Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom
Figuras, estadísticas, tablas
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/26258
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/26258
- Palabra clave:
- 570 - Biología
1. Ciencias Naturales
Calmodulina
Dinámica molecular
Interacción proteína-proteína
All-atom
Coarse-Grained
AtCNGC1
Biología
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_cf7dcbb18aac5717e561f3fe12631ea3 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/26258 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| title |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| spellingShingle |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom 570 - Biología 1. Ciencias Naturales Calmodulina Dinámica molecular Interacción proteína-proteína All-atom Coarse-Grained AtCNGC1 Biología |
| title_short |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| title_full |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| title_fullStr |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| title_full_unstemmed |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| title_sort |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom |
| dc.contributor.none.fl_str_mv |
Nieto Giraldo, Diego Fernando Tayac Giraldo, Juan Camilo Grupo de Química Teórica y Bioinformática - QTB (Categoría B) |
| dc.subject.none.fl_str_mv |
570 - Biología 1. Ciencias Naturales Calmodulina Dinámica molecular Interacción proteína-proteína All-atom Coarse-Grained AtCNGC1 Biología |
| topic |
570 - Biología 1. Ciencias Naturales Calmodulina Dinámica molecular Interacción proteína-proteína All-atom Coarse-Grained AtCNGC1 Biología |
| description |
Figuras, estadísticas, tablas |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-20T15:17:01Z 2025-11-20T15:17:01Z 2025-11-20 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26258 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/26258 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. https://doi.org/10.1038/s41586-024-07487-w Abulude, I. J., Luna, I. C. R., Varela, A. S., Camilli, A., Kadouri, D. E., & Guo, X. (2025). Using AlphaFold-Multimer to study novel protein-protein interactions of predation essential hypothetical proteins in Bdellovibrio. https://doi.org/10.3389/fbinf.2025.1566486 Frontiers in Bioinformatics, 5. Adams, P. J., Ben-Johny, M., Dick, I. E., Inoue, T., & Yue, D. T. (2014). Apocalmodulin Itself Promotes Ion Channel Opening and Ca2+ Regulation. Cell, 159(3), 608-622. https://doi.org/10.1016/j.cell.2014.09.047 Bender, K. W., Blackburn, R. K., Monaghan, J., Derbyshire, P., Menke, F. L. H., Zipfel, C., Goshe, M. B., Zielinski, R. E., & Huber, S. C. (2017). Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28)♦. The Journal of Biological Chemistry, 292(10), 3988-4002. https://doi.org/10.1074/jbc.M116.763243 Brooks, B. R., Brooks III, C. L., Mackerell Jr., A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545-1614. https://doi.org/10.1002/jcc.21287 Chib, G., Mollaei, P., & Farimani, A. B. (2025). Characterizing the Conformational States of G Protein Coupled Receptors Generated with AlphaFold (No. arXiv:2502.17628). arXiv. https://doi.org/10.48550/arXiv.2502.17628 Cui, J., Li, P., Li, G., Xu, F., Zhao, C., Li, Y., Yang, Z., Wang, G., Yu, Q., Li, Y., & Shi, T. (2008). AtPID: Arabidopsis thaliana protein interactome database--an integrative platform for plant systems biology. Nucleic Acids Research, 36(Database issue), D999-1008. https://doi.org/10.1093/nar/gkm844 DeFalco, T. A., Marshall, C. B., Munro, K., Kang, H.-G., Moeder, W., Ikura, M., Snedden, W. A., & Yoshioka, K. (2016). Multiple Calmodulin-Binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. The Plant Cell, 28(7), 1738-1751. https://doi.org/10.1105/tpc.15.00870 del Alamo, D., Sala, D., Mchaourab, H. S., & Meiler, J. (s. f.). Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife, 11, e75751. https://doi.org/10.7554/eLife.75751 Dietrich, P., Moeder, W., & Yoshioka, K. (2020). Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. Plant Physiology, 184(1), 27-38. https://doi.org/10.1104/pp.20.00425 Duszyn, M., Świeżawska, B., Szmidt-Jaworska, A., & Jaworski, K. (2019). Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. Journal of Plant Physiology, 241, 153035. https://doi.org/10.1016/j.jplph.2019.153035 Fischer, C., DeFalco, T. A., Karia, P., Snedden, W. A., Moeder, W., Yoshioka, K., & Dietrich, P. (2017). Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. Plant https://doi.org/10.1093/pcp/pcx052 and Cell Physiology, 58(7), 1208-1221. Fischer, C., Kugler, A., Hoth, S., & Dietrich, P. (2013). An IQ Domain Mediates the Interaction with Calmodulin in a Plant Cyclic Nucleotide-Gated Channel. Plant and Cell Physiology, 54(4), 573-584. https://doi.org/10.1093/pcp/pct021 Gandhi, A., Kariyat, R., Harikishore, A., Ayati, M., Bhunia, A., & Sahoo, N. (2021). Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells, 10(9), Article 9. https://doi.org/10.3390/cells10092219 Globisch, C., Krishnamani, V., Deserno, M., & Peter, C. (2013). Optimization of an Elastic Network Augmented Coarse Grained Model to Study CCMV Capsid Deformation. PLOS ONE, 8(4), e60582. https://doi.org/10.1371/journal.pone.0060582 Hoffman, L., Stein, R. A., Colbran, R. J., & Mchaourab, H. S. (2011). Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. The EMBO Journal, 30(7), 1251-1262. https://doi.org/10.1038/emboj.2011.40 Hofmann, N. R. (2013). Calmodulin Methylation: Another Layer of Regulation in Calcium Signaling. The Plant Cell, 25(11), 4284. https://doi.org/10.1105/tpc.113.251113 Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71-73. https://doi.org/10.1038/nmeth.4067 Jarratt-Barnham, E., Wang, L., Ning, Y., & Davies, J. M. (2021). The Complex Story of Plant Cyclic Nucleotide-Gated Channels. International Journal of Molecular Sciences, 22(2), Article 2. https://doi.org/10.3390/ijms22020874 Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859-1865. https://doi.org/10.1002/jcc.20945 Johns, S., Wiegman, E., Bakshi, A., & Gilroy, S. (2025). The cyclic nucleotide-gated channels CNGC2 and CNGC4 support systemic wound responses in Arabidopsis thaliana. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1545065 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2 Kang, C. H., Jung, W. Y., Kang, Y. H., Kim, J. Y., Kim, D. G., Jeong, J. C., Baek, D. W., Jin, J. B., Lee, J. Y., Kim, M. O., Chung, W. S., Mengiste, T., Koiwa, H., Kwak, S. S., Bahk, J. D., Lee, S. Y., Nam, J. S., Yun, D. J., & Cho, M. J. (2006). AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death & Differentiation, 13(1), 84-95. https://doi.org/10.1038/sj.cdd.4401712 Köhler, C., & Neuhaus, G. (2000). Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Letters, 471(2-3), 133-136. https://doi.org/10.1016/S0014-5793(00)01383-1 Kugler, A., Köhler, B., Palme, K., Wolff, P., & Dietrich, P. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 9(1), 140. https://doi.org/10.1186/1471-2229-9-140 Landoni, M., De Francesco, A., Galbiati, M., & Tonelli, C. (2010). A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Molecular Biology, 74(3), 235-247. https://doi.org/10.1007/s11103-010-9669-5 Liu, Y., Qiao, Y., & Liao, W. (2025). Calmodulin-Binding Transcription Factors: Roles in Plant Response to Abiotic Stresses. Plants, 14(4), 532. https://doi.org/10.3390/plants14040532 Lomize, A. L., Todd, S. C., & Pogozheva, I. D. (2022). Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Science : A Publication of the Protein Society, 31(1), 209-220. https://doi.org/10.1002/pro.4219 Lv, Y., Liu, S., Ma, Y., Hu, L., & Yan, H. (2025). Analysis of CNGC Family Members in Citrus clementina (Hort. Ex Tan.) by a Genome-Wide Approach. International Journal of Molecular Sciences, 26(3), 960. https://doi.org/10.3390/ijms26030960 Ma, W., & Berkowitz, G. A. (2011). Cyclic Nucleotide Gated Channels (CNGCs) and the Generation of Ca2+ Signals. En S. Luan (Ed.), Coding and Decoding of Calcium Signals in Plants (pp. 93-110). Springer. https://doi.org/10.1007/978-3-642-20829-4_7 Moeder, W., Urquhart, W., Ung, H., & Yoshioka, K. (2011). The Role of Cyclic Nucleotide-Gated Ion Channels in Plant Immunity. Molecular Plant, 4(3), 442-452. https://doi.org/10.1093/mp/ssr018 Ogunrinde, A., Munro, K., Davidson, A., Ubaid, M., & Snedden, W. A. (2017). Arabidopsis Calmodulin-Like Proteins, CML15 and CML16 Possess Biochemical Properties Distinct from Calmodulin and Show Non-overlapping Tissue Expression Patterns. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02175 Pan, Y., Chai, X., Gao, Q., Zhou, L., Zhang, S., Li, L., & Luan, S. (2019). Dynamic Interactions of Plant CNGC Subunits and Calmodulins Drive Oscillatory Ca2+ Channel Activities. Developmental Cell, 48(5), 710-725.e5. https://doi.org/10.1016/j.devcel.2018.12.025 Park, H. Y., Kim, S. A., Korlach, J., Rhoades, E., Kwok, L. W., Zipfel, W. R., Waxham, M. N., Park, H. Y., Kim, S. A., Korlach, J., Rhoades, E., Kwok, L. W., Zipfel, W. R., Waxham, M. N., Webb, W. W., & Pollack, L. (2008). Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Proceedings of the National Academy of Sciences of the United States https://doi.org/10.1073/pnas.0710810105 of America, 105(2), 542-547. Periole, X., Cavalli, M., Marrink, S.-J., & Ceruso, M. A. (2009). Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation, 5(9), 2531-2543. https://doi.org/10.1021/ct9002114 Poma, A. B., Cieplak, M., & Theodorakis, P. E. (2017). Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. Journal of Chemical Theory and Computation, 13(3), 1366-1374. https://doi.org/10.1021/acs.jctc.6b00986 Poovaiah, B. W., Du, L., Wang, H., & Yang, T. (2013). Recent Advances in Calcium/Calmodulin-Mediated Signaling with an Emphasis on Plant-Microbe Interactions1. Plant Physiology, 163(2), 531-542. https://doi.org/10.1104/pp.113.220780 Qi, Y., Ingólfsson, H. I., Cheng, X., Lee, J., Marrink, S. J., & Im, W. (2015). CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. Journal of Chemical Theory and https://doi.org/10.1021/acs.jctc.5b00513 Computation, 11(9), 4486-4494. Shaker Potassium Channel—An overview | ScienceDirect Topics. (s. f.). Recuperado 13 de noviembre de 2025, https://www.sciencedirect.com/topics/neuroscience/shaker-potassium-channel de Souza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grünewald, F., Patmanidis, I., Abdizadeh, H., Bruininks, B. M. H., Wassenaar, T. A., Kroon, P. C., Melcr, J., Nieto, V., Corradi, V., Khan, H. M., Domański, J., Javanainen, M., Martinez-Seara, H., Reuter, N., … Marrink, S. J. (2021). Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods, 18(4), 382-388. https://doi.org/10.1038/s41592-021-01098-3 Tan, Y.-Q., Yang, Y., Shen, X., Zhu, M., Shen, J., Zhang, W., Hu, H., & Wang, Y.-F. (2022). Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. The Plant Cell, 35(1), 239-259. https://doi.org/10.1093/plcell/koac274 Tayac, C., Torres-Osorio, J., & Rodas-Rodríguez, J. M. (2025). Cationic calcium channels activated by cyclic nucleotides in plants: A systematic review using the PRISMA method. Progress in Biophysics and Molecular Biology, 198, 8-20. https://doi.org/10.1016/j.pbiomolbio.2025.09.001 Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291 Virdi, A. S., Singh, S., & Singh, P. (2015). Abiotic stress responses in plants: Roles of calmodulin-regulated proteins. https://doi.org/10.3389/fpls.2015.00809 Frontiers in Plant Science, 6. Wang, J., Du, B.-Y., Zhang, X., Qu, X., Yang, Y., Yang, Z., Wang, Y.-F., & Zhang, P. (2025). Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. Nature Plants, 11(3), 632-642. https://doi.org/10.1038/s41477-025-01923-z Zeng, H., Xu, L., Singh, A., Wang, H., Du, L., & Poovaiah, B. W. (2015). Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Frontiers in Plant Science, 6, 600. https://doi.org/10.3389/fpls.2015.00600 Zhang, X., Tian, J., Li, S., Liu, Y., Feng, T., Wang, Y., Li, Y., Huang, X., & Li, D. (2022). Characterization of the Calmodulin/Calmodulin-like Protein (CAM/CML) Family in Ginkgo biloba, and the Influence of an Ectopically Expressed GbCML Gene (Gb_30819) on Seedling and Fruit Development of Transgenic Arabidopsis. Plants, 11(11), 1506. https://doi.org/10.3390/plants11111506 Zhang, Z., Hou, C., Tian, W., Li, L., & Zhu, H. (2019). Electrophysiological Studies Revealed CaM1-Mediated Regulation of the Arabidopsis Calcium Channel CNGC12. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01090 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
53 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Ciencias Exactas y Naturales Manizales Biología |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532642894610432 |
| spelling |
Modulación estructural del homotetrámero CNGC1 de Arabidopsis thaliana por calmodulina-2: un análisis in silico mediante dinámica molecular de grano grueso (coarse-grain) y All-atom570 - Biología1. Ciencias NaturalesCalmodulinaDinámica molecularInteracción proteína-proteínaAll-atomCoarse-GrainedAtCNGC1BiologíaFiguras, estadísticas, tablasLa señalización mediada por el ion calcio Ca²⁺ es un mecanismo fundamental y universal, esencial para la adaptación de las plantas a su entorno. Los canales iónicos activados por nucleótidos cíclicos (CNGC) actúan como componentes centrales de este sistema, facilitando el flujo de Ca²⁺ a través de la membrana plasmática. Este flujo es vital para gobernar procesos críticos que aseguran la supervivencia del organismo completo, participando en el desarrollo, la nutrición mineral, la inmunidad y la respuesta al estrés fisiológico, incluyendo el estrés salino y patogénico. Por lo tanto, la importancia de analizar la modulación de estos canales radica en que la Calmodulina (CaM) opera como un sensor primario de Ca²⁺, decodificando la "firma de calcio" para activar las respuestas celulares y adaptativas correspondientes. Unos de los mecanismos de regulación de los CNGC es su interacción con la proteína calmodulina (CaM), mediante un sistema de retroalimentación dual. Este sistema previene la toxicidad iónica causada por una sobrecarga de Ca²⁺: a bajas concentraciones de Ca²⁺ , la forma libre de calcio (Apo-CaM) se une al canal y promueve su apertura, pero cuando el influjo eleva el Ca²⁺ citosólico a altos niveles, la CaM saturada (Ca²⁺−CaM o Holo-CaM) sufre un cambio conformacional que provoca la inhibición y el cierre del canal. A pesar de este conocimiento sobre los componentes y la lógica regulatoria general, y a pesar de la conocida afinidad de AtCaM2 por el AtCNGC1, los detalles atómicos de cómo una isoforma específica como CaM2 modula la estructura y dinámica de un canal homotetramérico como AtCNGC1 no han sido resueltos. Estudios recientes de crio-microscopía electrónica (cryo-EM) de CNGC1 han confirmado su estructura tetramérica y mecanismos de gating, pero las regiones de unión a CaM (los dominios N y C-terminales) son altamente flexibles y permanecen invisibles, confirmando este como el principal vacío de conocimiento. El proyecto propuesto se centra en abordar esta brecha, utilizando simulaciones in silico avanzadas (dinámica molecular de grano grueso y All-atom) para determinar si la unión de la AtCaM2 induce cambios conformacionales en el canal AtCNGC1 y para evaluar en detalle la naturaleza, la estabilidad y la dinámica de la interacción entre ambas proteínas.Calcium ion (Ca²⁺) signaling is a fundamental and universal mechanism essential for plant adaptation to the environment. Cyclic nucleotide-gated ion channels (CNGCs) act as central components of this system, facilitating Ca²⁺ flux across the plasma membrane. This flux is vital for governing critical processes that ensure whole-organism survival, participating in development, mineral nutrition, immunity, and physiological stress responses, including salt and pathogenic stress. Therefore, the importance of analyzing the modulation of these channels lies in the fact that Calmodulin (CaM) operates as a primary Ca²⁺ sensor, decoding the "calcium signature" to trigger corresponding cellular and adaptive responses. One of the regulatory mechanisms of CNGCs is their interaction with the calmodulin protein (CaM) through a dual feedback system. This system prevents ionic toxicity caused by Ca²⁺ overload: at low Ca²⁺ concentrations, the calcium-free form (Apo-CaM) binds to the channel and promotes its opening. However, when the influx raises cytosolic Ca²⁺ to high levels, saturated CaM (Ca²⁺−CaM or Holo-CaM) undergoes a conformational change that leads to inhibition and closure of the channel. Despite existing knowledge of the general regulatory logic and the known affinity of AtCaM2 for AtCNGC1, the atomic details of how a specific isoform such as CaM2 modulates the structure and dynamics of a homotetrameric channel like AtCNGC1 have not been resolved. Recent cryo-electron microscopy (cryo-EM) studies of CNGC1 have confirmed its tetrameric structure and gating mechanisms, but the CaM-binding regions (N- and C-terminal domains) are highly flexible and remain invisible, establishing this as the principal knowledge gap. The proposed project focuses on addressing this gap by employing advanced in silico simulations (coarse-grained and all-atom molecular dynamics) to determine whether the binding of AtCaM2 induces conformational changes in the AtCNGC1 channel and to evaluate the nature, stability, and dynamics of the interaction between both proteins in detail. The implemented multiscale in silico approach validated the modulation hypothesis. The results demonstrated that binding of AtCaM2 (in its Apo-CaM state) induces a significant conformational change: the channel in the absence of CaM displays high structural flexibility, with RMSD peaks reaching up to 15 Å, whereas binding to each monomer of the four AtCaM2 subunits drastically reduces this mobility, stabilizing the complex in a markedly more rigid conformation. All-atom simulations of the complex confirmed its high conformational stability, reaching structural equilibrium (RMSD ~4.0 Å). This study proposes an atomic mechanism in which Apo-CaM acts as a molecular "scaffold," restricting channel flexibility, locking it into more rigid conformations over time, and representing its functionally open state.Introducción -- Justificación -- Impacto Científico y Aplicado de la Tesis -- Problemática -- Pregunta de investigación -- Objetivos -- Objetivo General -- Objetivos Específicos -- Marco conceptual -- Lista de Abreviaturas -- Definiciones Conceptuales -- Marco Teórico -- Señalización del Calcio como Eje Central en la Fisiología Vegetal -- Canales Iónicos Activados por Nucleótidos Cíclicos (CNGC) -- Arquitectura Molecular y Dominios Funcionales de los CNGC -- Mecanismos Complejos de Regulación de la Actividad de los CNGC -- Regulación por CaM -- Isoformas de CaM y Especificidad en la Interacción -- AtCNGC1 y las Limitaciones del Conocimiento Estructural -- Metodología -- Modelado Estructural mediante AlphaFold3 -- Análisis Estructural y Selección de Modelos Representativos -- Simulaciones Coarse-Grained (CG) de Dinámica Molecular -- Refinamiento Atómico y Simulaciones All-Atom -- Análisis Cuantitativo de Dinámica e Interacción -- Resultados -- Evaluación de la coherencia estructural entre modelos (RMSD) -- Perfil de flexibilidad estructural por residuo (RMSF) -- Caracterización de la interfaz de interacción CNGC1–CaM -- Dinámica molecular del complejo CNGC1–AtCaM2 -- Estabilidad estructural global: RMSD -- Flexibilidad local: RMSF -- Dinámica molecular del CNGC1 sin CaM -- Inestabilidad estructural global: RMSD -- Implicaciones funcionales -- Discusión -- ConclusionesPregradoEste estudio se fundamenta en un enfoque computacional multiescala orientado a caracterizar los determinantes estructurales y dinámicos que describen la interacción entre el canal iónico CNGC1 de Arabidopsis thaliana y AtCaM2. La estrategia integra predicciones estructurales basadas en aprendizaje profundo, simulaciones de dinámica molecular con representaciones coarse-grained (CG) y refinamientos a nivel atómico (All-Atom, AA), con el objetivo de describir tanto la arquitectura del complejo como sus propiedades dinámicas en condiciones de membrana.Biólogo(a)Universidad de CaldasFacultad de Ciencias Exactas y NaturalesManizalesBiologíaNieto Giraldo, Diego FernandoTayac Giraldo, Juan CamiloGrupo de Química Teórica y Bioinformática - QTB (Categoría B)Vera Cuellar, Andres Javier2025-11-20T15:17:01Z2025-11-20T15:17:01Z2025-11-20Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis53 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26258Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAbramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. https://doi.org/10.1038/s41586-024-07487-wAbulude, I. J., Luna, I. C. R., Varela, A. S., Camilli, A., Kadouri, D. E., & Guo, X. (2025). Using AlphaFold-Multimer to study novel protein-protein interactions of predation essential hypothetical proteins in Bdellovibrio. https://doi.org/10.3389/fbinf.2025.1566486 Frontiers in Bioinformatics, 5.Adams, P. J., Ben-Johny, M., Dick, I. E., Inoue, T., & Yue, D. T. (2014). Apocalmodulin Itself Promotes Ion Channel Opening and Ca2+ Regulation. Cell, 159(3), 608-622. https://doi.org/10.1016/j.cell.2014.09.047Bender, K. W., Blackburn, R. K., Monaghan, J., Derbyshire, P., Menke, F. L. H., Zipfel, C., Goshe, M. B., Zielinski, R. E., & Huber, S. C. (2017). Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28)♦. The Journal of Biological Chemistry, 292(10), 3988-4002. https://doi.org/10.1074/jbc.M116.763243Brooks, B. R., Brooks III, C. L., Mackerell Jr., A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545-1614. https://doi.org/10.1002/jcc.21287Chib, G., Mollaei, P., & Farimani, A. B. (2025). Characterizing the Conformational States of G Protein Coupled Receptors Generated with AlphaFold (No. arXiv:2502.17628). arXiv. https://doi.org/10.48550/arXiv.2502.17628Cui, J., Li, P., Li, G., Xu, F., Zhao, C., Li, Y., Yang, Z., Wang, G., Yu, Q., Li, Y., & Shi, T. (2008). AtPID: Arabidopsis thaliana protein interactome database--an integrative platform for plant systems biology. Nucleic Acids Research, 36(Database issue), D999-1008. https://doi.org/10.1093/nar/gkm844DeFalco, T. A., Marshall, C. B., Munro, K., Kang, H.-G., Moeder, W., Ikura, M., Snedden, W. A., & Yoshioka, K. (2016). Multiple Calmodulin-Binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. The Plant Cell, 28(7), 1738-1751. https://doi.org/10.1105/tpc.15.00870del Alamo, D., Sala, D., Mchaourab, H. S., & Meiler, J. (s. f.). Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife, 11, e75751. https://doi.org/10.7554/eLife.75751Dietrich, P., Moeder, W., & Yoshioka, K. (2020). Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. Plant Physiology, 184(1), 27-38. https://doi.org/10.1104/pp.20.00425Duszyn, M., Świeżawska, B., Szmidt-Jaworska, A., & Jaworski, K. (2019). Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. Journal of Plant Physiology, 241, 153035. https://doi.org/10.1016/j.jplph.2019.153035Fischer, C., DeFalco, T. A., Karia, P., Snedden, W. A., Moeder, W., Yoshioka, K., & Dietrich, P. (2017). Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. Plant https://doi.org/10.1093/pcp/pcx052 and Cell Physiology, 58(7), 1208-1221.Fischer, C., Kugler, A., Hoth, S., & Dietrich, P. (2013). An IQ Domain Mediates the Interaction with Calmodulin in a Plant Cyclic Nucleotide-Gated Channel. Plant and Cell Physiology, 54(4), 573-584. https://doi.org/10.1093/pcp/pct021Gandhi, A., Kariyat, R., Harikishore, A., Ayati, M., Bhunia, A., & Sahoo, N. (2021). Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells, 10(9), Article 9. https://doi.org/10.3390/cells10092219Globisch, C., Krishnamani, V., Deserno, M., & Peter, C. (2013). Optimization of an Elastic Network Augmented Coarse Grained Model to Study CCMV Capsid Deformation. PLOS ONE, 8(4), e60582. https://doi.org/10.1371/journal.pone.0060582Hoffman, L., Stein, R. A., Colbran, R. J., & Mchaourab, H. S. (2011). Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. The EMBO Journal, 30(7), 1251-1262. https://doi.org/10.1038/emboj.2011.40Hofmann, N. R. (2013). Calmodulin Methylation: Another Layer of Regulation in Calcium Signaling. The Plant Cell, 25(11), 4284. https://doi.org/10.1105/tpc.113.251113Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71-73. https://doi.org/10.1038/nmeth.4067Jarratt-Barnham, E., Wang, L., Ning, Y., & Davies, J. M. (2021). The Complex Story of Plant Cyclic Nucleotide-Gated Channels. International Journal of Molecular Sciences, 22(2), Article 2. https://doi.org/10.3390/ijms22020874Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859-1865. https://doi.org/10.1002/jcc.20945Johns, S., Wiegman, E., Bakshi, A., & Gilroy, S. (2025). The cyclic nucleotide-gated channels CNGC2 and CNGC4 support systemic wound responses in Arabidopsis thaliana. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1545065Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2Kang, C. H., Jung, W. Y., Kang, Y. H., Kim, J. Y., Kim, D. G., Jeong, J. C., Baek, D. W., Jin, J. B., Lee, J. Y., Kim, M. O., Chung, W. S., Mengiste, T., Koiwa, H., Kwak, S. S., Bahk, J. D., Lee, S. Y., Nam, J. S., Yun, D. J., & Cho, M. J. (2006). AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death & Differentiation, 13(1), 84-95. https://doi.org/10.1038/sj.cdd.4401712Köhler, C., & Neuhaus, G. (2000). Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Letters, 471(2-3), 133-136. https://doi.org/10.1016/S0014-5793(00)01383-1Kugler, A., Köhler, B., Palme, K., Wolff, P., & Dietrich, P. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 9(1), 140. https://doi.org/10.1186/1471-2229-9-140Landoni, M., De Francesco, A., Galbiati, M., & Tonelli, C. (2010). A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Molecular Biology, 74(3), 235-247. https://doi.org/10.1007/s11103-010-9669-5Liu, Y., Qiao, Y., & Liao, W. (2025). Calmodulin-Binding Transcription Factors: Roles in Plant Response to Abiotic Stresses. Plants, 14(4), 532. https://doi.org/10.3390/plants14040532Lomize, A. L., Todd, S. C., & Pogozheva, I. D. (2022). Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Science : A Publication of the Protein Society, 31(1), 209-220. https://doi.org/10.1002/pro.4219Lv, Y., Liu, S., Ma, Y., Hu, L., & Yan, H. (2025). Analysis of CNGC Family Members in Citrus clementina (Hort. Ex Tan.) by a Genome-Wide Approach. International Journal of Molecular Sciences, 26(3), 960. https://doi.org/10.3390/ijms26030960Ma, W., & Berkowitz, G. A. (2011). Cyclic Nucleotide Gated Channels (CNGCs) and the Generation of Ca2+ Signals. En S. Luan (Ed.), Coding and Decoding of Calcium Signals in Plants (pp. 93-110). Springer. https://doi.org/10.1007/978-3-642-20829-4_7Moeder, W., Urquhart, W., Ung, H., & Yoshioka, K. (2011). The Role of Cyclic Nucleotide-Gated Ion Channels in Plant Immunity. Molecular Plant, 4(3), 442-452. https://doi.org/10.1093/mp/ssr018Ogunrinde, A., Munro, K., Davidson, A., Ubaid, M., & Snedden, W. A. (2017). Arabidopsis Calmodulin-Like Proteins, CML15 and CML16 Possess Biochemical Properties Distinct from Calmodulin and Show Non-overlapping Tissue Expression Patterns. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02175Pan, Y., Chai, X., Gao, Q., Zhou, L., Zhang, S., Li, L., & Luan, S. (2019). Dynamic Interactions of Plant CNGC Subunits and Calmodulins Drive Oscillatory Ca2+ Channel Activities. Developmental Cell, 48(5), 710-725.e5. https://doi.org/10.1016/j.devcel.2018.12.025 Park, H. Y., Kim, S. A., Korlach, J., Rhoades, E., Kwok, L. W., Zipfel, W. R., Waxham, M. N.,Park, H. Y., Kim, S. A., Korlach, J., Rhoades, E., Kwok, L. W., Zipfel, W. R., Waxham, M. N., Webb, W. W., & Pollack, L. (2008). Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Proceedings of the National Academy of Sciences of the United States https://doi.org/10.1073/pnas.0710810105 of America, 105(2), 542-547.Periole, X., Cavalli, M., Marrink, S.-J., & Ceruso, M. A. (2009). Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation, 5(9), 2531-2543. https://doi.org/10.1021/ct9002114Poma, A. B., Cieplak, M., & Theodorakis, P. E. (2017). Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. Journal of Chemical Theory and Computation, 13(3), 1366-1374. https://doi.org/10.1021/acs.jctc.6b00986Poovaiah, B. W., Du, L., Wang, H., & Yang, T. (2013). Recent Advances in Calcium/Calmodulin-Mediated Signaling with an Emphasis on Plant-Microbe Interactions1. Plant Physiology, 163(2), 531-542. https://doi.org/10.1104/pp.113.220780Qi, Y., Ingólfsson, H. I., Cheng, X., Lee, J., Marrink, S. J., & Im, W. (2015). CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. Journal of Chemical Theory and https://doi.org/10.1021/acs.jctc.5b00513 Computation, 11(9), 4486-4494.Shaker Potassium Channel—An overview | ScienceDirect Topics. (s. f.). Recuperado 13 de noviembre de 2025, https://www.sciencedirect.com/topics/neuroscience/shaker-potassium-channel deSouza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grünewald, F., Patmanidis, I., Abdizadeh, H., Bruininks, B. M. H., Wassenaar, T. A., Kroon, P. C., Melcr, J., Nieto, V., Corradi, V., Khan, H. M., Domański, J., Javanainen, M., Martinez-Seara, H., Reuter, N., … Marrink, S. J. (2021). Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods, 18(4), 382-388. https://doi.org/10.1038/s41592-021-01098-3Tan, Y.-Q., Yang, Y., Shen, X., Zhu, M., Shen, J., Zhang, W., Hu, H., & Wang, Y.-F. (2022). Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. The Plant Cell, 35(1), 239-259. https://doi.org/10.1093/plcell/koac274Tayac, C., Torres-Osorio, J., & Rodas-Rodríguez, J. M. (2025). Cationic calcium channels activated by cyclic nucleotides in plants: A systematic review using the PRISMA method. Progress in Biophysics and Molecular Biology, 198, 8-20. https://doi.org/10.1016/j.pbiomolbio.2025.09.001Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291Virdi, A. S., Singh, S., & Singh, P. (2015). Abiotic stress responses in plants: Roles of calmodulin-regulated proteins. https://doi.org/10.3389/fpls.2015.00809 Frontiers in Plant Science, 6.Wang, J., Du, B.-Y., Zhang, X., Qu, X., Yang, Y., Yang, Z., Wang, Y.-F., & Zhang, P. (2025). Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. Nature Plants, 11(3), 632-642. https://doi.org/10.1038/s41477-025-01923-zZeng, H., Xu, L., Singh, A., Wang, H., Du, L., & Poovaiah, B. W. (2015). Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Frontiers in Plant Science, 6, 600. https://doi.org/10.3389/fpls.2015.00600Zhang, X., Tian, J., Li, S., Liu, Y., Feng, T., Wang, Y., Li, Y., Huang, X., & Li, D. (2022). Characterization of the Calmodulin/Calmodulin-like Protein (CAM/CML) Family in Ginkgo biloba, and the Influence of an Ectopically Expressed GbCML Gene (Gb_30819) on Seedling and Fruit Development of Transgenic Arabidopsis. Plants, 11(11), 1506. https://doi.org/10.3390/plants11111506Zhang, Z., Hou, C., Tian, W., Li, L., & Zhu, H. (2019). Electrophysiological Studies Revealed CaM1-Mediated Regulation of the Arabidopsis Calcium Channel CNGC12. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01090https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/262582025-11-21T08:02:08Z |
