Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)

Figuras y tablas.

Autores:
Tipo de recurso:
Fecha de publicación:
2026
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/26535
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/26535
Palabra clave:
570 - Biología
Camuflaje
Depredación
Filogenia
Pigmentos
Ciencias Naturales
Genética animal
Ornitología
Evolución
Adaptación biológica
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUCALDA_cf5f3e4712f985087328f08668d1a268
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/26535
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
title Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
spellingShingle Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
570 - Biología
Camuflaje
Depredación
Filogenia
Pigmentos
Ciencias Naturales
Genética animal
Ornitología
Evolución
Adaptación biológica
title_short Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
title_full Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
title_fullStr Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
title_full_unstemmed Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
title_sort Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)
dc.contributor.none.fl_str_mv Ocampo, David
Universidad de Caldas
Mendiwelso, Maria Elisa
dc.subject.none.fl_str_mv 570 - Biología
Camuflaje
Depredación
Filogenia
Pigmentos
Ciencias Naturales
Genética animal
Ornitología
Evolución
Adaptación biológica
topic 570 - Biología
Camuflaje
Depredación
Filogenia
Pigmentos
Ciencias Naturales
Genética animal
Ornitología
Evolución
Adaptación biológica
description Figuras y tablas.
publishDate 2026
dc.date.none.fl_str_mv 2026-01-23T15:30:45Z
2026-01-23T15:30:45Z
2026-01-23
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/26535
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/26535
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
repositorio.ucaldas.edu.co
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Alothyqi, N., Thornton, A., & Stevens, M. (2024). Ground-nesting birds learn egg appearance to guide background choice for camouflage. Current Biology, 34(15), R722-R723. https://doi.org/10.1016/j.cub.2024.06.039
Au-Yeung, M., Hou, K., Lam, L., & Ton, A. Y. (2020). The Effect of Acidity Levels on Eggshells. The Expedition, 10.
Bateman, P. W., Fleming, P. A., & Wolfe, A. K. (2017). A different kind of ecological modelling: the use of clay model organisms to explore predator–prey interactions in vertebrates. Journal of Zoology, 301(4), 251-262. https://doi.org/10.1111/jzo.12415
Cassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T., ... & Mikšík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.x
Claramunt, S., Sheard, C., Brown, J. W., Cortés-Ramírez, G., Cracraft, J., Su, M. M., ... & Tobias, J. A. (2025). A new time tree of birds reveals the interplay between dispersal, geographic range size, and diversification. Current Biology, 35(16), 3883-3895. https://doi.org/10.1016/j.cub.2025.07.004
Cumming, G. (2009). Inference by eye: Reading the overlap of independent confidence intervals. Statistics in medicine, 28(2), 205-220. https://doi.org/10.1002/sim.3471
Davison, W. B., & Bollinger, E. (2000). Predation rates on real and artificial nests of grassland birds. The Auk, 117(1), 147-153. https://doi.org/10.1642/0004-8038(2000)117[0147:PRORAA]2.0.CO;2
D’Arrigo, G., Leonardis, D., Abd ElHafeez, S., Fusaro, M., Tripepi, G., & Roumeliotis, S. (2021). Methods to Analyse Time‐to‐Event Data: The Kaplan‐Meier Survival Curve. Oxidative medicine and cellular longevity, 2021(1), 2290120. https://doi.org/10.1155/2021/2290120
Gosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds’ eggs speckled?. Ecology Letters, 8(10), 1105-1113. https://doi.org/10.1111/j.1461-0248.2005.00816.x
Kilner, R. M. (2006). The evolution of egg colour and patterning in birds. Biological Reviews, 81(3), 383-406. https://doi.org/10.1017/S1464793106007044
Langkoke, R., Ahmad, A., Thamrin, M., Husain, R., & Iqbal, M. (2024). Geocomputation and Spatial Analysis Applied for Geological Mapping: A Case Study in Palopo, South Sulawesi, Indonesia. Jurnal Ecosolum, 13(1), 68-81. https://doi.org/10.20956/ecosolum.v13i1.33157
Larsen, C., Speed, M., Harvey, N., & Noyes, H. A. (2007). A molecular phylogeny of the nightjars (Aves: Caprimulgidae) suggests extensive conservation of primitive morphological traits across multiple lineages. Molecular Phylogenetics and Evolution, 42(3), 789-796. https://doi.org/10.1016/j.ympev.2006.10.005
McClelland, S. C., Cassey, P., Maurer, G., Hauber, M. E., & Portugal, S. J. (2021). How much calcium to shell out? Eggshell calcium carbonate content is greater in birds with thinner shells, larger clutches and longer lifespans. Journal of the Royal Society Interface, 18(182), 20210502. https://doi.org/10.1098/rsif.2021.0502
Mendiwelso, M. E., Cadena, C. D., & Ocampo, D. (2025). Nest location and architecture as primary drivers of variation in UV reflectance in avian eggs. Proceedings B, 292(2047), 20250180. https://doi.org/10.1098/rspb.2025.0180
Orłowski, G., Pokorny, P., Dobicki, W., Łukaszewicz, E., & Kowalczyk, A. (2017). Speckled and plain regions of avian eggshells differ in maternal deposition of calcium and metals: A hitherto overlooked chemical aspect of egg maculation. The Auk: Ornithological Advances, 134(3), 721-731. https://doi.org/10.1642/AUK-17-7.1
Peters, C., Geary, M., Nelson, H. P., Rusk, B. L., Von Hardenberg, A., & Muir, A. (2023). Phylogenetic placement and life history trait imputation for Grenada Dove Leptotila wellsi. Bird Conservation International, 33, e11. https://doi.org/10.1017/S0959270922000065
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526(7574), 569-573. https://doi:10.1038/nature15697
Rangen, S. A., Clark, R. G., & Hobson, K. A. (2000). Visual and olfactory attributes of artificial nests. The Auk, 117(1), 136-146. https://doi.org/10.1093/auk/117.1.136
Revell, L. J. (2024). phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ, 12, e16505. https://doi.org/10.7717/peerj.16505
Sanín, D., Mancera-Santa, J. C., Castaño-R, N., Alzate-Q, N. F., Gonzáles-O, G., & Álvarez-Mejía, L. M. (2006). Catálogo preliminar de las plantas vasculares de la reserva forestal protectora “Río Blanco”(Manizales, Caldas, Colombia). Bol. Cient. Mus. Hist. Nat. U. Caldas, 10, 19-44.
Samiullah, S., & Roberts, J. R. (2013). The location of protoporphyrin in the eggshell of brown-shelled eggs. Poultry science, 92(10), 2783-2788. https://doi.org/10.3382/ps.2013-03051
Skrade, P. D., & Dinsmore, S. J. (2013). Egg crypsis in a ground‐nesting shorebird influences nest survival. Ecosphere, 4(12), 1-9. https://doi.org/10.1890/ES13-00246.1
Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K., & Spottiswoode, C. N. (2017). Improvement of individual camouflage through background choice in ground-nesting birds. Nature ecology & evolution, 1(9), 1325-1333. https://doi.org/10.1038/s41559-017-0256-x
Szala, K., Tobolka, M., & Surmacki, A. (2025). Eggshell coloration is related to condition of females and offspring but not to male provisioning effort in a cup-nesting passerine. Behavioral Ecology and Sociobiology, 79(6), 66. https://doi.org/10.5281/zenodo.15314841
Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J., Yang, J., Sayol, F., ... & Schleuning, M. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecology letters, 25(3), 581-597. https://doi.org/10.1111/ele.13898
Wallace, A. 1889. Darwinism: An exposition of the theory of natural selection, with some of its applications. Macmillan, London, UK.
Winkler, D. W., S. M. Billerman, and I. J. Lovette (2024). Nightjars and Allies (Caprimulgidae), version 2.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.caprim2.02
Wisocki, P. A., Kennelly, P., Rojas Rivera, I., Cassey, P., Burkey, M. L., & Hanley, D. (2020). The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology & Evolution, 4(1), 148-155. https://doi.org/10.1038/s41559-019-1003-2
Zanette, L. (2002). What do artificial nests tells us about nest predation?. Biological conservation, 103(3), 323-329. https://doi.org/10.1016/S0006-3207(01)00143-4
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv 16 páginas
application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Reserva Forestal Protectora de Río Blanco - Manizales (Caldas)
dc.publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas
Biología
publisher.none.fl_str_mv Universidad de Caldas
Facultad de Ciencias Exactas y Naturales
Manizales, Caldas
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1855532651220303872
spelling Evolución de los patrones de coloración de los huevos en Guardacaminos (Aves: Caprimulgidae)570 - BiologíaCamuflajeDepredaciónFilogeniaPigmentosCiencias NaturalesGenética animalOrnitologíaEvoluciónAdaptación biológicaFiguras y tablas.Desde Wallace (1889) se ha propuesto que la coloración de los huevos evolucionó como una estrategia de cripsis para reducir la depredación. En la familia Caprimulgidae, caracterizada por especies que anidan en el suelo, la mayoría de los huevos presenta patrones crípticos, sin embargo, algunos linajes conservan huevos blancos aparentemente conspicuos. En este estudio analizamos la evolución de la coloración de los huevos en Caprimulgidae, evaluando los factores ecológicos que podrían mantener esta diversidad fenotípica y la eficacia del camuflaje frente a depredadores. Usamos métodos comparativos filogenéticos para reconstruir la historia evolutiva de la coloración del huevo y examinar su relación con el tamaño corporal y el tipo de hábitat. Además, realizamos experimentos con huevos artificiales para evaluar potenciales diferencias en tasas de depredación. Nuestros resultados mostraron una fuerte señal filogenética en la evolución de la coloración del huevo (λ = 0.955). Los huevos maculados probablemente fueron el estado ancestral en Caprimulgidae, y luego en algunos linajes se dieron con transiciones graduales hacia huevos blancos inmaculados. Encontramos que el tamaño corporal no es un buen predictor de la coloración inmaculada de los huevos, pues estos se distribuyen de manera heterogénea a lo largo de diferentes masas corporales. Sin embargo, el hábitat si parece tener un efecto pues la proporción de huevos densamente maculados aumentó en hábitats abiertos (Kruskal–Wallis, p = 0.035; prueba de Dunn con corrección de Holm, p = 0.016) y los huevos inmaculados fueron más frecuentes en hábitats densos. En los experimentos de depredación los análisis de supervivencia mostraron bajas diferencias significativas en la probabilidad y en el tiempo hasta la depredación entre tipos de coloración, hábitats o su interacción, lo que indica patrones de depredación similares entre tratamientos. Nuestros resultados sugieren que la variación en la coloración de los huevos en Caprimulgidae está condicionada por la historia evolutiva del grupo y modulada por el tipo de hábitat.Since Wallace (1889), eggshell coloration has been hypothesized to evolve as a crypsis strategy to reduce predation risk. In the ground-nesting family Caprimulgidae, most species lay cryptically patterned eggs, yet several lineages retain apparently conspicuous, immaculate white eggs, challenging this expectation. Here, we investigate the evolutionary history of eggshell coloration in Caprimulgidae, the ecological factors associated with its maintenance, and its potential effectiveness as camouflage against predators. Using phylogenetic comparative methods, we reconstructed ancestral states of eggshell coloration and tested for associations with body size and habitat type. Eggshell coloration exhibited a strong phylogenetic signal (λ = 0.955), with spotted eggs inferred as the ancestral condition and multiple, gradual transitions toward immaculate white eggs in some lineages. Body size did not predict the occurrence of immaculate eggs, which were distributed across a broad range of adult body masses. In contrast, habitat type was significantly associated with eggshell coloration: densely spotted eggs were more frequent in open habitats, whereas immaculate white eggs predominated in dense habitats (Kruskal–Wallis, p = 0.035; Dunn’s test with Holm correction, p = 0.016). In addition, we conducted artificial egg experiments to assess differences in predation rates among coloration types across habitats. These revealed few significant differences in predation probability or time to predation among egg types, habitats, or their interaction, suggesting broadly similar predation pressures across treatments. Together, these results indicate that eggshell coloration in Caprimulgidae is strongly constrained by phylogenetic history and secondarily modulated by habitat structure, rather than being solely explained by contemporary differences in predation risk.PregradoBiólogo(a)Ecología & EvoluciónUniversidad de CaldasFacultad de Ciencias Exactas y NaturalesManizales, CaldasBiologíaOcampo, DavidUniversidad de CaldasMendiwelso, Maria ElisaOrozco Herrera, Jonathan2026-01-23T15:30:45Z2026-01-23T15:30:45Z2026-01-23Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis16 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/26535Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaAlothyqi, N., Thornton, A., & Stevens, M. (2024). Ground-nesting birds learn egg appearance to guide background choice for camouflage. Current Biology, 34(15), R722-R723. https://doi.org/10.1016/j.cub.2024.06.039Au-Yeung, M., Hou, K., Lam, L., & Ton, A. Y. (2020). The Effect of Acidity Levels on Eggshells. The Expedition, 10.Bateman, P. W., Fleming, P. A., & Wolfe, A. K. (2017). A different kind of ecological modelling: the use of clay model organisms to explore predator–prey interactions in vertebrates. Journal of Zoology, 301(4), 251-262. https://doi.org/10.1111/jzo.12415Cassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T., ... & Mikšík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.xClaramunt, S., Sheard, C., Brown, J. W., Cortés-Ramírez, G., Cracraft, J., Su, M. M., ... & Tobias, J. A. (2025). A new time tree of birds reveals the interplay between dispersal, geographic range size, and diversification. Current Biology, 35(16), 3883-3895. https://doi.org/10.1016/j.cub.2025.07.004Cumming, G. (2009). Inference by eye: Reading the overlap of independent confidence intervals. Statistics in medicine, 28(2), 205-220. https://doi.org/10.1002/sim.3471Davison, W. B., & Bollinger, E. (2000). Predation rates on real and artificial nests of grassland birds. The Auk, 117(1), 147-153. https://doi.org/10.1642/0004-8038(2000)117[0147:PRORAA]2.0.CO;2D’Arrigo, G., Leonardis, D., Abd ElHafeez, S., Fusaro, M., Tripepi, G., & Roumeliotis, S. (2021). Methods to Analyse Time‐to‐Event Data: The Kaplan‐Meier Survival Curve. Oxidative medicine and cellular longevity, 2021(1), 2290120. https://doi.org/10.1155/2021/2290120Gosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds’ eggs speckled?. Ecology Letters, 8(10), 1105-1113. https://doi.org/10.1111/j.1461-0248.2005.00816.xKilner, R. M. (2006). The evolution of egg colour and patterning in birds. Biological Reviews, 81(3), 383-406. https://doi.org/10.1017/S1464793106007044Langkoke, R., Ahmad, A., Thamrin, M., Husain, R., & Iqbal, M. (2024). Geocomputation and Spatial Analysis Applied for Geological Mapping: A Case Study in Palopo, South Sulawesi, Indonesia. Jurnal Ecosolum, 13(1), 68-81. https://doi.org/10.20956/ecosolum.v13i1.33157Larsen, C., Speed, M., Harvey, N., & Noyes, H. A. (2007). A molecular phylogeny of the nightjars (Aves: Caprimulgidae) suggests extensive conservation of primitive morphological traits across multiple lineages. Molecular Phylogenetics and Evolution, 42(3), 789-796. https://doi.org/10.1016/j.ympev.2006.10.005McClelland, S. C., Cassey, P., Maurer, G., Hauber, M. E., & Portugal, S. J. (2021). How much calcium to shell out? Eggshell calcium carbonate content is greater in birds with thinner shells, larger clutches and longer lifespans. Journal of the Royal Society Interface, 18(182), 20210502. https://doi.org/10.1098/rsif.2021.0502Mendiwelso, M. E., Cadena, C. D., & Ocampo, D. (2025). Nest location and architecture as primary drivers of variation in UV reflectance in avian eggs. Proceedings B, 292(2047), 20250180. https://doi.org/10.1098/rspb.2025.0180Orłowski, G., Pokorny, P., Dobicki, W., Łukaszewicz, E., & Kowalczyk, A. (2017). Speckled and plain regions of avian eggshells differ in maternal deposition of calcium and metals: A hitherto overlooked chemical aspect of egg maculation. The Auk: Ornithological Advances, 134(3), 721-731. https://doi.org/10.1642/AUK-17-7.1Peters, C., Geary, M., Nelson, H. P., Rusk, B. L., Von Hardenberg, A., & Muir, A. (2023). Phylogenetic placement and life history trait imputation for Grenada Dove Leptotila wellsi. Bird Conservation International, 33, e11. https://doi.org/10.1017/S0959270922000065Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526(7574), 569-573. https://doi:10.1038/nature15697Rangen, S. A., Clark, R. G., & Hobson, K. A. (2000). Visual and olfactory attributes of artificial nests. The Auk, 117(1), 136-146. https://doi.org/10.1093/auk/117.1.136Revell, L. J. (2024). phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ, 12, e16505. https://doi.org/10.7717/peerj.16505Sanín, D., Mancera-Santa, J. C., Castaño-R, N., Alzate-Q, N. F., Gonzáles-O, G., & Álvarez-Mejía, L. M. (2006). Catálogo preliminar de las plantas vasculares de la reserva forestal protectora “Río Blanco”(Manizales, Caldas, Colombia). Bol. Cient. Mus. Hist. Nat. U. Caldas, 10, 19-44.Samiullah, S., & Roberts, J. R. (2013). The location of protoporphyrin in the eggshell of brown-shelled eggs. Poultry science, 92(10), 2783-2788. https://doi.org/10.3382/ps.2013-03051Skrade, P. D., & Dinsmore, S. J. (2013). Egg crypsis in a ground‐nesting shorebird influences nest survival. Ecosphere, 4(12), 1-9. https://doi.org/10.1890/ES13-00246.1Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K., & Spottiswoode, C. N. (2017). Improvement of individual camouflage through background choice in ground-nesting birds. Nature ecology & evolution, 1(9), 1325-1333. https://doi.org/10.1038/s41559-017-0256-xSzala, K., Tobolka, M., & Surmacki, A. (2025). Eggshell coloration is related to condition of females and offspring but not to male provisioning effort in a cup-nesting passerine. Behavioral Ecology and Sociobiology, 79(6), 66. https://doi.org/10.5281/zenodo.15314841Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J., Yang, J., Sayol, F., ... & Schleuning, M. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecology letters, 25(3), 581-597. https://doi.org/10.1111/ele.13898Wallace, A. 1889. Darwinism: An exposition of the theory of natural selection, with some of its applications. Macmillan, London, UK.Winkler, D. W., S. M. Billerman, and I. J. Lovette (2024). Nightjars and Allies (Caprimulgidae), version 2.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.caprim2.02Wisocki, P. A., Kennelly, P., Rojas Rivera, I., Cassey, P., Burkey, M. L., & Hanley, D. (2020). The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology & Evolution, 4(1), 148-155. https://doi.org/10.1038/s41559-019-1003-2Zanette, L. (2002). What do artificial nests tells us about nest predation?. Biological conservation, 103(3), 323-329. https://doi.org/10.1016/S0006-3207(01)00143-4Reserva Forestal Protectora de Río Blanco - Manizales (Caldas)https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/265352026-01-24T08:02:17Z