Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae)
Ilustraciones, gráficas, mapas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/19572
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/19572
https://repositorio.ucaldas.edu.co/
- Palabra clave:
- Andes del Norte
Diversificación
Echinosaura
Especies candidatas
Origen
Evolución
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUCALDA_d4f2a707f104ecf1a83261632faa1818 |
---|---|
oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/19572 |
network_acronym_str |
REPOUCALDA |
network_name_str |
Repositorio Institucional U. Caldas |
repository_id_str |
|
dc.title.none.fl_str_mv |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
title |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
spellingShingle |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) Andes del Norte Diversificación Echinosaura Especies candidatas Origen Evolución |
title_short |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
title_full |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
title_fullStr |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
title_full_unstemmed |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
title_sort |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae) |
dc.contributor.none.fl_str_mv |
Rodríguez-Rey, Ghennie T Medina-Rangel Guido Fabián Grupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B) |
dc.subject.none.fl_str_mv |
Andes del Norte Diversificación Echinosaura Especies candidatas Origen Evolución |
topic |
Andes del Norte Diversificación Echinosaura Especies candidatas Origen Evolución |
description |
Ilustraciones, gráficas, mapas |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-04T13:45:49Z 2023-09-04T13:45:49Z 2023-09-04 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis https://purl.org/redcol/resource_type/TP |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19572 Universidad de Caldas Repositorio Institucional Universidad de Caldas https://repositorio.ucaldas.edu.co/ |
url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/19572 https://repositorio.ucaldas.edu.co/ |
identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
Aguirre-Penafiel, V., Torres-Carvajal, O., Nunes, P.M.S., Peck, M.R. & Maddock, S.T. (2014). A new species of Riama Gray, 1858 (Squamata: Gymnophthalmidae) from the tropical Andes. Zootaxa, 3866(2), 246-260. Albino, A.M. (2011). Evolution of Squamata reptiles in Patagonia based on the fossil record. Biological Journal of the Linnean Society, 103(2), 441-457. Antonelli, A. & SanMartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60(2), 403-414. Arévalo, E., Davis, S.K. & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418. Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P. & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112(19), 6110-6115. Barbour, T. 1924. Two noteworthy new lizards from Panama. Proceedings of the New England Zoological Club, 9, 7–10. Barnes, J. B., Ehlers, T. A., Insel, N., McQuarrie, N. & Poulsen, C. J. (2012). Linking orography, climate, and exhumation across the central Andes. Geology, 40(12), 1135-1138. Bell, M. A. & Lloyd, G. T. (2015). strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Paleontology, 58, 379- 389. Blair, C., Méndez de La Cruz, F.R., Ngo, A., Lindell, J., Lathrop, A. & Murphy, R.W. (2009). Molecular phylogenetics and taxonomy of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) inhabiting the peninsula of Baja California. Zootaxa, 2027(1), 28-42. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., et al. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4), e1006650. Boulenger, G.A. 1890. First report on additions to the lizard collection in the British Museum (Natural History). Proceeding of the Scientific Meetings of the Zoological Society of London, 1890, 77–86. Boulenger, G.A. 1911. Descriptions of new reptiles from the Andes of South America, preserved in the British Museum. Annals and Magazine of Natural History, Including Zoology, Botany and Geology, 7, 19–25. Breder, C. M. JR. (1946). Amphibians and rep-tiles of the Rio Chucunaque drainage, Darien, Panama, with notes on their life histories and habits. Bulletin American Museum of Natural History, 86, 375-436. Campbell, K.E. Jr., Frailey, C.D. & Romero-Pittman, L. (2000). The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the Great American Faunal Interchange. Instituto de Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, 23 (1),1–152. Castelltort, S., Goren, L., Willett, S. D., Champagnac, J. D., Herman, F. & Braun, J. (2012). River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nature Geoscience, 5(10), 744-748 Castroviejo‐Fisher, S., Guayasamin, J.M., Gonzalez‐Voyer, A. & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41(1), 66-80. Ceccarelli, F.S., Ojanguren‐Affilastro, A.A., Ramírez, M.J., Ochoa, J.A., Mattoni, C.I. & Prendini, L. (2016). Andean uplift drives diversification of the bothriurid scorpion genus Brachistosternus. Journal of Biogeography, 43(10), 1942-1954. Cody, S., Richardson, J. E., Rull, V., Ellis, C. & Pennington, R. T. (2010). The great American biotic interchange revisited. Ecography, 33(2), 326-332. Dick, C.W., Roubik, D.W., Gruber, K.F. & Bermingham, E. (2004). Long‐distance gene flow and cross‐Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13(12), 3775-3785. Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS biology, 4(5), e88. Dunn, E. R. (1944). The lizard genus Echinosaura (Teiidae) in Colombia. Caldasia, 2, 397– 398. Dunn, E.R. (1944). Notes on Colombian herpetology, II. The lizard genus Echinosaura. Caldasia, 2, 397-405. Elias, M.J.B.P., Joron, M., Willmott, K., Silva‐Brandão, K.L., Kaiser, V., Arias, C.F., ... & Jiggins, C. D. (2009). Out of the Andes: patterns of diversification in clearwing butterflies. Molecular Ecology, 18(8), 1716-1729. Esquerré, D., Brennan, I.G., Catullo, R.A., Torres-Pérez, F. & Keogh, J.S. (2019). How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America's most species-rich lizard radiation (Squamata: Liolaemidae). Evolution, 73(2), 214-230. Estes, R. & Baez, A. (1985). Herpetofaunas of North and South America during the Late Cretaceous and Cenozoic: evidence for interchange? In: Stehli, F. G. & Webb, S. D. (Eds), The great American biotic interchange Springer US: Boston, MA, pp. 139-197. Fjeldså, J., Bowie, R.C. & Rahbek, C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265. Forasiepi, A. M., Soibelzon, L. H., Gomez, C. S., Sánchez, R., Quiroz, L. I., Jaramillo, C. & Sánchez-Villagra, M. R. (2014). Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics. Naturwissenschaften, 101, 965-974. Fritts, T.H. & Smith, H.M. (1969). A new teiid lizard genus from western Ecuador. Transactions of the Kansas Academy of Science (1903-), 72(1), 54-59. Fritts, T.H., Almendáriz, A. & Samec, S. (2002). A new species of Echinosaura (Gymnophthalmidae) from Ecuador and Colombia with comments on other members of the genus and Teuchocercus keyi. Journal of Herpetology, 36(3), 349-355 Fujisawa, T. & Barraclough, T. G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic biology, 62(5), 707-724. Fujisawa, T., & Barraclough, T.G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic biology, 62(5), 707-724. Gernhard, T. (2008). The conditioned reconstructed process. Journal of theoretical biology, 253(4), 769-778. Giarla, T.C., & Jansa, S.A. (2014). The role of physical geography and habitat type in shaping the biogeographical history of a recent radiation of Neotropical marsupials (Thylamys: Didelphidae). Journal of Biogeography, 41(8), 1547-1558. Goicoechea, N., Padial, J.M., Chaparro, J.C., Castroviejo-Fisher, S. & De la Riva, I. (2012). Molecular phylogenetics, species diversity, and biogeography of the Andean lizards of the genus Proctoporus (Squamata: Gymnophthalmidae). Molecular Phylogenetics and Evolution, 65(3), 953-964. Graham, A. (2009). The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96(3), 371-385. Hannisdal, B. & Peters, S. E. (2011). Phanerozoic Earth system evolution and marine biodiversity. science, 334(6059), 1121-1124. Hayes, F. E. & Sewlal, J. A. N. (2004). The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31(11), 1809-1818. Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular biology and evolution, 35(2), 518-522. Hoorn, C., Mosbrugger, V., Mulch, A. & Antonelli, A. (2013). Biodiversity from mountain building. Nature Geoscience, 6(3), 154-154. Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., ... & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. science, 330(6006), 927-931. Hutter, C.R., Guayasamin, J.M. & Wiens, J.J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology letters, 16(9), 1135-1144. Jaillard, E., Hérail, G., Monfret, T., Díaz-Martínez, E., Baby, P., Lavenu, A. & Dumont, J.F. (2000). Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani, U.G., Milani, E.J., Thomaz-Filho, A. & Campos, D.A. (Eds.), Tectonic Evolution of South America. Brazilian Academy of Science, Brazil, Rio de Janeiro, pp. 481–559. Jones, G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of mathematical biology, 74, 447-467. Jones, G., Aydin, Z. & Oxelman, B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics, 31(7), 991-998. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589. Kirby, M. X. & MacFadden, B. (2005). Was southern Central America an archipelago or a peninsula in the middle Miocene? A test using land-mammal body size. Palaeogeography, palaeoclimatology, palaeoecology, 228(3-4), 193-202. Köhler, G., Böhme, W. & Schmitz, A. (2004). A new species of Echinosaura (Squamata: Gymnophthalmidae) from Ecuador. Journal of Herpetology, 38(1), 52-60. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K, (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. Lagomarsino, L.P., Condamine, F.L., Antonelli, A., Mulch, A. & Davis, C.C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist, 210(4), 1430-1442. Laurito, C.A. & Valerio, A.L. (2012). Primer registro fósil de Pliometanastes sp. (Mammalia, Xenarthra, Megalonychidae) para el Mioceno Superior de Costa Rica, América Central. Una Nueva Pista en la Comprensión del Pre-GABI. Revista Geológica de América Central, 47, 95-108. Lecocq, T., Vereecken, N.J., Michez, D., Dellicour, S., Lhomme, P., Valterova, I., ... & Rasmont, P. (2013) Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS One, 8(6), e65642. Losos, J. B. (2010). Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists EO Wilson Award address. The American Naturalist, 175(6), 623-639. Luebert, F., Hilger, H.H. & Weigend, M. (2011). Diversification in the Andes: age and origins of South American Heliotropium lineages (Heliotropiaceae, Boraginales). Molecular Phylogenetics and Evolution, 61(1), 90-102. Maddison, W.P. & Maddison, D.R. (2011). Mesquite: A modular system for evolutionary analysis. Versión 2.74. http://mesquiteproject.org Madriñán, S., Cortés, A.J. & Richardson, J.E. (2013). Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in genetics, 4, 192. Marques‐Souza, S., Prates, I., Fouquet, A., Camacho, A., Kok, P.J., Nunes, P.M., ... & Rodrigues, M.T. (2018). Reconquering the water: Evolution and systematics of South and Central American aquatic lizards (Gymnophthalmidae). Zoologica Scripta, 47(3), 255-265. Mattoni, C. I., Ochoa, J. A., Ojanguren Affilastro, A. A. & Prendini, L. (2012). Orobothriurus (Scorpiones: Bothriuridae) phylogeny, Andean biogeography, and the relative importance of genitalic and somatic characters. Zoologica Scripta, 41(2), 160-176. McGuire, J. A., Witt, C. C., Remsen, J. V., Corl, A., Rabosky, D. L., Altshuler, D. L. & Dudley, R. (2014). Molecular phylogenetics and the diversification of hummingbirds. Current Biology, 24(8), 910-916. Mendoza, Á.M., Ospina, O.E., Cárdenas-Henao, H. & García-R, J.C. (2015). A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Molecular phylogenetics and evolution, 85, 50-58. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, 1, 1–8. Miller, S., Dykes, D. & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids res, 16(3), 1215. Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., ... & Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231), 226-229. Mora, A., Baby, P., Roddaz, M., Parra, M. & Brusset, S. (2010). Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn, C. & Wesselingh, F.P. (Eds), Amazonia, Landscape and Species Evolution. Wiley, Oxford, pp. 38-60. Moravec, J., Šmíd, J., Štundl, J. & Lehr, E. (2018). Systematics of Neotropical microteiid lizards (Gymnophthalmidae, Cercosaurinae), with the description of a new genus and species from the Andean montane forests. ZooKeys, (774), 105. Morrone, J.J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782(1), 1-110. Mulcahy, D.G., Ibáñez, R., Jaramillo, C.A., Crawford, A.J., Ray, J.M., Gotte, S.W., ... & de Queiroz, K. (2022) DNA barcoding of the National Museum of Natural History reptile tissue holdings raises concerns about the use of natural history collections and the responsibilities of scientists in the molecular age. Plos one, 17(3), e0264930. Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á.A., Guarnizo, C.E. & Crawford, A.J. (2014). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205. Murphy, J. C., Salvi, D., Santos, J. L., Braswell, A. L., Charles, S. P., Borzée, A. & Jowers, M. J. (2019). The reduced limbed lizards of the genus Bachia (Reptilia, Squamata, Gymnophthalmidae); biogeography, cryptic diversity, and morphological convergence in the eastern Caribbean. Organisms Diversity & Evolution, 19, 321- 340. Palumbi, S.R., Martin, A., Romano, S., Owen, W., Stice, L., Grabowski, G. (1991). The simple fool’s guide to PCR. Department of Zoology, University of Hawaii: Honolulu. 45pp. Paradis, E. & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. Patterson, B. D., & Costa, L. P. (Eds.). (2019). Bones, clones, and biomes: the history and geography of recent neotropical mammals. University of Chicago Press. Chicago, USA, 432 pp. Pelegrin, J. S., Gamboa, S., Menéndez, I. & Fernández, M. H. (2018). El gran intercambio biótico Americano: una revisión paleoambiental de evidencias aportadas por mamíferos y aves neotropicales. Ecosistemas, 27(1), 5-17. Pocco, M.E., Posadas, P., Lange, C.E. & Cigliano, M.M. (2013). Patterns of diversification in the high Andean Ponderacris grasshoppers (Orthoptera: Acrididae: Melanoplinae). Systematic Entomology, 38(2), 365-389. Poveda, I. C., Rojas, C. A., Rudas, A. & Rangel, J. O. (2004). El Chocó Biogeográfico: Ambiente físico. In: Rangel, J. O. (Eds), Diversidad Biótica IV. El chocó Biogeográfico/Costa Pacífica. Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Conservación Internacional. Bogotá, D.C, pp. 1–22 Puillandre, N., Brouillet, S. & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery form primary species delimitation. Molecular Ecology, 21, 1864–1877. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/ Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget ,B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. Salgado‐Roa, F.C., Pardo‐Diaz, C., Lasso, E., Arias, C.F., Solferini, V.N. & Salazar, C. (2018). Gene flow and Andean uplift shape the diversification of Gasteracantha cancriformis (Araneae: Araneidae) in Northern South America. Ecology and Evolution, 8(14), 7131-7142. Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A. ... & Murphy, R. W. (2017). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291. Schulte, J.A., Macey, J R., Espinoza, R.E. & Larson, A. (2000). Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Journal of the Linnean Society, 69(1), 75-102. Sedano, R.E. & Burns, K.J. (2010). Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). Journal of Biogeography, 37(2), 325-343. Soler, M. (2002). Evolución: la base de la biología. Proyecto Sur, Granada, España, 552 pp. Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution, 4(1), vey016. Teixeira Jr, M., Prates, I., Nisa, C., Silva-Martins, N.S.C., Strüssmann, C. & Rodrigues, M. T. (2016). Molecular data reveal spatial and temporal patterns of diversification and a cryptic new species of lowland Stenocercus Duméril & Bibron, 1837 (Squamata: Tropiduridae). Molecular Phylogenetics and Evolution, 94, 410-423. Torres-Carvajal, O. (2009). Sistemática filogenética de las lagartijas del género Stenocercus (Squamata: Iguania) de los Andes del norte. Revista mexicana de biodiversidad, 80(3), 727-740. Torres-Carvajal, O., Lobos, S. E., & Venegas, P. J. (2015). Phylogeny of Neotropical Cercosaura (Squamata: Gymnophthalmidae) lizards. Molecular Phylogenetics and Evolution, 93, 281-288. Torres-Carvajal, O., Lobos, S.E., Venegas, P.J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D. & Echevarría, L.Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75. Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A. & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 44(W1), W232-W235. Uetz, P., Freed, P, Aguilar, R., Reyes, F. & Hošek, J. (eds.) (2023). The Reptile Database, http://www.reptile-database.org, accessed [01/05/2023] Uzzell, T. M. (1965). Teiid lizards of the genus Echinosaura. Copeia, 1965, 82–89. Vásquez-Restrepo, J.D., Ibáñez, R., Sánchez-Pacheco, S.J. & Daza, J.M. (2020). Phylogeny, taxonomy and distribution of the Neotropical lizard genus Echinosaura (Squamata: Gymnophthalmidae), with the recognition of two new genera in Cercosaurinae. Zoological Journal of the Linnean Society, 189(1), 287-314. Weir, J. T. & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550- 4563. Weir, J. T., Bermingham, E. & Schluter, D. (2009). The great American biotic interchange in birds. Proceedings of the National Academy of Sciences, 106(51), 21737-21742. Wen, J., Ree, R.H., Ickert-Bond, S.M., Nie, Z. & Funk, V. (2013). Biogeography: where do we go from here? Taxon, 62(5), 912-927. Yánez-Muñoz, M.H., Torres-Carvajal, O., Reyes-Puig, J.P., Urgiles-Merchán, M.A., & Koch, C. (2021). A new and very spiny lizard (Gymnophthalmidae: Echinosaura) from the Andes in northwestern Ecuador. PeerJ, 9, e12523. Yu, Y., Harris, A.J., Blair, C. & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular phylogenetics and evolution, 87, 46-49. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869- 2876. Zheng, Y. & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular phylogenetics and evolution, 94, 537-547. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
publisher.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales Manizales Biología |
institution |
Universidad de Caldas |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836145080190107648 |
spelling |
Relaciones filogenéticas e historia evolutiva del género Echinosaura (squamata: Gymnophthalmidae)Andes del NorteDiversificaciónEchinosauraEspecies candidatasOrigenEvoluciónIlustraciones, gráficas, mapasspa:La formación de cadenas montañosas se considera como un factor que favorece los procesos evolutivos. Un ejemplo de esto es Los Andes, cuyo levantamiento ha sido asociado con la diversificación de diferentes grupos taxonómicos. El género Echinosaura en la actualidad cuenta con ocho especies descritas, las cuales se distribuyen desde el noroeste de Panamá hasta el norte de Ecuador. Sobre su historia evolutiva se ha hipotetizado que se originó en los Andes del Norte, por lo cual, en este estudio se pretende evaluar si el levantamiento de los Andes influyó en la diversificación y actual distribución de las especies del género Echinosaura. Haciendo uso de los marcadores moleculares 12S, 16S, ND4 y C-mos, se infirieron las relaciones filogenéticas, se estimaron tiempos de divergencia y se reconstruyeron los rangos ancestrales. Se propone que el origen del género Echinosaura se dio durante el Oligoceno, y su diversificación fue paralela a la formación intensa de los Andes del Norte y el Istmo de Panamá. Adicionalmente, a partir de análisis moleculares, se presentan cinco posibles nuevas especies candidatas pertenecientes al género.eng:The formation of mountain ranges is considered a factor that favors evolutionary processes. An example of this is Los Andes, whose uplift has been associated with the diversification of different taxonomic groups. The genus Echinosaura currently has eight described species, which are distributed from northwestern Panama to northern Ecuador. Regarding its evolutionary history, it has been hypothesized that it originated in the Northern Andes, therefore, in this study we intend to evaluate if the uplift of the Andes influenced the diversification and current distribution of the species of the genus Echinosaura. Using the molecular markers 12S, 16S, ND4, and C-mos, phylogenetic relationships were inferred, divergence times were estimated, and ancestral ranges were reconstructed. It is proposed that the origin of the genus Echinosaura occurred during the Oligocene, and its diversification paralleled the intense formation of the Northern Andes and the Isthmus of Panama. Additionally, from molecular analyses, five possible new candidate species belonging to the genus are presented.1. Introducción / 2. Metodología / 2.1 Especímenes analizados / 2.2 Extracción, amplificación y secuenciación de ADN / 2.3 Análisis filogenéticos y delimitación de especies / 2.4 Tiempos de divergencia y análisis biogeográficos / 3. Resultados / 3.1 Análisis Filogenéticos y delimitación de especies / 3.2 Tiempos de divergencia y análisis biogeográfico / 4. Discusión / 5. Conclusiones y recomendaciones / 6. Anexos / 7. Referencias bibliográficasUniversitarioBiólogo(a)Diversidad y distribución de anfibios y reptilesFacultad de Ciencias Exactas y NaturalesManizalesBiologíaRodríguez-Rey, Ghennie TMedina-Rangel Guido FabiánGrupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)Rodríguez Felizzola, Juan Jacobo2023-09-04T13:45:49Z2023-09-04T13:45:49Z2023-09-04Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19572Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAguirre-Penafiel, V., Torres-Carvajal, O., Nunes, P.M.S., Peck, M.R. & Maddock, S.T. (2014). A new species of Riama Gray, 1858 (Squamata: Gymnophthalmidae) from the tropical Andes. Zootaxa, 3866(2), 246-260.Albino, A.M. (2011). Evolution of Squamata reptiles in Patagonia based on the fossil record. Biological Journal of the Linnean Society, 103(2), 441-457.Antonelli, A. & SanMartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60(2), 403-414.Arévalo, E., Davis, S.K. & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418.Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P. & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112(19), 6110-6115.Barbour, T. 1924. Two noteworthy new lizards from Panama. Proceedings of the New England Zoological Club, 9, 7–10.Barnes, J. B., Ehlers, T. A., Insel, N., McQuarrie, N. & Poulsen, C. J. (2012). Linking orography, climate, and exhumation across the central Andes. Geology, 40(12), 1135-1138.Bell, M. A. & Lloyd, G. T. (2015). strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Paleontology, 58, 379- 389.Blair, C., Méndez de La Cruz, F.R., Ngo, A., Lindell, J., Lathrop, A. & Murphy, R.W. (2009). Molecular phylogenetics and taxonomy of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) inhabiting the peninsula of Baja California. Zootaxa, 2027(1), 28-42.Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., et al. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4), e1006650.Boulenger, G.A. 1890. First report on additions to the lizard collection in the British Museum (Natural History). Proceeding of the Scientific Meetings of the Zoological Society of London, 1890, 77–86.Boulenger, G.A. 1911. Descriptions of new reptiles from the Andes of South America, preserved in the British Museum. Annals and Magazine of Natural History, Including Zoology, Botany and Geology, 7, 19–25.Breder, C. M. JR. (1946). Amphibians and rep-tiles of the Rio Chucunaque drainage, Darien, Panama, with notes on their life histories and habits. Bulletin American Museum of Natural History, 86, 375-436.Campbell, K.E. Jr., Frailey, C.D. & Romero-Pittman, L. (2000). The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the Great American Faunal Interchange. Instituto de Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, 23 (1),1–152.Castelltort, S., Goren, L., Willett, S. D., Champagnac, J. D., Herman, F. & Braun, J. (2012). River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nature Geoscience, 5(10), 744-748Castroviejo‐Fisher, S., Guayasamin, J.M., Gonzalez‐Voyer, A. & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41(1), 66-80.Ceccarelli, F.S., Ojanguren‐Affilastro, A.A., Ramírez, M.J., Ochoa, J.A., Mattoni, C.I. & Prendini, L. (2016). Andean uplift drives diversification of the bothriurid scorpion genus Brachistosternus. Journal of Biogeography, 43(10), 1942-1954.Cody, S., Richardson, J. E., Rull, V., Ellis, C. & Pennington, R. T. (2010). The great American biotic interchange revisited. Ecography, 33(2), 326-332.Dick, C.W., Roubik, D.W., Gruber, K.F. & Bermingham, E. (2004). Long‐distance gene flow and cross‐Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13(12), 3775-3785.Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS biology, 4(5), e88.Dunn, E. R. (1944). The lizard genus Echinosaura (Teiidae) in Colombia. Caldasia, 2, 397– 398.Dunn, E.R. (1944). Notes on Colombian herpetology, II. The lizard genus Echinosaura. Caldasia, 2, 397-405.Elias, M.J.B.P., Joron, M., Willmott, K., Silva‐Brandão, K.L., Kaiser, V., Arias, C.F., ... & Jiggins, C. D. (2009). Out of the Andes: patterns of diversification in clearwing butterflies. Molecular Ecology, 18(8), 1716-1729.Esquerré, D., Brennan, I.G., Catullo, R.A., Torres-Pérez, F. & Keogh, J.S. (2019). How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America's most species-rich lizard radiation (Squamata: Liolaemidae). Evolution, 73(2), 214-230.Estes, R. & Baez, A. (1985). Herpetofaunas of North and South America during the Late Cretaceous and Cenozoic: evidence for interchange? In: Stehli, F. G. & Webb, S. D. (Eds), The great American biotic interchange Springer US: Boston, MA, pp. 139-197.Fjeldså, J., Bowie, R.C. & Rahbek, C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265.Forasiepi, A. M., Soibelzon, L. H., Gomez, C. S., Sánchez, R., Quiroz, L. I., Jaramillo, C. & Sánchez-Villagra, M. R. (2014). Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics. Naturwissenschaften, 101, 965-974.Fritts, T.H. & Smith, H.M. (1969). A new teiid lizard genus from western Ecuador. Transactions of the Kansas Academy of Science (1903-), 72(1), 54-59.Fritts, T.H., Almendáriz, A. & Samec, S. (2002). A new species of Echinosaura (Gymnophthalmidae) from Ecuador and Colombia with comments on other members of the genus and Teuchocercus keyi. Journal of Herpetology, 36(3), 349-355Fujisawa, T. & Barraclough, T. G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic biology, 62(5), 707-724.Fujisawa, T., & Barraclough, T.G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic biology, 62(5), 707-724.Gernhard, T. (2008). The conditioned reconstructed process. Journal of theoretical biology, 253(4), 769-778.Giarla, T.C., & Jansa, S.A. (2014). The role of physical geography and habitat type in shaping the biogeographical history of a recent radiation of Neotropical marsupials (Thylamys: Didelphidae). Journal of Biogeography, 41(8), 1547-1558.Goicoechea, N., Padial, J.M., Chaparro, J.C., Castroviejo-Fisher, S. & De la Riva, I. (2012). Molecular phylogenetics, species diversity, and biogeography of the Andean lizards of the genus Proctoporus (Squamata: Gymnophthalmidae). Molecular Phylogenetics and Evolution, 65(3), 953-964.Graham, A. (2009). The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96(3), 371-385.Hannisdal, B. & Peters, S. E. (2011). Phanerozoic Earth system evolution and marine biodiversity. science, 334(6059), 1121-1124.Hayes, F. E. & Sewlal, J. A. N. (2004). The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31(11), 1809-1818.Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular biology and evolution, 35(2), 518-522.Hoorn, C., Mosbrugger, V., Mulch, A. & Antonelli, A. (2013). Biodiversity from mountain building. Nature Geoscience, 6(3), 154-154.Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., ... & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. science, 330(6006), 927-931.Hutter, C.R., Guayasamin, J.M. & Wiens, J.J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology letters, 16(9), 1135-1144.Jaillard, E., Hérail, G., Monfret, T., Díaz-Martínez, E., Baby, P., Lavenu, A. & Dumont, J.F. (2000). Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani, U.G., Milani, E.J., Thomaz-Filho, A. & Campos, D.A. (Eds.), Tectonic Evolution of South America. Brazilian Academy of Science, Brazil, Rio de Janeiro, pp. 481–559.Jones, G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of mathematical biology, 74, 447-467.Jones, G., Aydin, Z. & Oxelman, B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics, 31(7), 991-998.Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589.Kirby, M. X. & MacFadden, B. (2005). Was southern Central America an archipelago or a peninsula in the middle Miocene? A test using land-mammal body size. Palaeogeography, palaeoclimatology, palaeoecology, 228(3-4), 193-202.Köhler, G., Böhme, W. & Schmitz, A. (2004). A new species of Echinosaura (Squamata: Gymnophthalmidae) from Ecuador. Journal of Herpetology, 38(1), 52-60.Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K, (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549.Lagomarsino, L.P., Condamine, F.L., Antonelli, A., Mulch, A. & Davis, C.C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist, 210(4), 1430-1442.Laurito, C.A. & Valerio, A.L. (2012). Primer registro fósil de Pliometanastes sp. (Mammalia, Xenarthra, Megalonychidae) para el Mioceno Superior de Costa Rica, América Central. Una Nueva Pista en la Comprensión del Pre-GABI. Revista Geológica de América Central, 47, 95-108.Lecocq, T., Vereecken, N.J., Michez, D., Dellicour, S., Lhomme, P., Valterova, I., ... & Rasmont, P. (2013) Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS One, 8(6), e65642.Losos, J. B. (2010). Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists EO Wilson Award address. The American Naturalist, 175(6), 623-639.Luebert, F., Hilger, H.H. & Weigend, M. (2011). Diversification in the Andes: age and origins of South American Heliotropium lineages (Heliotropiaceae, Boraginales). Molecular Phylogenetics and Evolution, 61(1), 90-102.Maddison, W.P. & Maddison, D.R. (2011). Mesquite: A modular system for evolutionary analysis. Versión 2.74. http://mesquiteproject.orgMadriñán, S., Cortés, A.J. & Richardson, J.E. (2013). Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in genetics, 4, 192.Marques‐Souza, S., Prates, I., Fouquet, A., Camacho, A., Kok, P.J., Nunes, P.M., ... & Rodrigues, M.T. (2018). Reconquering the water: Evolution and systematics of South and Central American aquatic lizards (Gymnophthalmidae). Zoologica Scripta, 47(3), 255-265.Mattoni, C. I., Ochoa, J. A., Ojanguren Affilastro, A. A. & Prendini, L. (2012). Orobothriurus (Scorpiones: Bothriuridae) phylogeny, Andean biogeography, and the relative importance of genitalic and somatic characters. Zoologica Scripta, 41(2), 160-176.McGuire, J. A., Witt, C. C., Remsen, J. V., Corl, A., Rabosky, D. L., Altshuler, D. L. & Dudley, R. (2014). Molecular phylogenetics and the diversification of hummingbirds. Current Biology, 24(8), 910-916.Mendoza, Á.M., Ospina, O.E., Cárdenas-Henao, H. & García-R, J.C. (2015). A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Molecular phylogenetics and evolution, 85, 50-58.Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, 1, 1–8.Miller, S., Dykes, D. & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids res, 16(3), 1215.Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., ... & Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231), 226-229.Mora, A., Baby, P., Roddaz, M., Parra, M. & Brusset, S. (2010). Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn, C. & Wesselingh, F.P. (Eds), Amazonia, Landscape and Species Evolution. Wiley, Oxford, pp. 38-60.Moravec, J., Šmíd, J., Štundl, J. & Lehr, E. (2018). Systematics of Neotropical microteiid lizards (Gymnophthalmidae, Cercosaurinae), with the description of a new genus and species from the Andean montane forests. ZooKeys, (774), 105.Morrone, J.J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782(1), 1-110.Mulcahy, D.G., Ibáñez, R., Jaramillo, C.A., Crawford, A.J., Ray, J.M., Gotte, S.W., ... & de Queiroz, K. (2022) DNA barcoding of the National Museum of Natural History reptile tissue holdings raises concerns about the use of natural history collections and the responsibilities of scientists in the molecular age. Plos one, 17(3), e0264930.Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á.A., Guarnizo, C.E. & Crawford, A.J. (2014). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205.Murphy, J. C., Salvi, D., Santos, J. L., Braswell, A. L., Charles, S. P., Borzée, A. & Jowers, M. J. (2019). The reduced limbed lizards of the genus Bachia (Reptilia, Squamata, Gymnophthalmidae); biogeography, cryptic diversity, and morphological convergence in the eastern Caribbean. Organisms Diversity & Evolution, 19, 321- 340.Palumbi, S.R., Martin, A., Romano, S., Owen, W., Stice, L., Grabowski, G. (1991). The simple fool’s guide to PCR. Department of Zoology, University of Hawaii: Honolulu. 45pp.Paradis, E. & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528.Patterson, B. D., & Costa, L. P. (Eds.). (2019). Bones, clones, and biomes: the history and geography of recent neotropical mammals. University of Chicago Press. Chicago, USA, 432 pp.Pelegrin, J. S., Gamboa, S., Menéndez, I. & Fernández, M. H. (2018). El gran intercambio biótico Americano: una revisión paleoambiental de evidencias aportadas por mamíferos y aves neotropicales. Ecosistemas, 27(1), 5-17.Pocco, M.E., Posadas, P., Lange, C.E. & Cigliano, M.M. (2013). Patterns of diversification in the high Andean Ponderacris grasshoppers (Orthoptera: Acrididae: Melanoplinae). Systematic Entomology, 38(2), 365-389.Poveda, I. C., Rojas, C. A., Rudas, A. & Rangel, J. O. (2004). El Chocó Biogeográfico: Ambiente físico. In: Rangel, J. O. (Eds), Diversidad Biótica IV. El chocó Biogeográfico/Costa Pacífica. Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Conservación Internacional. Bogotá, D.C, pp. 1–22Puillandre, N., Brouillet, S. & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery form primary species delimitation. Molecular Ecology, 21, 1864–1877.R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904.Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget ,B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Salgado‐Roa, F.C., Pardo‐Diaz, C., Lasso, E., Arias, C.F., Solferini, V.N. & Salazar, C. (2018). Gene flow and Andean uplift shape the diversification of Gasteracantha cancriformis (Araneae: Araneidae) in Northern South America. Ecology and Evolution, 8(14), 7131-7142.Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A. ... & Murphy, R. W. (2017). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291.Schulte, J.A., Macey, J R., Espinoza, R.E. & Larson, A. (2000). Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Journal of the Linnean Society, 69(1), 75-102.Sedano, R.E. & Burns, K.J. (2010). Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). Journal of Biogeography, 37(2), 325-343.Soler, M. (2002). Evolución: la base de la biología. Proyecto Sur, Granada, España, 552 pp.Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution, 4(1), vey016.Teixeira Jr, M., Prates, I., Nisa, C., Silva-Martins, N.S.C., Strüssmann, C. & Rodrigues, M. T. (2016). Molecular data reveal spatial and temporal patterns of diversification and a cryptic new species of lowland Stenocercus Duméril & Bibron, 1837 (Squamata: Tropiduridae). Molecular Phylogenetics and Evolution, 94, 410-423.Torres-Carvajal, O. (2009). Sistemática filogenética de las lagartijas del género Stenocercus (Squamata: Iguania) de los Andes del norte. Revista mexicana de biodiversidad, 80(3), 727-740.Torres-Carvajal, O., Lobos, S. E., & Venegas, P. J. (2015). Phylogeny of Neotropical Cercosaura (Squamata: Gymnophthalmidae) lizards. Molecular Phylogenetics and Evolution, 93, 281-288.Torres-Carvajal, O., Lobos, S.E., Venegas, P.J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D. & Echevarría, L.Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75.Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A. & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 44(W1), W232-W235.Uetz, P., Freed, P, Aguilar, R., Reyes, F. & Hošek, J. (eds.) (2023). The Reptile Database, http://www.reptile-database.org, accessed [01/05/2023]Uzzell, T. M. (1965). Teiid lizards of the genus Echinosaura. Copeia, 1965, 82–89.Vásquez-Restrepo, J.D., Ibáñez, R., Sánchez-Pacheco, S.J. & Daza, J.M. (2020). Phylogeny, taxonomy and distribution of the Neotropical lizard genus Echinosaura (Squamata: Gymnophthalmidae), with the recognition of two new genera in Cercosaurinae. Zoological Journal of the Linnean Society, 189(1), 287-314.Weir, J. T. & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550- 4563.Weir, J. T., Bermingham, E. & Schluter, D. (2009). The great American biotic interchange in birds. Proceedings of the National Academy of Sciences, 106(51), 21737-21742.Wen, J., Ree, R.H., Ickert-Bond, S.M., Nie, Z. & Funk, V. (2013). Biogeography: where do we go from here? Taxon, 62(5), 912-927.Yánez-Muñoz, M.H., Torres-Carvajal, O., Reyes-Puig, J.P., Urgiles-Merchán, M.A., & Koch, C. (2021). A new and very spiny lizard (Gymnophthalmidae: Echinosaura) from the Andes in northwestern Ecuador. PeerJ, 9, e12523.Yu, Y., Harris, A.J., Blair, C. & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular phylogenetics and evolution, 87, 46-49.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869- 2876.Zheng, Y. & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular phylogenetics and evolution, 94, 537-547.info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/195722024-07-16T21:48:22Z |