Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema

Ilustraciones, fotos, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/19800
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/19800
https://repositorio.ucaldas.edu.co/
Palabra clave:
Luz
Monocromática
Policromática
Célula
Vegetal
Solanum lycopersicum y Arabidopsis
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUCALDA_c9cb6363a32d79fed747250f02be1575
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/19800
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
title Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
spellingShingle Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
Luz
Monocromática
Policromática
Célula
Vegetal
Solanum lycopersicum y Arabidopsis
title_short Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
title_full Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
title_fullStr Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
title_full_unstemmed Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
title_sort Efecto de la luz monocromática sobre sistemas vegetales: revisión de tema
dc.contributor.none.fl_str_mv Garcia-Jaramillo, Dora-Janeth
dc.subject.none.fl_str_mv Luz
Monocromática
Policromática
Célula
Vegetal
Solanum lycopersicum y Arabidopsis
topic Luz
Monocromática
Policromática
Célula
Vegetal
Solanum lycopersicum y Arabidopsis
description Ilustraciones, fotos, gráficas
publishDate 2024
dc.date.none.fl_str_mv 2024-02-16T19:30:45Z
2024-02-16T19:30:45Z
2024-02-16
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
http://purl.org/coar/resource_type/c_7a1f
Text
info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/19800
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co/
url https://repositorio.ucaldas.edu.co/handle/ucaldas/19800
https://repositorio.ucaldas.edu.co/
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Agrawal, S. B., Singh, S., & Agrawal, M. (2015). Role of light in plant development. International Journal of Plant and Environment, 1(01), 43-56.
Landi, M., Zivcak, M., Sytar, O., Brestic, M., & Allakhverdiev, S. I. (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1861(2), 148131.
Packard, C. (1925). The effect of light on the permeability of Paramecium. The Journal of General Physiology, 7(3), 363.
Ádám, É., Hajdu, A., Nagy, F., & Viczián, A. (2015). Optogenetics: past, present and future. Acta Biologica Szegediensis, 59(Supl 1), 105-119.
Azmi, N. S., Ahmad, R., & Ibrahim, R. (2014). Effects of Red and Blue (RB) LED on the in vitro Growth of Rosa Kordesii in Multiplication Phase
Bello-Bello, J. J., Martínez-Estrada, E., Caamal-Velázquez, J. H., & Morales-Ramos, V. (2016). Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15(8), 272-277
Bula, R. J., Morrow, R. C., Tibbitts, T. W., Barta, D. J., Ignatius, R. W., & Martin, T. S. (1991). Light-emitting diodes as a radiation source for plants. HortScience, 26(2), 203-205.
Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Royal Society Publishing, 369(1640), 20130243.
Davis, P. A., & Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security, 5(4), 223-238.
Gupta, S. D., & Jatothu, B. (2013). Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant biotechnology reports, 7(3), 211-220.
Hung, C. D., Hong, C. H., Kim, S. K., Lee, K. H., Park, J. Y., Nam, M. W., ... & Lee, H. I. (2016). LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiologiae Plantarum, 38(6), 1-9
Kim, B., & Lin, M. Z. (2013). Optobiology: optical control of biological processes via protein engineering
Kim, S. J., Hahn, E. J., Heo, J. W., & Paek, K. Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1), 143-151
Lian, M. L., Murthy, H. N., & Paek, K. Y. (2002). Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Scientia Horticulturae, 94(3), 365-370.
Kurilčik, A., Dapkūnienė, S., Kurilčik, G., Duchovskis, P., Urbonavičiūtė, A., Žilinskaitė, S., & Žukauskas, A. (2011). Effect of far-red light on the growth of chrysanthemum plantlets in vitro. Sodininkystė ir daržininkystė, 30(3-4), 103-108
Muneer, S., Park, Y. G., & Jeong, B. R. (2017). Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation, 1-10.
Muneer, S., Park, Y. G., & Jeong, B. R. (2017). Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation, 1-10.
Lee, K. M., Lim, C. S., Muneer, S., & Jeong, B. R. (2016). Functional vascular connections and light quality effects on tomato grafted unions. Scientia Horticulturae, 201, 306-317.
Jackson, H. C. (1909). The effect of conditions upon the latent period and rate of aseptic post mortem autolysis during the first ten hours. The Journal of Experimental Medicine, 11(1), 55-83.
Pastrana, E. (2011). Optogenetics: controlling cell function with light. Nature Methods, 8(1), 24-25.
Pathak, G. P., Vrana, J. D., & Tucker, C. L. (2013). Optogenetic control of cell function using engineered photoreceptors. Biology of the Cell, 105(2), 59-72.
Poudel, P. R., Kataoka, I., & Mochioka, R. (2008). Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant cell, tissue and organ culture, 92(2), 147-153.
Rocha, P. S. G., de Oliveira, R. P., & Scivittaro, W. B. (2015). New light sources for in-vitro potato micropropagation. Bioscience Journal, 31(5).
Schäfer, E., & Bowler, C. (2002). Phytochrome‐mediated photoperception and signal transduction in higher plants. EMBO reports, 3(11), 1042-1048.
Sheerin, D. J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., ... & Hiltbrunner, A. (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. The Plant cell, 27(1), 189-201.
Sorgato, J. C., Rosa, Y. B. C. J., Soares, J. S., Lemes, C. S. R., & Sousa, G. G. D. (2015). Light in intermediate acclimatization of in vitro germinated seedlings of Dendrobium phalaenopsis Deang Suree. Ciência Rural, 45(2), 231-237.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2006). Plant physiology and development. Sinauer Associates, Incorporated.
Takeui, B., Ansante, N. F., Rossi, M. L., Calaboni, C., & Rodrigues, P. H. V. (2017). In vitro culture of heliconia in different light sources. Plant Cell Culture & Micropropagation, 12(2), 39.
Cybularz-Urban, T., Hanus-Fajerska, E., & Swiderski, A. (2007). Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biologica Cracoviensia, 49(1), 113-118.
Zhang, X., Huai, J., Shang, F., Xu, G., Tang, W., Jing, Y., & Lin, R. (2017). A PIF1/PIF3-HY5- BBX23 transcription factor cascade affects photomorphogenesis. Plant Physiology, 174(4), 2487- 2500
Zhang, K., & Cui, B. (2015). Optogenetic control of intracellular signaling pathways. Trends in biotechnology, 33(2), 92-100.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
publisher.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
Manizales
Biología
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145071620096000
spelling Efecto de la luz monocromática sobre sistemas vegetales: revisión de temaLuzMonocromáticaPolicromáticaCélulaVegetalSolanum lycopersicum y ArabidopsisIlustraciones, fotos, gráficasEl estudio de la luz tiene un fuerte componente histórico, siendo solo hasta tiempos recientes que el interés de su efecto sobre células y sistemas vegetales ha incrementado significativamente y se ha dirigido hacia la aplicación. La presente revisión muestra el resultado un análisis bibliométrico de estudios en los últimos 15 años empleando el programa VOSviewer con 11 términos de búsqueda diferentes a través de 406,224 artículos académicos de la base de datos PubMed. Producto de esta revisión se pudo conocer el significativo efecto que cada longitud de onda del espectro de luz visible tiene sobre las respuestas especificas en las células vegetales activadas por los fotorreceptores. Estos datos facilitan el direccionamiento de nuevos estudios en este campo al demostrar el interés a nivel global y facilitará revisiones futuras integradas a tecnologías de análisis de datos.The study of light has a strong historical component, being only until recent times that the interest in its effect on plant cells and systems has increased significantly and has been directed towards implementation. This review shows the resulted in a bibliometric analysis of studies in the last 15 years using the program VOSviewer with 11 different search terms across 406,224 academic articles from the PubMed database. As a result of this review, it was possible to know the significant effect that each wavelength of the visible light spectrum has on the specific responses in plant cells activated by photoreceptors. These data facilitates the direction of new studies in this field by demonstrating interest at a global level and will facilitate future reviews integrated into data analysis technologies.UniversitarioBiólogo(a)Facultad de Ciencias Exactas y NaturalesManizalesBiologíaGarcia-Jaramillo, Dora-JanethPoch Enciso, Francisco2024-02-16T19:30:45Z2024-02-16T19:30:45Z2024-02-16Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19800Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.co/engspaAgrawal, S. B., Singh, S., & Agrawal, M. (2015). Role of light in plant development. International Journal of Plant and Environment, 1(01), 43-56.Landi, M., Zivcak, M., Sytar, O., Brestic, M., & Allakhverdiev, S. I. (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1861(2), 148131.Packard, C. (1925). The effect of light on the permeability of Paramecium. The Journal of General Physiology, 7(3), 363.Ádám, É., Hajdu, A., Nagy, F., & Viczián, A. (2015). Optogenetics: past, present and future. Acta Biologica Szegediensis, 59(Supl 1), 105-119.Azmi, N. S., Ahmad, R., & Ibrahim, R. (2014). Effects of Red and Blue (RB) LED on the in vitro Growth of Rosa Kordesii in Multiplication PhaseBello-Bello, J. J., Martínez-Estrada, E., Caamal-Velázquez, J. H., & Morales-Ramos, V. (2016). Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15(8), 272-277Bula, R. J., Morrow, R. C., Tibbitts, T. W., Barta, D. J., Ignatius, R. W., & Martin, T. S. (1991). Light-emitting diodes as a radiation source for plants. HortScience, 26(2), 203-205.Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: the shift in primary and secondary metabolism. Royal Society Publishing, 369(1640), 20130243.Davis, P. A., & Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security, 5(4), 223-238.Gupta, S. D., & Jatothu, B. (2013). Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant biotechnology reports, 7(3), 211-220.Hung, C. D., Hong, C. H., Kim, S. K., Lee, K. H., Park, J. Y., Nam, M. W., ... & Lee, H. I. (2016). LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiologiae Plantarum, 38(6), 1-9Kim, B., & Lin, M. Z. (2013). Optobiology: optical control of biological processes via protein engineeringKim, S. J., Hahn, E. J., Heo, J. W., & Paek, K. Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1), 143-151Lian, M. L., Murthy, H. N., & Paek, K. Y. (2002). Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Scientia Horticulturae, 94(3), 365-370.Kurilčik, A., Dapkūnienė, S., Kurilčik, G., Duchovskis, P., Urbonavičiūtė, A., Žilinskaitė, S., & Žukauskas, A. (2011). Effect of far-red light on the growth of chrysanthemum plantlets in vitro. Sodininkystė ir daržininkystė, 30(3-4), 103-108Muneer, S., Park, Y. G., & Jeong, B. R. (2017). Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation, 1-10.Muneer, S., Park, Y. G., & Jeong, B. R. (2017). Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus). Journal of Plant Growth Regulation, 1-10.Lee, K. M., Lim, C. S., Muneer, S., & Jeong, B. R. (2016). Functional vascular connections and light quality effects on tomato grafted unions. Scientia Horticulturae, 201, 306-317.Jackson, H. C. (1909). The effect of conditions upon the latent period and rate of aseptic post mortem autolysis during the first ten hours. The Journal of Experimental Medicine, 11(1), 55-83.Pastrana, E. (2011). Optogenetics: controlling cell function with light. Nature Methods, 8(1), 24-25.Pathak, G. P., Vrana, J. D., & Tucker, C. L. (2013). Optogenetic control of cell function using engineered photoreceptors. Biology of the Cell, 105(2), 59-72.Poudel, P. R., Kataoka, I., & Mochioka, R. (2008). Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant cell, tissue and organ culture, 92(2), 147-153.Rocha, P. S. G., de Oliveira, R. P., & Scivittaro, W. B. (2015). New light sources for in-vitro potato micropropagation. Bioscience Journal, 31(5).Schäfer, E., & Bowler, C. (2002). Phytochrome‐mediated photoperception and signal transduction in higher plants. EMBO reports, 3(11), 1042-1048.Sheerin, D. J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., ... & Hiltbrunner, A. (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. The Plant cell, 27(1), 189-201.Sorgato, J. C., Rosa, Y. B. C. J., Soares, J. S., Lemes, C. S. R., & Sousa, G. G. D. (2015). Light in intermediate acclimatization of in vitro germinated seedlings of Dendrobium phalaenopsis Deang Suree. Ciência Rural, 45(2), 231-237.Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2006). Plant physiology and development. Sinauer Associates, Incorporated.Takeui, B., Ansante, N. F., Rossi, M. L., Calaboni, C., & Rodrigues, P. H. V. (2017). In vitro culture of heliconia in different light sources. Plant Cell Culture & Micropropagation, 12(2), 39.Cybularz-Urban, T., Hanus-Fajerska, E., & Swiderski, A. (2007). Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biologica Cracoviensia, 49(1), 113-118.Zhang, X., Huai, J., Shang, F., Xu, G., Tang, W., Jing, Y., & Lin, R. (2017). A PIF1/PIF3-HY5- BBX23 transcription factor cascade affects photomorphogenesis. Plant Physiology, 174(4), 2487- 2500Zhang, K., & Cui, B. (2015). Optogenetic control of intracellular signaling pathways. Trends in biotechnology, 33(2), 92-100.info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/198002024-07-16T21:47:18Z