020). Optimization method study of fresh good logistics distribution based on time window and temperature control. Control and Decision, 35(7): 1606–1614. https://doi.org/10.13195/j.kzyjc.2018.1662Wang Y., Zhang S., Guan X., Fan J., Wang H., Liu Y. (2021). Cooperation and profit allocation for two-echelon logistics pickup and delivery problems with state–space–time networks. Applied Soft Computing, 109:. https://doi.org/10.1016/j.asoc.2021.107528Wang Z., Leng L., Wang S., Li G., Zhao Y. (2020). A Hyperheuristic Approach for Location- Routing Problem of Cold Chain Logistics considering Fuel Consumption. Computational Intelligence and Neuroscience, 2020:. https://doi.org/10.1155/2020/8395754Werbos L., Kozma R., Silva-Lugo R., Pazienza G.E., Werbos P.J. (2012). Metamodeling and the Critic-based approach to multi-level optimization. Neural Networks, 32: 179–185. https://doi.org/10.1016/j.neunet.2012.02.036WET. (2020, noviembre 2). Tendencias que marcarán la logística en 2021: camino hacia la “Transformación Digital” . World Energy Trade (WET). Disponible en: https://www.worldenergytrade.com/logistica/transporte/tendencias-que-marcaran-lalogistica- en-2021-camino-hacia-la-transformacion-digital. [Visitada en diciembre de 2021].World Bank Group. (2018). Country Score Card: Afghanistan 2018. Logistics Performance Index. Disponible en: https://lpi.worldbank.org/international/scorecard.[Visitada en enero de 2023].Wu H., Tao F., Qiao Q., Zhang M. (2020). A chance-constrained vehicle routing problem for wet waste collection and transportation considering carbon emissions. International Journal of Environmental Research and Public Health, 17(2):. https://doi.org/10.3390/ijerph17020458Xiao B., Walker P.D., Zhou S., Yang W., Zhang N. (2021). A Power Consumption and Total Cost of Ownership Analysis of Extended Range System for a Logistics Van. IEEE Transactions on Transportation Electrification,. https://doi.org/10.1109/TTE.2021.3084196Xiao K., Hu X. (2017). Study on maritime logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model. Polish Maritime Research, 24(2): 30–38. https://doi.org/10.1515/pomr-2017-0061Xiao Y., Konak A. (2017). A genetic algorithm with exact dynamic programming for the green vehicle routing & scheduling problem. Journal of Cleaner Production, 167: 1450–1463. https://doi.org/10.1016/j.jclepro.2016.11.115Xiong H. (2021). Research on Cold Chain Logistics Distribution Route Based on Ant Colony Optimization Algorithm. Discrete Dynamics in Nature and Society, 2021:. https://doi.org/10.1155/2021/6623563Xu Q., Li N., Jin Z.-H. (2012). Combined optimization of allocation for full and empty containers. Journal of Transportation Systems Engineering and Information Technology, 12(1): 145– 152. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84863414093&partnerID=40&md5=987acc27577e0c45a97ec7bbf663913f. [Visitada en diciembre de 2021 ].Xu R., Wang Y., Wang F., He M., Wang M., Xie Y. (2018). Prediction of package volume based on improved PSO-BP. Computer Integrated Manufacturing Systems, CIMS, 24(7): 1871– 1879. https://doi.org/10.13196/j.cims.2018.07.029Xu X., Wang S., Tang P., Shi G. (2006). Algorithm of multi-objective prediction on logistics volume of combined transportation. Journal of Beijing University of Aeronautics and Astronautics, 32(10): 1209–1214. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 33845726699&partnerID=40&md5=74c99564ad12f851d61db8b3dd0baa76. [Visitada en diciembre de 2021 ].Yaghoubi A., Akrami F. (2019). Proposing a new model for location - routing problem of perishable raw material suppliers with using meta-heuristic algorithms. Heliyon, 5(12):. https://doi.org/10.1016/j.heliyon.2019.e03020Yan X., Xiao B., Xiao Y., Zhao Z., Ma L., Wang N. (2019). Skill Vehicle Routing Problem with Time Windows Considering Dynamic Service Times and Time-Skill-Dependent Costs. IEEE Access, 7: 77208–77221. https://doi.org/10.1109/ACCESS.2019.2919963Yang F. (2018). A research on deep neural network based airline market share prediction model in aviation market network evaluation. 4th International Conference on Computer and Communications (ICCC), 2158–2162. https://doi.org/10.1109/CompComm.2018.8780832Yang F., Tang L. (2009). A scatter search optimization for ship consolidation plan for strip coils to reduce the number of shuffling. IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, 1: 367–371. https://doi.org/10.1109/ICICISYS.2009.5357826Yang H., Akiyama T., Sasaki T. (1998). Estimation of time-varying origin-destination flows from traffic counts: A neural network approach. Mathematical and Computer Modelling, 27(9– 11): 323–334. https://doi.org/10.1016/S0895-7177(98)00067-3Yang S.-Y., Ning L.-J., Shang P. (2021). Electric Logistics Vehicle Routing Optimization Based on Space-time-state Network. Journal of Transportation Systems Engineering and Information Technology, 21(2): 196–204. https://doi.org/10.16097/j.cnki.1009- 6744.2021.02.028Yang Y., Zhang G., Du M. (2020). Research on Seafood Logistics Path Based on Ant Colony Optimization Algorithm. Journal of Coastal Research, 108(1): 211–214. https://doi.org/10.2112/JCR-SI108-041.1Yao D., Liu Z. (2020). Research on Multimodal Transportation Path Optimization with Time Window Based on Ant Colony Algorithm in Low Carbon Background. Lecture Notes in Electrical Engineering, 617: 991–1008. https://doi.org/10.1007/978-981-15-0644-4_77Yu J.J.Q., Yu W., Gu J. (2019). Online Vehicle Routing with Neural Combinatorial Optimization and Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 20(10): 3806–3817. https://doi.org/10.1109/TITS.2019.2909109Yu Y., Sun R., Sun Y., Wu J., Zhu W. (2022). China’s Port Carbon Emission Reduction: A Study of Emission-Driven Factors. Atmosphere, 13(4):. https://doi.org/10.3390/atmos13040550Zahraee S.M., Rahimpour Golroudbary S., Shiwakoti N., Stasinopoulos P. (2021). Particle- Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model. Applied Energy, 303:. https://doi.org/10.1016/j.apenergy.2021.117687Zhang H., Chen Z., Holguin-Veras J. (2020). Optimization of Evaluation Model for Ocean Logistics Enterprises Based on Sparse Neural Network. Journal of Coastal Research, 115(1): 575–578. https://doi.org/10.2112/JCR-SI115-154.1Zhang H., Li Y., Zhang Q., Chen D. (2021). Route Selection of Multimodal Transport Based on China Railway Transportation. Journal of Advanced Transportation, 2021:. https://doi.org/10.1155/2021/9984659Zhang L., Lu J., Yang Z. (2021). Dynamic optimization of emergency resource scheduling in a large-scale maritime oil spill accident. Computers and Industrial Engineering, 152:. https://doi.org/10.1016/j.cie.2020.107028Zhang P., Dou Y. (2018). A fast dynamic programming algorithm to a varied capacity problem in vehicle routing. International Journal of Applied Decision Sciences, 11(2): 146–167. https://doi.org/10.1504/IJADS.2018.090924Zhang P., Xiao K., Fu C., Yang K. (2016). Fast dynamic programming algorithm for the large scale VCVRP problem. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 36(3): 694–705. https://doi.org/10.12011/1000-6788(2016)03-0694-12Zhang S., Lee C.K.M., Choy K.L., Ho W., Ip W.H. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31: 85–99. https://doi.org/10.1016/j.trd.2014.05.015Zhao S., Ashraf M.A. (2021). Study on optimization of multimodal transportation of marine container considering carbon emission. Desalination and Water Treatment, 219: 84–89. https://doi.org/10.5004/dwt.2021.26876Zhao Y., Mata G.E. (2020). Leverage Artificial Intelligence to Learn, Optimize, and Win (LAILOW) for the Marine Maintenance and Supply Complex System. En M. R. Atzmuller M. Coscia M. (Ed.), ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 678–684). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ASONAM49781.2020.9381319Zhao Z.-X., Li X.-M. (2020). Electric Vehicle Route Optimization for Fresh Logistics Distribution Based on Time-varying Traffic Congestion. Journal of Transportation Systems Engineering and Information Technology, 20(5): 218–225 and 239. https://doi.org/10.16097/j.cnki.1009-6744.2020.05.032Zheng C., Gu Y., Shen J., Du M. (2021). Urban logistics delivery route planning based on a single metro line. IEEE Access, 9: 50819–50830. https://doi.org/10.1109/ACCESS.2021.3069415Zheng F., Man X., Chu F., Liu M., Chu C. (2018). Two yard crane scheduling with dynamic processing time and interference. IEEE Transactions on Intelligent Transportation Systems, 19(12): 3775–3784. https://doi.org/10.1109/TITS.2017.2780256Zheng F., Man X., Chu F., Liu M., Chu C. (2019). A two-stage stochastic programming for single yard crane scheduling with uncertain release times of retrieval tasks. International Journal of Production Research, 57(13): 4132–4147. https://doi.org/10.1080/00207543.2018.1516903Zhu S., Fu H., Li Y. (2021). Optimization research on vehicle routing for fresh agricultural products based on the investment of freshness-keeping cost in the distribution process. Sustainability, 13(14):. https://doi.org/10.3390/su13148110https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_f1cfoai:repositorio.ucaldas.edu.co:ucaldas/226532025-09-05T08:00:40Z |
